COMP3630/6360: Theory of Computation
Semester 1, 2022
The Australian National University

Time Complexity

This lecture covers Chapter 10 of HMU: Time Complexity

- NP-Hardness of CNFSAT
- NP-Hardness of 3SAT
- More NP-Hard Problems

Additional Reading: Chapter 10 of HMU.

Cook's Theorem (SAT is NP-Complete)

- Cook's theorem gives a "generic reduction" for every problem in NP to SAT. So SAT is as hard as any other problem in NP-it's NP-complete.
- So, SAT is the granddaddy of all NP-complete problems.
- Many people have worked on the SAT problem, and there are now very efficient solvers (SAT solvers) for it.
- People frequently translate NP-complete problems to propositional logic, and then attack them with these general solvers!

CSAT

CSAT is a special case of SAT.

$$
\text { CSAT }=\{\langle\phi\rangle \mid \phi \text { is a satisfiable cnf formula }\}
$$

where a Boolean formula is in cnf (for conjunctive normal form) if it is (also) generated by the grammar

$$
\begin{array}{ll}
\phi \rightarrow(c) \mid(c) \wedge \phi & c \rightarrow \ell \mid \ell \vee c \\
\ell \rightarrow p \mid \neg p & p \rightarrow x|y| \ldots
\end{array}
$$

We call cs clauses, ℓ s literals, and ps propositions.

Example 10.1

$(x \vee z) \wedge(y \vee z)$ is a cnf for the Boolean formula $(x \wedge y) \vee z$.

CSAT is NP-Complete

Clearly CSAT is in NP because we can use the same certificate for ϕ in cnf as we would for the same ϕ in SAT.

Giving a \mathbf{P} reduction from $S A T$ to CSAT is tricky.
A straight-forward translation of Boolean formulae into equivalent cnf may result in an exponential blow-up, meaning that this approach is useless. Instead, we recall a reduction f won't have to preserve satisfaction:

$$
\forall \pi(\pi \models \phi \quad \Leftrightarrow \quad \pi \models f(\phi))
$$

but merely satisfiability

$$
\exists \pi(\pi \models \phi) \quad \Leftrightarrow \quad \exists \pi(\pi \models f(\phi))
$$

meaning that we're free to choose different $\pi \mathrm{s}$ for the two sides.

CSAT is NP-Hard

The translation from Boolean formulae to cnf proceeds in two steps which are both in \mathbf{P}.
(1) Translate to nnf (negation normal form) by pushing all negation symbols down to propositions. (This is still satisfaction-preserving.)
(2) Translate from nnf to cnf. (This merely preserves satisfiability.)

Pushing Down \neg

We use de Morgan's laws and the law of double negation to rewrite left-hand-sides to right-hand-sides:

$$
\begin{aligned}
\neg(\phi \wedge \psi) & \Leftrightarrow \neg(\phi) \vee \neg(\psi) \\
\neg(\phi \vee \psi) & \Leftrightarrow \neg(\phi) \wedge \neg(\psi) \\
\neg(\neg(\phi)) & \Leftrightarrow \phi
\end{aligned}
$$

Example 10.2

$$
\begin{aligned}
\neg((\neg(x \vee y)) \wedge(\neg x \vee y)) & \Leftrightarrow \neg(\neg(x \vee y)) \vee \neg(\neg x \vee y) \\
& \Leftrightarrow x \vee y \vee \neg(\neg x \vee y) \\
& \Leftrightarrow x \vee y \vee \neg(\neg x) \wedge \neg y \\
& \Leftrightarrow x \vee y \vee x \wedge \neg y
\end{aligned}
$$

Pushing Down \neg cont.

Theorem 10.3

Every Boolean formula ϕ is equivalent to a Boolean formula ψ in nnf. Moreover, $|\psi|$ is linear in $|\phi|$ and ψ can be constructed from ϕ in \mathbf{P}.

Proof.

by induction on the number n of Boolean operators (\wedge, \vee, \neg) in ϕ we may show that there is an equivalent ψ in nnf with at most $2 n-1$ operators.

Theorem 10.4

There is a constant c such that every nnf ϕ has a cnf ψ such that:
(1) ψ consists of at most $|\phi|$ clauses.
(2) ψ is constructable from ϕ in time at most $c|\phi|^{2}$.
(3) $\pi \models \phi$ iff there exists an extension π^{\prime} of π satisfying $\pi^{\prime} \models \psi$, for all interpretations π of the propositions in ϕ.

Proof.

by induction on $|\phi|$.

nnf \longrightarrow cnf cont.

Example 10.5

Consider $x \wedge \neg y \vee \neg x \wedge(y \vee z)$. An equisatisfiable cnf is $(u \vee x) \wedge(u \vee \neg y) \wedge(\neg u \vee \neg x) \wedge(\neg u \vee v \vee y) \wedge(\neg u \vee \neg v \vee z)$.

3SAT

$3 S A T$ is a special case of CSAT.

$$
3 S A T=\{\langle\phi\rangle \mid \phi \text { is a satisfiable 3cnf formula }\}
$$

where a Boolean formula is in 3cnf (for 3 literal conjunctive normal form) if it is (also) generated by the grammar

$$
\begin{array}{ll}
\phi \rightarrow(c) \mid(c) \wedge \phi & c \rightarrow \ell \vee \ell \vee \ell \\
\ell \rightarrow p \mid \neg p & p \rightarrow x|y| \ldots
\end{array}
$$

Example 10.6

$(x \vee y \vee z) \wedge(x \vee y \vee \neg z) \wedge(x \vee \neg y \vee z) \wedge(x \vee \neg y \vee \neg z)$ is a 3cnf for the Boolean formula x.

3SAT is NP-Complete

Proof.

Clearly $3 S A T$ is in NP because we can use the same certificate for ϕ in 3 cnf as we would for the same ϕ in SAT (or CSAT).

Sipser prefers to adapt his NP-hardness proof for SAT to $3 S A T$ over giving a \mathbf{P} reduction from SAT to 3SAT.

We \mathbf{P} reduce from CSAT to $3 S A T$ instead, by translating arbitrary clauses into clauses with exactly three literals.

Proof detail: how to transform a $\operatorname{cnf} \phi=\bigwedge_{i=1}^{n} c_{i}$ into an equisatisfiable 3cnf. We transform each clause $c_{i}=\bigvee_{j=1}^{k_{i}} \ell_{i, j}$ depending on the number k_{i} of literals in it. (we omit subscript i.)

Case $k=1\left(\ell_{1}\right)$ is replaced by

$$
\left(\ell_{1} \vee u \vee v\right) \wedge\left(\ell_{1} \vee u \vee \neg v\right) \wedge\left(\ell_{1} \vee \neg u \vee v\right) \wedge\left(\ell_{1} \vee \neg u \vee \neg v\right)
$$

for some fresh propositions u, v.
Case $k=2\left(\ell_{1} \vee \ell_{2}\right)$ is replaced by

$$
\left(\ell_{1} \vee \ell_{2} \vee u\right) \wedge\left(\ell_{1} \vee \ell_{2} \vee \neg u\right)
$$

for some fresh proposition u.
Case $k=3$ is 3 cnf already.
Case $k>3\left(\bigvee_{j=1}^{k} \ell_{j}\right)$ is replaced by

$$
\left(\ell_{1} \vee \ell_{2} \vee u_{1}\right) \wedge \bigwedge_{j=1}^{k-4}\left(\ell_{j+2} \vee \neg u_{j} \vee u_{j+1}\right) \wedge\left(\neg u_{k-3} \vee \ell_{k-1} \vee \ell_{k}\right)
$$

for some $k-3$ fresh propositions u_{1}, \ldots, u_{k-3}.

CLIQUE is NP-Complete

Let
CLIQUE $=\left\{\begin{array}{l|l}\langle G, k\rangle & \begin{array}{l}G \text { is undirected graph } \\ \text { with } k \text {-clique }\end{array}\end{array}\right\}$
We show NP-completeness on the whiteboard.

HAMPATH is NP-Complete

Recall that
HAMPATH $=\left\{\begin{array}{l|l}\langle G, s, t\rangle & \begin{array}{l}\text { Directed graph } G \text { has a } \\ \text { Hamiltonian path from s to } t\end{array}\end{array}\right\}$
We already know that HAMPATH is in NP. We show NP-hardness by proving $3 S A T \leq_{\mathrm{p}}$ HAMPATH on the whiteboard.

Node Cover

Given an undirected graph G, a node cover of G is a set C of vertices such that:

- for every edge between v_{1} and v_{2}, one of v_{1} or v_{2} is in C.

The Node Cover Problem is the problem of deciding whether a graph G has a node cover with k or fewer nodes:

$$
N C=\{\langle G, k\} \mid G \text { has node cover of size } \leq k\}
$$

Independent Set

Given an undirected graph G, a independent set of G is a set C of vertices such that:

- no to vertices v_{1} and $v_{2} \in C$ are connected by an edge.

The Independent Set Problem is the problem of deciding whether a graph G has an independent set with k or or more nodes:

$$
I S=\{\langle G, k\} \mid G \text { has independent set of size } \geq k\}
$$

Node Cover vs Independent Set
Q. How are node cover and independent set related?

Node Cover vs Independent Set II

Theorem. A graph G with n vertices has a node cover of size k iff it has an independent set of size $n-k$. Indeed, Node Cover is polytime reducible to independent set.

Corollary. If Node Cover is in NP, then so is independent set.

Theorem. Node Cover is in NP (whiteboard).

