COMP3630/6360: Theory of Computation
Semester 1, 2022
The Australian National University

Space Complexity



This lecture covers Chapter 11 of HMU: Other Complexity Classes J

o PSPACE completeness

o Quantified Boolean Formulae

o QBF is PSPACE complete
Additional Reading: Chapter 11 of HMU.



PSPACE completeness

Definition 10.1

A problem L is PSPACE hard if there is a polytime reduction from any PSPACE problem
to L.

A problem L is PSPACE complete, if it is PSPACE hard and in PSPACE.

Q. Why polytime, and not polyspace reductions?

Observation.

Let L be a PSPACE complete problem.
@ If L € P, then P = PSPACE.
@ if L € NP, then NP = PSPACE.




Quantified Boolean Formulae

Definition 10.2

If V is a set of variables, then the set of quantified boolean formulae over V is given by:
o Every variable v € V is a QBF, and so are tt and ff

If ¢, are QBF, then so are ¢ A and ¢ V ¥

If ¢ is a QBF, then so is —¢.

If ¢ is a QBF and v € V is a variable, then Jv¢ and Vvip are QBF.

© O ©

.

Definition 10.3

In a QBF ¢, an occurrence variable v is bound if it is in the scope of a quantifier Vv or
Jv. The variable v is free otherwise.

If x € {tt, ff} is a truth value, then ¢[x/v] is the result of replacing all free occurrences
of v with x.

e




Example

bound

(v)EY)((E)XVY)) A (X AY))
N

bound
bound



Evaluation of QBFs

Observation.

A QBF ¢ without free variables can be evaluated to a truth value:
o eval(Vvo) = ¢[tt/x] A ¢[ff /X]
o eval(3ve) = @[tt/x] V ¢[ff /X]

and quantifier-free formulae without free variables can be evaluated.

M

QBFs versus boolean formulae.

o a boolean formula ¢ in variables v, ..., v, is satisfiable if Ivi3v, ... Jv,¢ evaluates
to true.

o ¢ is a tautology if VviVs ... Vv,¢ evaluates to true.

.

Definition 10.4

The QBF problem is the problem of determining whether a given quantified boolean
formula without free variables evaluates to true:

QBF = {¢ | ¢ a true QBF without free variables}

-




QBFs vs Boolean Formulae

> evaluating a boolean formula without free variables is in P.
> (W) — oltt/x] A $lfF/x]

> (3vg) — oltt/x] V $[fF/x]

> the resulting formula may be exponentially large

> but this shows that QBF is in EXPTIME.

Q. Can we do better?



QBF is in PSPACE

> to evaluate Vv¢, don't write out ¢[tt/v] A ¢[ff /v].

> instead, evaluate ¢[tt/v] and ¢[ff/v] in sequence.

> avoids exponential space blowup

Algorithm evalgbf (phi) = case phi of

- tt: return tt

- phi /\ psi: if evalgbf(phi) then evalgbf(psi) else false

- forall v phi: if evalqbf(phil[tt/v]) then evalgbf (phil[ff/v]) else false
- (other cases analogous)

Analysis.
> Given QBF ¢ of size n:

> at most n recursive calls active
> each call stores a partially evaluated QBF of size n

> total space requirement O(n?)




QBF is PSPACE-complete

Proof IdeaNote. I

Let L be in PSPACE.
> Then L is accepted by a polyspace bounded TM with bound p(n)

> If w € L, then M accepts in < ™ moves

> construct QBF ¢: ‘there is a sequence of c?™ ID’s that accepts w

> use recursive doubling to express this in polytime.




The Gory Detail

Variables.

> Need O(p(n)) variables to represent ID:
> yj.a = tt iff the j-th symbol of the ID is A, 1 < j < p(n) + 1 tuples.

M

Structure of the QBF.
o= Fh)3ISANANFAU
> Ip and Ir are initial / accepting IDs
> S says that Iy = gow
> F says that Ir is accepting
> U says that every ID has at most one symbol per position
> N says that there is a sequence of ID’s of length < c”™ from Iy to /.

> S, F, and U are as in Cook's theorem.

.




Recursive Doubling

> N = N(l, I): have sequence of length < c”™ from Iy to .
> Detour: No(/,J) =1F" Jin <1 steps: as for Cook’s theorem
> Detour: N;(I,J) =1F* Jin <2 steps:
Ni(1,J) = BK)(VP)(VQ)[(P, Q) = (I,K) V (P, Q) = (K, J) = Ni-1(P, Q)]

> Could also say (3K)(Ni—1)(I, K) A Ni_1(K, J))
> this would write out N;_; twice, doubling formula size at each step
> above trick is key step in proof to keep formula size small

> Let N(lo, Ir) = Ni(lo, Ir) where 2 > cP(™ (note k € O(p(n))
> each N can be written in O(p(n)) many steps, plus the time to write N;_;

> so O(p(n)?) overall
By construction, ¢ = tt iff M accepts w.






