COMP3630/6360: Theory of Computation Semester 1, 2022 The Australian National University

Space Complexity

This lecture covers Chapter 11 of HMU: Other Complexity Classes

- PSPACE completeness
- Quantified Boolean Formulae
- QBF is PSPACE complete
- Additional Reading: Chapter 11 of HMU.

Definition 10.1

A problem L is *PSPACE hard* if there is a polytime reduction from any PSPACE problem to L.

A problem L is PSPACE complete, if it is PSPACE hard and in PSPACE.

Q. Why polytime, and not polyspace reductions?

Observation.

Let L be a PSPACE complete problem.

- **1** If $L \in P$, then P = PSPACE.
- 2) if $L \in NP$, then NP = PSPACE.

Quantified Boolean Formulae

Definition 10.2

- If V is a set of variables, then the set of quantified boolean formulae over V is given by:
 - Every variable $v \in V$ is a QBF, and so are *tt* and *ff*
 - If ϕ,ψ are QBF, then so are $\phi\wedge\psi$ and $\phi\vee\psi$
 - If ϕ is a QBF, then so is $\neg \phi$.
 - If ϕ is a QBF and $v \in V$ is a variable, then $\exists v \phi$ and $\forall v \psi$ are QBF.

Definition 10.3

In a QBF ϕ , an occurrence variable v is *bound* if it is in the scope of a quantifier $\forall v$ or $\exists v$. The variable v is *free* otherwise.

If $x \in \{tt, ff\}$ is a truth value, then $\phi[x/v]$ is the result of replacing all *free* occurrences of v with x.

Example

Evaluation of QBFs

Observation.

A QBF ϕ without free variables can be evaluated to a truth value:

•
$$eval(\forall v\phi) = \phi[tt/x] \land \phi[ff/x]$$

• $eval(\exists v\phi) = \phi[tt/x] \lor \phi[ff/x]$

and quantifier-free formulae without free variables can be evaluated.

QBFs versus boolean formulae.

- a boolean formula φ in variables v₁,..., v_n is satisfiable if ∃v₁∃v₂...∃v_nφ evaluates to true.
- ϕ is a tautology if $\forall v_1 \forall v_2 \dots \forall v_n \phi$ evaluates to true.

Definition 10.4

The QBF problem is the problem of determining whether a given quantified boolean formula without free variables evaluates to true:

 $QBF = \{\phi \mid \phi \text{ a true QBF without free variables}\}$

- > evaluating a boolean formula without free variables is in P.
- ▶ $(\forall v \phi) \rightsquigarrow \phi[tt/x] \land \phi[ff/x]$
- ▶ $(\exists v \phi) \rightsquigarrow \phi[tt/x] \lor \phi[ff/x]$
- > the resulting formula may be exponentially large
- > but this shows that QBF is in EXPTIME.
- $\ensuremath{\textbf{Q}}\xspace.$ Can we do better?

QBF is in PSPACE

Main Idea.

- > to evaluate $\forall v \phi$, don't write out $\phi[tt/v] \land \phi[ff/v]$.
- > instead, evaluate $\phi[tt/v]$ and $\phi[ff/v]$ in sequence.
- > avoids exponential space blowup

Algorithm evalqbf (phi) = case phi of

- tt: return tt
- phi /\ psi: if evalqbf(phi) then evalqbf(psi) else false
- forall v phi: if evalqbf(phi[tt/v]) then evalqbf (phi[ff/v]) else false
- (other cases analogous)

Analysis.

- > Given QBF ϕ of size *n*:
- > at most *n* recursive calls active
- > each call stores a partially evaluated QBF of size n
- > total space requirement $\mathcal{O}(n^2)$

Proof IdeaNote.

Let L be in PSPACE.

- > Then L is accepted by a polyspace bounded TM with bound p(n)
- > If $w \in L$, then M accepts in $\leq c^{p(n)}$ moves
- > construct QBF ϕ : 'there is a sequence of $c^{p(n)}$ ID's that accepts w

> use recursive doubling to express this in polytime.

The Gory Detail

Variables.

- > Need $\mathcal{O}(p(n))$ variables to represent ID:
- ▶ $y_{j,A} = tt$ iff the *j*-th symbol of the ID is A, $1 \le j \le p(n) + 1$ tuples.

Structure of the QBF.

 $\phi = (\exists I_0)(\exists I_f)S \land N \land F \land U$

- > I_0 and I_f are initial / accepting IDs
- > S says that $I_0 = q_0 w$
- > F says that I_f is accepting
- > U says that every ID has at most one symbol per position
- > N says that there is a sequence of ID's of length $\leq c^{p(n)}$ from I_0 to I_f .
- > S, F, and U are as in Cook's theorem.

Recursive Doubling

- > $N = N(I_0, I_f)$: have sequence of length $\leq c^{p(n)}$ from I_9 to I_f .
- ▶ Detour: $N_0(I, J) = I \vdash^* J$ in ≤ 1 steps: as for Cook's theorem
- ▶ Detour: $N_i(I, J) = I \vdash^* J$ in $\leq 2^i$ steps:

 $N_i(I,J) = (\exists K)(\forall P)(\forall Q)[(P,Q) = (I,K) \lor (P,Q) = (K,J) \to N_{i-1}(P,Q)]$

- ➤ Could also say $(\exists K)(N_{i-1})(I,K) \land N_{i-1}(K,J))$
- > this would write out N_{i-1} twice, doubling formula size at each step
- > above trick is key step in proof to keep formula size small
- ▶ Let $N(I_0, I_f) = N_k(I_0, I_f)$ where $2^k \ge c^{p(n)}$ (note $k \in \mathcal{O}(p(n))$)
- > each N_i can be written in $\mathcal{O}(p(n))$ many steps, plus the time to write N_{i-1}
- > so $\mathcal{O}(p(n)^2)$ overall

By construction, $\phi = tt$ iff *M* accepts *w*.