
COMP3630/6360: Theory of Computation
Semester 1, 2022

The Australian National University

Time Complexity

This lecture covers Chapter 10 of HMU: Time Complexity

NP-Hardness of CNFSAT

NP-Hardness of 3SAT

More NP-Hard Problems

Additional Reading: Chapter 10 of HMU.

Cook’s Theorem (SAT is NP-Complete)

Cook’s theorem gives a “generic reduction” for every problem in NP to SAT. So
SAT is as hard as any other problem in NP—it’s NP-complete.

So, SAT is the granddaddy of all NP-complete problems.

Many people have worked on the SAT problem, and there are now very efficient
solvers (SAT solvers) for it.

People frequently translate NP-complete problems to propositional logic, and then
attack them with these general solvers!

CSAT

CSAT is a special case of SAT.

CSAT = { 〈φ〉 | φ is a satisfiable cnf formula }

where a Boolean formula is in cnf (for conjunctive normal form) if it is (also) generated
by the grammar

φ→ (c) | (c) ∧ φ c → ` | ` ∨ c

`→ p | ¬p p → x | y | . . .

We call cs clauses, `s literals, and ps propositions.

Example 10.1

(x ∨ z) ∧ (y ∨ z) is a cnf for the Boolean formula (x ∧ y) ∨ z .

CSAT is NP-Complete

Clearly CSAT is in NP because we can use the same certificate for φ in cnf as we would
for the same φ in SAT.

Giving a P reduction from SAT to CSAT is tricky.

A straight-forward translation of Boolean formulae into equivalent cnf may result in an
exponential blow-up, meaning that this approach is useless.
Instead, we recall a reduction f won’t have to preserve satisfaction:

∀π (π |= φ ⇔ π |= f (φ))

but merely satisfiability

∃π (π |= φ) ⇔ ∃π (π |= f (φ))

meaning that we’re free to choose different πs for the two sides.

CSAT is NP-Hard

The translation from Boolean formulae to cnf proceeds in two steps which are both in P.

1 Translate to nnf (negation normal form) by pushing all negation symbols down to
propositions. (This is still satisfaction-preserving.)

2 Translate from nnf to cnf. (This merely preserves satisfiability.)

Pushing Down ¬

We use de Morgan’s laws and the law of double negation to rewrite left-hand-sides to
right-hand-sides:

¬(φ ∧ ψ)⇔ ¬(φ) ∨ ¬(ψ)
¬(φ ∨ ψ)⇔ ¬(φ) ∧ ¬(ψ)
¬(¬(φ))⇔ φ

Example 10.2

¬((¬(x ∨ y)) ∧ (¬x ∨ y))⇔ ¬(¬(x ∨ y)) ∨ ¬(¬x ∨ y)

⇔ x ∨ y ∨ ¬(¬x ∨ y)

⇔ x ∨ y ∨ ¬(¬x) ∧ ¬y
⇔ x ∨ y ∨ x ∧ ¬y

Pushing Down ¬ cont.

Theorem 10.3

Every Boolean formula φ is equivalent to a Boolean formula ψ in nnf. Moreover, |ψ| is
linear in |φ| and ψ can be constructed from φ in P.

Proof.

by induction on the number n of Boolean operators (∧, ∨, ¬) in φ we may show that
there is an equivalent ψ in nnf with at most 2n − 1 operators.

nnf −→ cnf

Theorem 10.4

There is a constant c such that every nnf φ has a cnf ψ such that:

1 ψ consists of at most |φ| clauses.

2 ψ is constructable from φ in time at most c|φ|2.

3 π |= φ iff there exists an extension π′ of π satisfying π′ |= ψ, for all interpretations π
of the propositions in φ.

Proof.

by induction on |φ|.

nnf −→ cnf cont.

Example 10.5

Consider x ∧ ¬y ∨ ¬x ∧ (y ∨ z). An equisatisfiable cnf is
(u ∨ x) ∧ (u ∨ ¬y) ∧ (¬u ∨ ¬x) ∧ (¬u ∨ v ∨ y) ∧ (¬u ∨ ¬v ∨ z).

3SAT

3SAT is a special case of CSAT.

3SAT = { 〈φ〉 | φ is a satisfiable 3cnf formula }

where a Boolean formula is in 3cnf (for 3 literal conjunctive normal form) if it is (also)
generated by the grammar

φ→ (c) | (c) ∧ φ c → ` ∨ ` ∨ `
`→ p | ¬p p → x | y | . . .

Example 10.6

(x ∨ y ∨ z) ∧ (x ∨ y ∨ ¬z) ∧ (x ∨ ¬y ∨ z) ∧ (x ∨ ¬y ∨ ¬z) is a 3cnf for the Boolean
formula x .

3SAT is NP-Complete

Proof.

Clearly 3SAT is in NP because we can use the same certificate for φ in 3cnf as we would
for the same φ in SAT (or CSAT).

Sipser prefers to adapt his NP-hardness proof for SAT to 3SAT over giving a P reduction
from SAT to 3SAT.

We P reduce from CSAT to 3SAT instead, by translating arbitrary clauses into clauses
with exactly three literals.

Proof detail: how to transform a cnf φ =
∧n

i=1 ci into an equisatisfiable 3cnf. We

transform each clause ci =
∨ki

j=1 `i,j depending on the number ki of literals in it. (We omit

subscript i .)

Case k = 1 (`1) is replaced by

(`1 ∨ u ∨ v) ∧ (`1 ∨ u ∨ ¬v) ∧ (`1 ∨ ¬u ∨ v) ∧ (`1 ∨ ¬u ∨ ¬v)

for some fresh propositions u, v .

Case k = 2 (`1 ∨ `2) is replaced by

(`1 ∨ `2 ∨ u) ∧ (`1 ∨ `2 ∨ ¬u)

for some fresh proposition u.

Case k = 3 is 3cnf already.

Case k > 3 (
∨k

j=1 `j) is replaced by

(`1 ∨ `2 ∨ u1) ∧
k−4∧
j=1

(`j+2 ∨ ¬uj ∨ uj+1) ∧ (¬uk−3 ∨ `k−1 ∨ `k)

for some k − 3 fresh propositions u1, . . . , uk−3.

CLIQUE is NP-Complete

Let

CLIQUE =

{
〈G , k〉

∣∣∣∣ G is undirected graph
with k-clique

}
We show NP-completeness on the whiteboard.

HAMPATH is NP-Complete

Recall that

HAMPATH =

{
〈G , s, t〉

∣∣∣∣ Directed graph G has a
Hamiltonian path from s to t

}
We already know that HAMPATH is in NP. We show NP-hardness by proving
3SAT ≤P HAMPATH on the whiteboard.

Node Cover

Given an undirected graph G , a node cover of G is a set C of vertices such that:

for every edge between v1 and v2, one of v1 or v2 is in C .

The Node Cover Problem is the problem of deciding whether a graph G has a node cover
with k or fewer nodes:

NC = {〈G , k} | G has node cover of size ≤ k}

Independent Set

Given an undirected graph G , a independent set of G is a set C of vertices such that:

no to vertices v1 and v2 ∈ C are connected by an edge.

The Independent Set Problem is the problem of deciding whether a graph G has an
independent set with k or or more nodes:

IS = {〈G , k} | G has independent set of size ≥ k}

Node Cover vs Independent Set

Q. How are node cover and independent set related?

Node Cover vs Independent Set II

Theorem. A graph G with n vertices has a node cover of size k iff it has an independent
set of size n − k. Indeed, Node Cover is polytime reducible to independent set.

Corollary. If Node Cover is in NP, then so is independent set.

Theorem. Node Cover is in NP (whiteboard).

	Recap

