
COMP3630/6360: Theory of Computation
Semester 1, 2022

The Australian National University

Space Complexity



This lecture covers Chapter 11 of HMU: Other Complexity Classes

PSPACE completeness

Quantified Boolean Formulae

QBF is PSPACE complete

Additional Reading: Chapter 11 of HMU.



PSPACE completeness

Definition 10.1

A problem L is PSPACE hard if there is a polytime reduction from any PSPACE problem
to L.

A problem L is PSPACE complete, if it is PSPACE hard and in PSPACE.

Q. Why polytime, and not polyspace reductions?

Observation.

Let L be a PSPACE complete problem.

1 If L ∈ P, then P = PSPACE.

2 if L ∈ NP, then NP = PSPACE.



Quantified Boolean Formulae

Definition 10.2

If V is a set of variables, then the set of quantified boolean formulae over V is given by:

Every variable v ∈ V is a QBF, and so are tt and ff

If φ, ψ are QBF, then so are φ ∧ ψ and φ ∨ ψ
If φ is a QBF, then so is ¬φ.

If φ is a QBF and v ∈ V is a variable, then ∃vφ and ∀vψ are QBF.

Definition 10.3

In a QBF φ, an occurrence variable v is bound if it is in the scope of a quantifier ∀v or
∃v . The variable v is free otherwise.

If x ∈ {tt,ff } is a truth value, then φ[x/v ] is the result of replacing all free occurrences
of v with x .



Example



Evaluation of QBFs

Observation.

A QBF φ without free variables can be evaluated to a truth value:

eval(∀vφ) = φ[tt/x ] ∧ φ[ff /x ]

eval(∃vφ) = φ[tt/x ] ∨ φ[ff /x ]

and quantifier-free formulae without free variables can be evaluated.

QBFs versus boolean formulae.

a boolean formula φ in variables v1, . . . , vn is satisfiable if ∃v1∃v2 . . .∃vnφ evaluates
to true.

φ is a tautology if ∀v1∀v2 . . .∀vnφ evaluates to true.

Definition 10.4

The QBF problem is the problem of determining whether a given quantified boolean
formula without free variables evaluates to true:

QBF = {φ | φ a true QBF without free variables}



QBFs vs Boolean Formulae

� evaluating a boolean formula without free variables is in P.

� (∀vφ) φ[tt/x ] ∧ φ[ff /x ]

� (∃vφ) φ[tt/x ] ∨ φ[ff /x ]

� the resulting formula may be exponentially large

� but this shows that QBF is in EXPTIME.

Q. Can we do better?



QBF is in PSPACE

Main Idea.

� to evaluate ∀vφ, don’t write out φ[tt/v ] ∧ φ[ff /v ].

� instead, evaluate φ[tt/v ] and φ[ff /v ] in sequence.

� avoids exponential space blowup

Algorithm evalqbf (phi) = case phi of

- tt: return tt

- phi /\ psi: if evalqbf(phi) then evalqbf(psi) else false

- forall v phi: if evalqbf(phi[tt/v]) then evalqbf (phi[ff/v]) else false

- (other cases analogous)

Analysis.

� Given QBF φ of size n:

� at most n recursive calls active

� each call stores a partially evaluated QBF of size n

� total space requirement O(n2)



QBF is PSPACE-complete

Proof IdeaNote.

Let L be in PSPACE.

� Then L is accepted by a polyspace bounded TM with bound p(n)

� If w ∈ L, then M accepts in ≤ cp(n) moves

� construct QBF φ: ‘there is a sequence of cp(n) ID’s that accepts w

� use recursive doubling to express this in polytime.



The Gory Detail

Variables.

� Need O(p(n)) variables to represent ID:

� yj,A = tt iff the j-th symbol of the ID is A, 1 ≤ j ≤ p(n) + 1 tuples.

Structure of the QBF.

φ = (∃I0)(∃If )S ∧ N ∧ F ∧ U

� I0 and If are initial / accepting IDs

� S says that I0 = q0w

� F says that If is accepting

� U says that every ID has at most one symbol per position

� N says that there is a sequence of ID’s of length ≤ cp(n) from I0 to If .

� S , F , and U are as in Cook’s theorem.



Recursive Doubling

� N = N(I0, If ): have sequence of length ≤ cp(n) from I9 to If .

� Detour: N0(I , J) = I `∗ J in ≤ 1 steps: as for Cook’s theorem

� Detour: Ni (I , J) = I `∗ J in ≤ 2i steps:

Ni (I , J) = (∃K)(∀P)(∀Q)[(P,Q) = (I ,K) ∨ (P,Q) = (K , J)→ Ni−1(P,Q)]

� Could also say (∃K)(Ni−1)(I ,K) ∧ Ni−1(K , J))
� this would write out Ni−1 twice, doubling formula size at each step
� above trick is key step in proof to keep formula size small

� Let N(I0, If ) = Nk(I0, If ) where 2k ≥ cp(n) (note k ∈ O(p(n))

� each Ni can be written in O(p(n)) many steps, plus the time to write Ni−1

� so O(p(n)2) overall

By construction, φ = tt iff M accepts w .




