COMP3630/6360: Theory of Computation
Semester 1, 2022
The Australian National University

Time Complexity

This lecture covers Chapter 10 of HMU: Time Complexity

o NP-Hardness of CNFSAT
o NP-Hardness of 3SAT
o More NP-Hard Problems
Additional Reading: Chapter 10 of HMU.

Cook's Theorem (SAT is NP-Complete)

o Cook's theorem gives a “generic reduction” for every problem in NP to SAT. So
SAT is as hard as any other problem in NP—it's NP-complete.

o So, SAT is the granddaddy of all NP-complete problems.

o Many people have worked on the SAT problem, and there are now very efficient
solvers (SAT solvers) for it.

©

People frequently translate NP-complete problems to propositional logic, and then
attack them with these general solvers!

CSAT

CSAT is a special case of SAT.
CSAT = { (¢) | ¢ is a satisfiable cnf formula }

where a Boolean formula is in cnf (for conjunctive normal form) if it is (also) generated
by the grammar

o—(c)| (c)Ng c—Ll|LlVc
t—pl-p p=x|yl ...

We call cs clauses, {s literals, and ps propositions.

Example 10.1

(xVz)A(yVz)is a cnf for the Boolean formula (x A y) V z.

CSAT is NP-Complete

Clearly CSAT is in NP because we can use the same certificate for ¢ in cnf as we would
for the same ¢ in SAT.

Giving a P reduction from SAT to CSAT is tricky.

A straight-forward translation of Boolean formulae into equivalent cnf may result in an
exponential blow-up, meaning that this approach is useless.
Instead, we recall a reduction f won't have to preserve satisfaction:

Vr(rb ¢ © kf(9)

but merely satisfiability

In(rl=¢) & In(rl=1(e)

meaning that we're free to choose different 7s for the two sides.

CSAT is NP-Hard

The translation from Boolean formulae to cnf proceeds in two steps which are both in P.

@ Translate to nnf (negation normal form) by pushing all negation symbols down to
propositions. (This is still satisfaction-preserving.)

@ Translate from nnf to cnf. (This merely preserves satisfiability.)

Pushing Down —

We use de Morgan's laws and the law of double negation to rewrite left-hand-sides to
right-hand-sides:

Example 10.2

(= Vy)) A(mx Vy)) & =(=(x Vy)) Vo(=x Vy)
S xVyVa(-xVy)
S xVyVa(=x) Ay
S xVyVxA-ay

Pushing Down — cont.

Theorem 10.3

Every Boolean formula ¢ is equivalent to a Boolean formula v in nnf. Moreover, || is
linear in |¢| and v can be constructed from ¢ in P.

.

Proof.

by induction on the number n of Boolean operators (A, V, =) in ¢ we may show that
there is an equivalent v in nnf with at most 2n — 1 operators. O

e

nnf — cnf

Theorem 10.4

There is a constant c such that every nnf ¢ has a cnf v such that:

@ 1 consists of at most |p| clauses.
@ 1) is constructable from ¢ in time at most c|p|?.

@ 7 | ¢ iff there exists an extension 7' of 7 satisfying ' |=), for all interpretations
of the propositions in ¢.

Proof.
by induction on |¢].

nnf — cnf cont.

Example 10.5

Consider x A =y V =x A (y V z). An equisatisfiable cnf is
(uVX)A(uV=y)A(muV=x)A(-uVvVy)A(-uV-avVz).

3SAT

3SAT is a special case of CSAT.
3SAT = { (¢) | ¢ is a satisfiable 3cnf formula }

where a Boolean formula is in 3cnf (for 3 literal conjunctive normal form) if it is (also)
generated by the grammar

o—=(c)]| (c)no c—>LeVIVE
L—p|-p pox|yl| ...

Example 10.6

(xVyVz)A(xVyV=z)A(xV-yVz)A(xV-ayV-z)is a 3enf for the Boolean
formula x.

3SAT is NP-Complete

Proof.

Clearly 3SAT is in NP because we can use the same certificate for ¢ in 3cnf as we would
for the same ¢ in SAT (or CSAT).

Sipser prefers to adapt his NP-hardness proof for SAT to 3SAT over giving a P reduction
from SAT to 3SAT.

We P reduce from CSAT to 3SAT instead, by translating arbitrary clauses into clauses
with exactly three literals. O

4

Proof detail: how to transform a cnf ¢ = A]_; ¢ into an equisatisfiable 3cnf. We
transform each clause ¢; = \/f":1 {; ; depending on the number k; of literals in it. (weomi

subscript i.)

Case k =1 (¢1) is replaced by
(lrVuVV)AULVuV=v)A(lV-uVv)A WLV -ouV-v)
for some fresh propositions u, v.
Case k =2 (£1V £,) is replaced by
(lr VLV u)A (£ VeV —u)

for some fresh proposition u.
Case k = 3 is 3cnf already.
Case k >3 (vj}legj) is replaced by
k—4

(b1 VLV) A /\ (jr2 V =i V tjr1) A (muk—3 V le—1 V L)
j=1

for some k — 3 fresh propositions w1, . .., Ux_3.

CLIQUE is NP-Complete

Let

CLIQUE = { (G, k) ‘ G is undirected graph }

with k-clique

We show NP-completeness on the whiteboard.

HAMPATH is NP-Complete

Recall that

HAMPATH — { (G,s,) ‘ Directed graph G has a }

Hamiltonian path from s to t

We already know that HAMPATH is in NP. We show NP-hardness by proving
3SAT <p HAMPATH on the whiteboard.

Node Cover

Given an undirected graph G, a node cover of G is a set C of vertices such that:

o for every edge between vi and vz, one of vy or v isin C.

The Node Cover Problem is the problem of deciding whether a graph G has a node cover
with k or fewer nodes:

NC = {(G, k} | G has node cover of size < k}

Independent Set

Given an undirected graph G, a independent set of G is a set C of vertices such that:

o no to vertices vi and v» € C are connected by an edge.

largest independent set not independent set not largest
~
A
I X ,——— I
N A N/ \ N A /

e - o0

The Independent Set Problem is the problem of deciding whether a graph G has an
independent set with k or or more nodes:

IS = {(G, k} | G has independent set of size > k}

Node Cover vs Independent Set

Q. How are node cover and independent set related?

> & @—©

Node Cover vs Independent Set Il

Theorem. A graph G with n vertices has a node cover of size k iff it has an independent
set of size n — k. Indeed, Node Cover is polytime reducible to independent set.

Corollary. If Node Cover is in NP, then so is independent set.

Theorem. Node Cover is in NP (whiteboard).

	Recap

