
COMP3630/6360: Theory of Computation
Semester 1, 2022

The Australian National University

Space Complexity

This lecture covers Chapter 11 of HMU: Other Complexity Classes

The classes PS and NPS

Relationship to other classes

Savitch’s Theorem

Quantified Boolean Formulae

PSpace completeness

Additional Reading: Chapter 11 of HMU.

Polynomial Space

Definition 10.1

A Turing machine M is polyspace bounded if there is a polynomial p so that M never
uses more than p(|w |) tape cells when started with input w .

Note.

� For deterministic machines, this refers to the unique computation path

� For non-deterministic machines, this refers to all computation paths starting with
input w .

Definition 10.2

The class PS = PSPACE is the class of languages L such that L = L(M) for a polyspace
bounded deterministic Turing machine.

The class NPS = NPSPACE is the class of languages L such that L = L(M) for a
polyspace bounded nondeterministic Turing machine.

Example ALLNFA

ALLNFA = {{〈A〉 | A is an NFA and L(A) = Σ∗}
Currently, it’s known neither whether ALLNFA ∈ NP nor whether ALLNFA ∈ co − NP.

NPSPACE Algorithm for ALLc
NFA

M = “On input 〈A〉, where A = (Q,Σ, δ, q0,F) is an NFA:

1 Place a marker on q0. If q0 /∈ F , accept.

2 Repeat 2|Q| times:
1 Let m ⊆ Q be the positions of markers.
2 Pick any a ∈ Σ and change m to

⋃
q∈m δ(q, a).

3 If m ∩ F = ∅, accept.
3 reject.”

� M may use exponential time but linear space only.

� 2|Q| iterations are needed to ensure we can reach all possible patterns of markers on
states.

� Hence ALLc
NFA ∈ NPSPACE.

Q. Why didn’t we introduce coNSPACE?

Relationship to Other Classes

Easy Inclusions

� P ⊆ PSPACE and NP ⊆ NPSPACE (you cannot use more than polynomially many
cells in polynomial time).

Unknown Inclusions

� We don’t know whether P = PSPACE or NP = PSPACE.

Inclusions we will see

� PSPACE = NPSPACE

� this is remarkable, as we don’t know whether P = NP.

Exponential Time

Definition 10.3

A deterministic or non-deterministic Turing machine runs in exponential time if it
terminates in at most cp(|w|) steps for a constant c and polynomial p.

EXP is the class of languages L for which L = L(M) for an exptime deterministic Turing
machine.

NEXP is the class of languages L for which L = L(M) for a nondeterministic exponential
time Turing machine.

More Inclusions

P ⊆ NP ⊆ PSPACE ⊆ EXP

� NP ⊆ PSPACE follows once we have shown that NPSPACE = PSPACE

� PSPACE ⊆ EXP needs to be proved

� We know that P (EXP, so that one inclusion is proper

� But we don’t know which . . .

PSPACE vs EXP

Theorem 10.4

PSPACE ⊆ EXP

Main Idea

A polyspace bounded machine only has cp(n) different ID’s.

� count up to cp(n) – exponentially many steps

� must surely have repeated an ID by then

Proof PSPACE ⊆ EXP

� Assume that a TM M only uses p(n) space, and has semi-infinite tape.

� M has s × p(n)× tp(n) many ID’s:

s are the states, p(n) are the different head positions, tp(n) is tape contents.

� We have (t + 1)p(n)+1 ≥ p(n)tp(n)

� . . . and s = (t + 1)c where c = logt+1 s

� hence number of IDs is ≤ (t + 1)p(n)+1+c .

� count ID’s on a separate tape in base t + 1 and p(n) + c + 1 tape cells.

� have two-tape machine M ′ counting up to max IDs on extra tape

� halt if counter exceeds maximal value (M accepts if no IDs are repeated)

� converting to a single-tape machines gives polynomial blowup, hence exptime overall.

Savitch’s Theorem: PSPACE=NPSPACE

Theorem 10.5

PSPACE=NPSPACE

� Let M be nondeterministic and polyspace bounded by p(n)

� M has cp(n) different IDs.

� Decide P(I , J,K) = I `∗ J for IDs I and J in ≤ K steps

� This gives w ∈ L(M) iff I `∗ J for initial ID I and accepting ID J in at most cp(n)

steps

� The bound on steps is valid, as M accepts iff M accepts without repeating IDs

Remains. Implement P(I , J,K) taking polynomial space.

Recursive Doubling

Goal. Implement P(I , J,N) = I `≤m J in deterministic polyspace

P(I, J, m): for all IDs K with length <= p(n) do {

if P(I, K, m/2) and P(K, J, m/2) then return true

}

return false

Q. How much space does this implementation need?

Recursive Doubling

P(I, J, m): for all IDs K with length <= p(n) do {

if P(I, K, m/2) and P(K, J, m/2) then return true

}

return false

Recursive Doubling

� m = cp(n), so log cp(n) = p(n) recursive calls till base case

� calls with argument m only induce one call with argument m/2

� only need to remember current ID for function return

� O(p2(n)) space in total

