
COMP3630/6360: Theory of Computation
Semester 1, 2022

The Australian National University

Time Complexity

This lecture covers Chapter 10 of HMU: Time Complexity

NP-Hardness

Polytime Reductions

SAT is NP-hard

Additional Reading: Chapter 10 of HMU.

P
?
= NP

Question 1.1 (P = NP problem)

Can we simulate a non-deterministic TM (NTM) in polynomial time on a (deterministic)
TM?

Recall:

P—problems that can be solved in polynomial time on a TM.

NP—problems that can be solved in polynomial time on an NTM.

At this point, no one knows for sure, but “no” might be a good bet.

NP-complete problems

This is about decision problems (problems with yes/no answers). Equivalently, solving
the membership problem x ∈ L.

Obviously P ⊆ NP.

Nobody knows for sure whether NP ⊆ P

Intuitively, NP-complete problems are the “hardest” problems in NP.

P Reducibility

Recall how we use mapping-reducibility to transfer (un)decidabilty from one problem to
the next.

Definition 1.2

f : Σ∗ −→ Σ∗ is a polynomial time computable (or P computable) function if some
polynomial time TM M exists that halts with just f (w) on its tape, when started on any
input w ∈ Σ∗.

Definition 1.3

A ⊆ Σ∗1 is polynomial time mapping reducible (or P reducible) to B ⊆ Σ∗2 , written
A ≤P B, if a P computable function f : Σ∗1 −→ Σ∗2 exists that is also a reduction (from A
to B).

P Reducibility cont.

Theorem 1.4

If A ≤P B and B ∈ P then A ∈ P.

Proof.

To decide w ∈ A first compute f (w) (in P) where f is the P reduction from A to B, and
then run a P decider for B. This is still in P because p1(p2(n)) is a polynomial if p1(n)
and p2(n) are.

NP-Completeness

Definition 1.5

A language B is NP-complete if

1 B ∈ NP

2 every A ∈ NP is P reducible to B.

Theorem 1.6

If B is NP-complete and B ∈ P then P = NP.

Theorem 1.7

If B is NP-complete and B ≤P C for C ∈ NP, then C is NP-complete.

Proof.

Polynomial time reductions compose.

NP-Completeness

If there are any problems in NP \ P, the NP-complete problems are all there.

Every NP-complete problem can be translated in deterministic polynomial time to every
other NP-complete problem.

So, if there is a P solution to one NP-complete problem, there is a P solution to every
NP problem.

NP-Hardness by Reduction

Typical method: Reduce a known NP-hard problem P1 to the new problem P2 .

Basic Proof Strategy

NP-completeness is a good news/bad news situation.

Good news: The problem is in NP!

Bummer: The problem is NP-hard!

So, a typical NP-completeness proof consists of two parts:

1 Prove that the problem is in NP (i.e., it has P verifier).

2 Prove that the problem is at least as hard as other problems in NP.

A TM can simulate an ordinary computer in polynomial time, so it is sufficient to
describe a polynomial-time checking algorithm that will run on any reasonable model of
computation.

NP-Hardness

A problem is NP-hard if having a polynomial-time solution to it would give us a
polynomial solution to every problem in NP.

Prove that the problem is NP-hard: The usual strategy is to find a polynomial-time
reduction of a known NP-hard problem (say P1) to the problem in question (say P2).

The goal is to show that P2 is at least as hard (in terms of polynomial
vs. super-polynomial time) as P1.

If P1 can be translated to an equivalent problem P2 in polynomial time, then a
polynomial-time solution to P2 would also give a polynomial-time solution to P1: First
reduce P1 to P2, then solve it.

NP-hardness cont.

Repeated warning: Make sure you are reducing the known problem to the unknown
problem!

In practice, there are now thousands of known NP-complete problems. A good technique
is to look for one similar to the one you are trying to prove NP-hard.

Boolean Formulae

Let Prop = {x , y , . . .} be a (finite) set of Boolean variables (or propositions).
A CFG for Boolean formulae over Prop is:

φ→ p | φ ∧ φ | ¬φ | (φ)

p → x | y | . . .

We use abbreviations such as

φ1 ∨ φ2 = ¬(¬φ1 ∧ ¬φ2) φ1 ⇒ φ2 = ¬φ1 ∨ φ2

false = (x ∧ ¬x) true = ¬false

Technically, we could handle countably infinite sets Prop if we had a naming scheme for
variables, say, xn for binary representations n of natural numbers.

Semantics of Boolean Formulae

A Boolean formula is either TT (for “true”) or FF (for “false”), possibly depending on
the interpretation of its propositions. Let B = {FF,TT}.

Definition 2.1

An interpretation (of Prop) is a function π : Prop −→ B.
For Boolean formulae φ we define π satisfies φ, written π |= φ, inductively by:
Base: π |= x iff π(x) = TT.
Induction:

π |= ¬φ iff π 6|= φ.

π |= φ1 ∧ φ2 iff both π |= φ1 and π |= φ2.

π |= (φ) iff π |= φ.

φ is satisfiable if there exists an interpretation π such that π |= φ.

SAT—An NP-Complete Problem

SAT = { 〈φ〉 | φ is a satisfiable Boolean formula }

Theorem 2.2

SAT is NP-complete.

Proof of SAT ∈ NP.

If π |= φ we use 〈π〉 as certicate. Had we chosen a countably infinite Prop, we’d restrict
π to the propositions occurring in φ.

Proof of NP-Hardness of SAT

Let A ∈ NP. Let M = (Q,Σ,Γ, δ, q0,F) be a deciding NTM with L(M) = A and let p be
a polynomial such that M takes at most p(|w |) steps on any computation for any
w ∈ Σ∗.

Construct a P reduction from A to SAT. On input w a Boolean formula φw that
describes M’s possible computations on w .

M accepts w iff φw is satisfiable. The satisfying interpretation resolves the
nondeterminism in the computation tree to arrive at an accepting branch of the
computation tree.
Remains to be done: define φw .

Proof of NP-Hardness of SAT cont.

Recall that M accepts w if an n ≤ p(|w |) and a sequence (Ci)0<i≤n of IDs exist, where

1 C1 = q0w ,

2 each Ci can yield Ci+1, and

3 Cn is an accepting ID.

Let C = Q ∪ Γ ∪ {#}. Each Ci can be represented as a #-enclosed string over alphabet
C no longer than n + 3.

φw

The Boolean formula φw shall represent all such sequences (Ci)0<i≤n beginning with q0w .

φw = φcell ∧ φstart ∧ φmove ∧ φaccept

φcell

. . . describes an n2 grid using propositions Prop = { xi,k,s | i , k ∈ {1, . . . , n} ∧ s ∈ C }.

φcell =
∧

0<i,k≤n

∨
s∈C

xi,k,s ∧
∧

s 6=t∈C

(¬xi,k,s ∨ ¬xi,k,t)


Row i in the grid corresponds to the ID Ci . Unused tape cells are blank.
Every grid cell contains exactly one symbol or a state.

φstart

. . . specifies that the first row of the grid contains q0w where w = w1 . . .w|w|:

φstart = x1,1,# ∧ x1,2,q0 ∧
∧

2<i≤|w|+2

x1,i,wi−2 ∧
∧

|w|+2<i≤n−1

x1,i,t ∧ x1,n,#

φmove

. . . ensures that Ci yields Ci+1 by describing legal 2× 3 windows of cells.

φmove =
∧

0<i,k<n

∨
a1 a2 a3
a4 a5 a6

is legal

(
xi,k−1,a1 ∧ xi,k,a2 ∧ xi,k+1,a3 ∧
xi+1,k−1,a4 ∧ xi+1,k,a5 ∧ xi+1,k+1,a6

)

what is legal depends on the transition function δ.

φaccept

. . . states that the accept state is reached:

φaccept =
∨

0<i,k≤n

xi,k,qaccept

Finally we check that the size of φw is polynomial in |w | and that φw is constructable in
polynomial time.

—The End—

	NP-Completeness
	Intro

	SAT
	Intro

