COMP3630/6360: Theory of Computation
Semester 1, 2022
The Australian National University

Space Complexity

This lecture covers Chapter 11 of HMU: Other Complexity Classes

- PSPACE completeness
- Quantified Boolean Formulae
- QBF is PSPACE complete

Additional Reading: Chapter 11 of HMU.

PSPACE completeness

Definition 10.1

A problem L is PSPACE hard if there is a polytime reduction from any PSPACE problem to L.

A problem L is PSPACE complete, if it is PSPACE hard and in PSPACE.
Q. Why polytime, and not polyspace reductions?

Observation.

Let L be a PSPACE complete problem.
(1) If $L \in P$, then $\mathrm{P}=\mathrm{PSPACE}$.
(2) if $L \in N P$, then NP $=$ PSPACE.

Quantified Boolean Formulae

Definition 10.2

If V is a set of variables, then the set of quantified boolean formulae over V is given by:

- Every variable $v \in V$ is a QBF, and so are $t t$ and $f f$
- If ϕ, ψ are QBF, then so are $\phi \wedge \psi$ and $\phi \vee \psi$
- If ϕ is a QBF, then so is $\neg \phi$.
- If ϕ is a QBF and $v \in V$ is a variable, then $\exists v \phi$ and $\forall v \psi$ are QBF.

Definition 10.3

In a QBF ϕ, an occurrence variable v is bound if it is in the scope of a quantifier $\forall v$ or $\exists v$. The variable v is free otherwise.

If $x \in\{t t, f f\}$ is a truth value, then $\phi[x / v]$ is the result of replacing all free occurrences of v with x.

Example

Evaluation of QBFs

Observation.
A QBF ϕ without free variables can be evaluated to a truth value:

- $\operatorname{eval}(\forall v \phi)=\phi[t t / x] \wedge \phi[f f / x]$
- $\operatorname{eval}(\exists v \phi)=\phi[t t / x] \vee \phi[f f / x]$
and quantifier-free formulae without free variables can be evaluated.

QBFs versus boolean formulae.

- a boolean formula ϕ in variables v_{1}, \ldots, v_{n} is satisfiable if $\exists v_{1} \exists v_{2} \ldots \exists v_{n} \phi$ evaluates to true.
- ϕ is a tautology if $\forall v_{1} \forall v_{2} \ldots \forall v_{n} \phi$ evaluates to true.

Definition 10.4

The QBF problem is the problem of determining whether a given quantified boolean formula without free variables evaluates to true:

$$
\mathrm{QBF}=\{\phi \mid \phi \text { a true QBF without free variables }\}
$$

QBFs vs Boolean Formulae

> evaluating a boolean formula without free variables is in P .
$>(\forall v \phi) \rightsquigarrow \phi[t t / x] \wedge \phi[f f / x]$
$>(\exists v \phi) \rightsquigarrow \phi[t t / x] \vee \phi[f f / x]$
> the resulting formula may be exponentially large
> but this shows that QBF is in EXPTIME.
Q. Can we do better?

QBF is in PSPACE

Main Idea.

> to evaluate $\forall v \phi$, don't write out $\phi[t t / v] \wedge \phi[f f / v]$.
$>$ instead, evaluate $\phi[t t / v]$ and $\phi[f f / v]$ in sequence.
> avoids exponential space blowup
Algorithm evalqbf (phi) = case phi of

- tt: return tt
- phi /\ psi: if evalqbf(phi) then evalqbf(psi) else false
- forall v phi: if evalqbf(phi[tt/v]) then evalqbf (phi[ff/v]) else false
- (other cases analogous)

Analysis.

> Given QBF ϕ of size n :
> at most n recursive calls active
> each call stores a partially evaluated QBF of size n
> total space requirement $\mathcal{O}\left(n^{2}\right)$

QBF is PSPACE-complete

Proof IdeaNote.

Let L be in PSPACE.
> Then L is accepted by a polyspace bounded TM with bound $p(n)$
> If $w \in L$, then M accepts in $\leq c^{p(n)}$ moves
> construct QBF ϕ : 'there is a sequence of $c^{p(n)}$ ID's that accepts w
> use recursive doubling to express this in polytime.

The Gory Detail

Variables.

> Need $\mathcal{O}(p(n))$ variables to represent ID:
> $y_{j, A}=t t$ iff the j-th symbol of the ID is $A, 1 \leq j \leq p(n)+1$ tuples.

Structure of the QBF.

$$
\phi=\left(\exists I_{0}\right)\left(\exists I_{f}\right) S \wedge N \wedge F \wedge U
$$

$>I_{0}$ and I_{f} are initial / accepting IDs
> S says that $I_{0}=q_{0} w$
> F says that I_{f} is accepting
> U says that every ID has at most one symbol per position
$>N$ says that there is a sequence of ID's of length $\leq c^{p(n)}$ from I_{0} to I_{f}.
> S, F, and U are as in Cook's theorem.

Recursive Doubling

> $N=N\left(I_{0}, I_{f}\right)$: have sequence of length $\leq c^{p(n)}$ from I_{9} to I_{f}.
> Detour: $N_{0}(I, J)=I \vdash^{*} J$ in ≤ 1 steps: as for Cook's theorem
> Detour: $N_{i}(I, J)=I \vdash^{*} J$ in $\leq 2^{i}$ steps:

$$
N_{i}(I, J)=(\exists K)(\forall P)(\forall Q)\left[(P, Q)=(I, K) \vee(P, Q)=(K, J) \rightarrow N_{i-1}(P, Q)\right]
$$

>Could also say $\left.(\exists K)\left(N_{i-1}\right)(I, K) \wedge N_{i-1}(K, J)\right)$
$>$ this would write out N_{i-1} twice, doubling formula size at each step
> above trick is key step in proof to keep formula size small
> Let $N\left(I_{0}, I_{f}\right)=N_{k}\left(I_{0}, I_{f}\right)$ where $2^{k} \geq c^{p(n)}($ note $k \in \mathcal{O}(p(n))$
> each N_{i} can be written in $\mathcal{O}(p(n))$ many steps, plus the time to write N_{i-1}
> so $\mathcal{O}\left(p(n)^{2}\right)$ overall
By construction, $\phi=t t$ iff M accepts w.

