
COMP3630/6360: Theory of Computation
Semester 1, 2022

The Australian National University

Time Complexity



This lecture covers Chapter 11 of HMU: Other Complexity Classes

The Tautology Problem

NP-Hardness and co-NP

Optimisation Problems

Other Complexity Classes

Additional Reading: Chapter 11 of HMU.



The Tautology Problem

The Tautology Problem

� To show that a problem is NP-complete, we need to show that it is in NP

� For some problems, we can show that they are NP-hard, but not that they are in NP

� NP-hardness of a problem implies that if this problem were in P, then P = NP.

Definition 10.1

A boolean formula is a tautology if it evaluates to true for all truth value assignments.
The Tautology Problem is the set of all boolean formulae that are tautologies.



The Tautology Problem

Is TAUT in NP?

� if it is, it is not obvious . . .

The Complement of Taut is in NP

� that is, to decide if a formula is not a tautology

� guess variable assignment, accept if formula evaluates to false

Key Message

� The nondeterministic machine can guess a variable assignment in polytime

� it can check whether the formula evaluates to true in polytime

� but if it accepts a satisfying assignment, it decides SAT

� we would need to change the acceptance condition: accept if all guesses are
accepting.



Co-NP

Definition 10.2

A problem is in Co-NP, if its complement is in NP.

Theorem 10.3

1 P ⊆ Co − NP

2 If P = NP, then P = NP = Co − NP.

Proof.

Because P is closed under complementation.



More on TAUT

Theorem 10.4

If TAUT is in P, then every NP-Problem is in P.

Proof.

� a formula φ is satisfiable if ¬φ is not a tautology.

� Solve SAT in polytime:

convert φ to ¬φ
run TAUT on ¬φ
flip the result

Question

� We have not given a polytime reduction from SAT to TAUT.

� Have we really shown that TAUT is NP-hard?



Cook Completeness

Definition 10.5

A problem X is Cook-NP-hard (complete), if one can show that if X ∈ P, then P = NP
(and X ∈ NP).

Example 10.6

We have shown that TAUT is Cook-NP-hard.

Definition 10.7

A problem X is Karp-NP-hard (complete), if every NP-Problem can be reduced to X in
polytime (and X ∈ NP).

Remark

Cook-completeness is Cook’s original definition

Cook was interested in why TAUT is hard

TAUT as ’true mathematical theorems’

We have used Karp completeness . . . why?



Cook vs Karp

Biggest Difference

� Cook lets us flip the answer after a polytime reduction

� Karp-completeness implies Cook completeness

� If P = NP, they would both be the same

Why Karp?

� I have a deterministic algorithm for an NP-complete problem that runs in O(nlog n)
time

� (or in time that is worse than poly, but not yet exponential)

� with Karp, I can solve any NP-Problem in that time

� with Cook, I cannot conclude anything.



Optimisation Problems

In (our) Theory:

We have just considered yes/no problems

In Practice:

We are looking for a solution

e.g. a satisfying assignment

or the size of the smallest node cover

Observation

� If we can solve the optimisation problem, we can solve the yes/no problem.

Example 10.8

� Yes/No problem: Does G have a node cover of size ≤ k?

� Optimisation problem: What is the size of the smallest node cover for G?



Completeness for Optimisation Problems

Optimisation Problems

� cannot be in NP, as they are not yes/no problems

� also, want deterministic answer!

� but it makes sense to Cook-reduce the yes/no version to the optimisation version

� i.e if optimisation problem is polytime, then so is the yes/no version

Conclusion

If P 6= NP, then we cannot solve the optimisation version of a problem in polytime, if the
yes/no version is NP-complete.


