COMP3630/6360: Theory of Computation
Semester 1, 2022
The Australian National University

Time Complexity

This lecture covers Chapter 10 of HMU: Time Complexity

- NP-Hardness
- Polytime Reductions
- SAT is NP-hard

Additional Reading: Chapter 10 of HMU.

$\mathbf{P} \stackrel{?}{=} \mathbf{N P}$

Question 1.1 ($\mathbf{P}=$ NP problem)

Can we simulate a non-deterministic TM (NTM) in polynomial time on a (deterministic) TM?

Recall:

- \mathbf{P}-problems that can be solved in polynomial time on a TM.
- NP—problems that can be solved in polynomial time on an NTM.

At this point, no one knows for sure, but "no" might be a good bet.

NP-complete problems

This is about decision problems (problems with yes/no answers). Equivalently, solving the membership problem $x \in L$.

Obviously $\mathbf{P} \subseteq \mathbf{N P}$.

Nobody knows for sure whether $\mathbf{N P} \subseteq \mathbf{P}$

Intuitively, NP-complete problems are the "hardest" problems in NP.

P Reducibility

Recall how we use mapping-reducibility to transfer (un)decidabilty from one problem to the next.

Definition 1.2

$f: \Sigma^{*} \longrightarrow \Sigma^{*}$ is a polynomial time computable (or \mathbf{P} computable) function if some polynomial time TM M exists that halts with just $f(w)$ on its tape, when started on any input $w \in \Sigma^{*}$.

Definition 1.3

$A \subseteq \Sigma_{1}^{*}$ is polynomial time mapping reducible (or \mathbf{P} reducible) to $B \subseteq \Sigma_{2}^{*}$, written $A \leq_{\mathbf{P}} B$, if a \mathbf{P} computable function $f: \Sigma_{1}^{*} \longrightarrow \Sigma_{2}^{*}$ exists that is also a reduction (from A to B).

P Reducibility cont.

```
Theorem 1.4
If }A\leq\mathbf{p}B\mathrm{ and }B\in\mathbf{P}\mathrm{ then }A\in\mathbf{P}\mathrm{ .
```


Proof.

To decide $w \in A$ first compute $f(w)$ (in \mathbf{P}) where f is the \mathbf{P} reduction from A to B, and then run a \mathbf{P} decider for B. This is still in \mathbf{P} because $p_{1}\left(p_{2}(n)\right)$ is a polynomial if $p_{1}(n)$ and $p_{2}(n)$ are.

NP-Completeness

Definition 1.5

A language B is NP-complete if
(1) $B \in \mathbf{N P}$
(2) every $A \in \mathbf{N P}$ is \mathbf{P} reducible to B.

Theorem 1.6

If B is NP-complete and $B \in \mathbf{P}$ then $\mathbf{P}=\mathbf{N P}$.

Theorem 1.7

If B is NP-complete and $B \leq_{\mathbf{P}} C$ for $C \in \mathbf{N P}$, then C is NP-complete.

Proof.

Polynomial time reductions compose.

NP-Completeness

If there are any problems in $\mathbf{N P} \backslash \mathbf{P}$, the $\mathbf{N P}$-complete problems are all there.
Every NP-complete problem can be translated in deterministic polynomial time to every other NP-complete problem.

So, if there is a \mathbf{P} solution to one NP-complete problem, there is a \mathbf{P} solution to every NP problem.

NP-Hardness by Reduction

Typical method: Reduce a known NP-hard problem P_{1} to the new problem P_{2}.

Basic Proof Strategy

NP-completeness is a good news/bad news situation.

- Good news: The problem is in NP!
- Bummer: The problem is NP-hard!

So, a typical NP-completeness proof consists of two parts:
(1) Prove that the problem is in NP (i.e., it has \mathbf{P} verifier).
(2) Prove that the problem is at least as hard as other problems in NP.

A TM can simulate an ordinary computer in polynomial time, so it is sufficient to describe a polynomial-time checking algorithm that will run on any reasonable model of computation.

NP-Hardness

A problem is NP-hard if having a polynomial-time solution to it would give us a polynomial solution to every problem in NP.

Prove that the problem is NP-hard: The usual strategy is to find a polynomial-time reduction of a known NP-hard problem (say P_{1}) to the problem in question (say P_{2}).

The goal is to show that P_{2} is at least as hard (in terms of polynomial vs. super-polynomial time) as P_{1}.

If P_{1} can be translated to an equivalent problem P_{2} in polynomial time, then a polynomial-time solution to P_{2} would also give a polynomial-time solution to P_{1} : First reduce P_{1} to P_{2}, then solve it.

NP-hardness cont.

Repeated warning: Make sure you are reducing the known problem to the unknown problem!

In practice, there are now thousands of known NP-complete problems. A good technique is to look for one similar to the one you are trying to prove NP-hard.

Boolean Formulae

Let Prop $=\{x, y, \ldots\}$ be a (finite) set of Boolean variables (or propositions).
A CFG for Boolean formulae over Prop is:

$$
\begin{aligned}
& \phi \rightarrow p|\phi \wedge \phi| \neg \phi \mid(\phi) \\
& p \rightarrow x|y| \ldots
\end{aligned}
$$

We use abbreviations such as

$$
\begin{aligned}
\phi_{1} \vee \phi_{2} & =\neg\left(\neg \phi_{1} \wedge \neg \phi_{2}\right) \\
\text { FALSE } & =(x \wedge \neg x)
\end{aligned}
$$

$$
\begin{aligned}
\phi_{1} \Rightarrow \phi_{2} & =\neg \phi_{1} \vee \phi_{2} \\
\text { TRUE } & =\neg \text { FALSE }
\end{aligned}
$$

Technically, we could handle countably infinite sets Prop if we had a naming scheme for variables, say, x_{n} for binary representations n of natural numbers.

Semantics of Boolean Formulae

A Boolean formula is either TT (for "true") or FF (for "false"), possibly depending on the interpretation of its propositions. Let $\mathbb{B}=\{\mathbf{F F}, \mathbf{T} \mathbf{T}\}$.

Definition 2.1

An interpretation (of Prop) is a function $\pi:$ Prop $\longrightarrow \mathbb{B}$.
For Boolean formulae ϕ we define π satisfies ϕ, written $\pi \models \phi$, inductively by: Base: $\pi \models x$ iff $\pi(x)=$ TT.

Induction:

- $\pi \models \neg \phi$ iff $\pi \mid \vDash \phi$.
- $\pi \models \phi_{1} \wedge \phi_{2}$ iff both $\pi \models \phi_{1}$ and $\pi \models \phi_{2}$.
- $\pi \models(\phi)$ iff $\pi \models \phi$.
ϕ is satisfiable if there exists an interpretation π such that $\pi \models \phi$.

SAT—An NP-Complete Problem

$$
S A T=\{\langle\phi\rangle \mid \phi \text { is a satisfiable Boolean formula }\}
$$

Theorem 2.2

SAT is NP-complete.

Proof of SAT $\in N$.

If $\pi \models \phi$ we use $\langle\pi\rangle$ as certicate. Had we chosen a countably infinite Prop, we'd restrict π to the propositions occurring in ϕ.

Proof of NP-Hardness of SAT

Let $A \in \mathbf{N P}$. Let $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ be a deciding NTM with $L(M)=A$ and let p be a polynomial such that M takes at most $p(|w|)$ steps on any computation for any $w \in \Sigma^{*}$.

Construct a \mathbf{P} reduction from A to $S A T$. On input w a Boolean formula ϕ_{w} that describes M 's possible computations on w.
M accepts w iff ϕ_{w} is satisfiable. The satisfying interpretation resolves the nondeterminism in the computation tree to arrive at an accepting branch of the computation tree.
Remains to be done: define ϕ_{w}.

Proof of NP-Hardness of SAT cont.

Recall that M accepts w if an $n \leq p(|w|)$ and a sequence $\left(C_{i}\right)_{0<i \leq n}$ of IDs exist, where
(1) $C_{1}=q_{0} w$,
(2) each C_{i} can yield C_{i+1}, and
(3) C_{n} is an accepting ID.

Let $C=Q \cup \Gamma \cup\{\#\}$. Each C_{i} can be represented as a \#-enclosed string over alphabet C no longer than $n+3$.
ϕ_{w}

The Boolean formula ϕ_{w} shall represent all such sequences $\left(C_{i}\right)_{0<i \leq n}$ beginning with $q_{0} w$.

$$
\phi_{w}=\phi_{\text {cell }} \wedge \phi_{\text {start }} \wedge \phi_{\text {move }} \wedge \phi_{\text {accept }}
$$

\ldots describes an n^{2} grid using propositions $\operatorname{Prop}=\left\{x_{i, k, s} \mid i, k \in\{1, \ldots, n\} \wedge s \in C\right\}$.

$$
\phi_{\text {cell }}=\bigwedge_{0<i, k \leq n}\left(\bigvee_{s \in C} x_{i, k, s} \wedge \bigwedge_{s \neq t \in C}\left(\neg x_{i, k, s} \vee \neg x_{i, k, t}\right)\right)
$$

Row i in the grid corresponds to the ID C_{i}. Unused tape cells are blank. Every grid cell contains exactly one symbol or a state.
\ldots specifies that the first row of the grid contains $q_{0} w$ where $w=w_{1} \ldots w_{|w|}$:

$$
\phi_{\text {start }}=x_{1,1, \#} \wedge x_{1,2, q_{0}} \wedge \bigwedge_{2<i \leq|w|+2} x_{1, i, w_{i-2}} \wedge \bigwedge_{|w|+2<i \leq n-1} x_{1, i, \sqcup} \wedge x_{1, n, \#}
$$

\ldots ensures that C_{i} yields C_{i+1} by describing legal 2×3 windows of cells.
what is legal depends on the transition function δ.
...states that the accept state is reached:

$$
\phi_{\text {accept }}=\bigvee_{0<i, k \leq n} x_{i, k, q_{\text {accept }}}
$$

Finally we check that the size of ϕ_{w} is polynomial in $|w|$ and that ϕ_{w} is constructable in polynomial time.

