COMP3630/6360: Theory of Computation
Semester 1, 2022
The Australian National University

Space Complexity

This lecture covers Chapter 11 of HMU: Other Complexity Classes

- The classes PS and NPS
- Relationship to other classes
- Savitch's Theorem
- Quantified Boolean Formulae
- PSpace completeness

Additional Reading: Chapter 11 of HMU.

Polynomial Space

Definition 10.1

A Turing machine M is polyspace bounded if there is a polynomial p so that M never uses more than $p(|w|)$ tape cells when started with input w.

Note.

> For deterministic machines, this refers to the unique computation path
> For non-deterministic machines, this refers to all computation paths starting with input w.

Definition 10.2

The class PS $=$ PSPACE is the class of languages L such that $L=L(M)$ for a polyspace bounded deterministic Turing machine.

The class NPS $=$ NPSPACE is the class of languages L such that $L=L(M)$ for a polyspace bounded nondeterministic Turing machine.

Example ALL ${ }_{\text {NFA }}$

$$
\mathrm{ALL}_{\text {NFA }}=\left\{\left\{\langle A\rangle \mid A \text { is an NFA and } L(A)=\Sigma^{*}\right\}\right.
$$

Currently, it's known neither whether $A L L_{N F A} \in N P$ nor whether $A L L_{N F A} \in c o-N P$.

NPSPACE Algorithm for ALL ${ }_{\text {NFA }}^{c}$

$M=$ "On input $\langle A\rangle$, where $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is an NFA:
(1) Place a marker on q_{0}. If $q_{0} \notin F$, accept.
(2) Repeat $2^{|Q|}$ times:
(1) Let $m \subseteq Q$ be the positions of markers.
(2) Pick any $a \in \Sigma$ and change m to $\bigcup_{q \in m} \delta(q, a)$.
(3) If $m \cap F=\emptyset$, accept.
(3) reject."
> M may use exponential time but linear space only.
$>2^{|Q|}$ iterations are needed to ensure we can reach all possible patterns of markers on states.
> Hence ALL $_{\text {NFA }}^{c} \in$ NPSPACE.
Q. Why didn't we introduce coNSPACE?

Relationship to Other Classes

Easy Inclusions

>P \subseteq PSPACE and $N P \subseteq$ NPSPACE (you cannot use more than polynomially many cells in polynomial time).

Unknown Inclusions

> We don't know whether $\mathrm{P}=$ PSPACE or NP $=$ PSPACE.

Inclusions we will see
> PSPACE $=$ NPSPACE
> this is remarkable, as we don't know whether $\mathrm{P}=\mathrm{NP}$.

Exponential Time

Definition 10.3

A deterministic or non-deterministic Turing machine runs in exponential time if it terminates in at most $c^{p(|w|)}$ steps for a constant c and polynomial p.

EXP is the class of languages L for which $L=L(M)$ for an exptime deterministic Turing machine.

NEXP is the class of languages L for which $L=L(M)$ for a nondeterministic exponential time Turing machine.

More Inclusions

$$
P \subseteq N P \subseteq P S P A C E \subseteq E X P
$$

> $N P \subseteq P S P A C E$ follows once we have shown that $N P S P A C E=P S P A C E$
> PSPACE $\subseteq E X P$ needs to be proved
> We know that $P \subsetneq E X P$, so that one inclusion is proper
> But we don't know which ...

PSPACE vs EXP

Theorem 10.4

Main Idea

A polyspace bounded machine only has $c^{p(n)}$ different ID's.
> count up to $c^{p(n)}$ - exponentially many steps
> must surely have repeated an ID by then

Proof PSPACE \subseteq EXP

> Assume that a TM M only uses $p(n)$ space, and has semi-infinite tape.
> M has $s \times p(n) \times t^{p(n)}$ many ID's:

- s are the states, $p(n)$ are the different head positions, $t^{p(n)}$ is tape contents.
$>$ We have $(t+1)^{p(n)+1} \geq p(n) t^{p(n)}$
$>\ldots$ and $s=(t+1)^{c}$ where $c=\log _{t+1} s$
$>$ hence number of IDs is $\leq(t+1)^{p(n)+1+c}$.
> count ID's on a separate tape in base $t+1$ and $p(n)+c+1$ tape cells.
> have two-tape machine M^{\prime} counting up to max IDs on extra tape
> halt if counter exceeds maximal value (M accepts if no IDs are repeated)
> converting to a single-tape machines gives polynomial blowup, hence exptime overall.

Savitch's Theorem: PSPACE=NPSPACE

Theorem 10.5

$P S P A C E=N P S P A C E$

> Let M be nondeterministic and polyspace bounded by $p(n)$
> M has $c^{p(n)}$ different IDs.
$>$ Decide $P(I, J, K)=I \vdash^{*} J$ for IDs I and J in $\leq K$ steps
> This gives $w \in L(M)$ iff $I \vdash^{*} J$ for initial ID I and accepting ID J in at most $c^{p(n)}$ steps
> The bound on steps is valid, as M accepts iff M accepts without repeating IDs
Remains. Implement $P(I, J, K)$ taking polynomial space.

Recursive Doubling

Goal. Implement $P(I, J, N)=I \vdash \leq m J$ in deterministic polyspace

```
P(I, J, m): for all IDs K with length <= p(n) do {
    if P(I, K, m/2) and P(K, J, m/2) then return true
}
return false
```

Q. How much space does this implementation need?

Recursive Doubling

```
P(I, J, m): for all IDs K with length <= p(n) do {
    if P(I, K, m/2) and P(K, J, m/2) then return true
}
return false
```

$$
\underbrace{\text { I, J, m } \mathrm{O}(\mathrm{p}(\mathrm{n}))}_{\begin{array}{c}
O(p(n)) \\
\text { space }
\end{array}} \begin{aligned}
& \text { space }
\end{aligned} \begin{aligned}
& \text { O(p(n))} \begin{array}{l}
\text { space }
\end{array} \\
& I, K, m / 2 L, K, m / 4
\end{aligned} \underbrace{M, N, 1}_{\begin{array}{l}
\text { O(p(n))} \\
\text { space }
\end{array}}
$$

$\mathrm{O}\left(\mathrm{p}^{2}(\mathrm{n})\right)$ space

Recursive Doubling

$$
\begin{aligned}
& \text { I, J, m } \quad \text { I, K, m/2L, K, m/4 ... M, N, } 1 \\
& \text {, } \\
& O(p(n)) O(p(n)) O(p(n)) \\
& \text { space } \\
& \text { space } \\
& \text { space } \\
& O(p(n)) \\
& \text { space }
\end{aligned}
$$

$O\left(p^{2}(n)\right)$ space

> $m=c^{p(n)}$, so $\log c^{p(n)}=p(n)$ recursive calls till base case
> calls with argument m only induce one call with argument $m / 2$
> only need to remember current ID for function return
> $\mathcal{O}\left(p^{2}(n)\right)$ space in total

