COMP3630/6360: Theory of Computation
Semester 1, 2022
The Australian National University

Finite Automata

1/24

COMP3630/6363: Theoory of Computation

Textbook.

Prerequisites.
Assessment.
Content.

Lecturer.

Introduction to Automata Theory, Languages and Computation John E.
Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman [HMU]J.

Chapter 1 of HMU (sets, functions, relations, induction)
3 Assignments @ 10% each, Final Exam @ 70%.
Languages / Automata / Computability / Complexity.

Dirk Pattinson, dirk.pattinson@anu.edu.au

2/24

@:\ ﬁustralian

ational

CECS Class Representatives

Roles and Responsibilities

v Be creative and proactive in gathering feedback from your class mates about the
course.

v Act as the official liaison between your classmates and your lecturers in
communicating feedback about the course and providing course-related updates to
your classmates. You'll also provide regular reports to the Associate Director
(Education) on the feedback you’ve been gathering.

Benefits of Being a Class Rep

v" The opportunity to develop skills sought by employers — particularly interpersonal,
dispute resolution, leadership and communication skills.

v' Empowerment: Play a more active role in determining the direction of your education.
Become more aware of issues influencing your University and current issues in
higher education.

Nominations

v Please contact CECS Student Services (studentadmin.cecs@anu.edu.au) with your
name, Student ID and the course number (e.g. ENGN1211) you are interested in
becoming a Class Representative for.

3/24

This Lecture Covers Chapter 2 of HMU: Finite Automata

> Deterministic Finite Automata
> Nondeterministic Finite Automata
> NFA with e-transitions

> An Equivalence among the above three.

Additional Reading: Chapter 2 of HMU.

Preliminary Concepts

> Alphabet X: A finite set of symbols, e.g.,
> ¥ ={0,1} (binary alphabet)

> Y ={a,b,...,z} (Roman alphabet)

> String (or word) is a finite sequence of symbols.
Strings are usually represented without commas, e.g., 0011 instead of (0,0,1,1)

> Concatenation x - y of strings x and y is the string xy.
> € is the identity element for concatenation, i.e., € x = x - € = x.

> Concatenation of sets of strings: A-B={a-b:ac A b€ B}

> Concatenation of the same set: A> = AA; A® = (AA)A, etc
(We often elide the concatenation operator and write AB for A- B)

> Kleene-* or closure operator: A* = {e¢JUAUA?UA3... = Unso A"

(Viewing X as a set of length-1 strings, 37 is the set of all strings over X.)

> A (formal) language is a subset of ¥*.

5/24

The Deterministic Finite Automaton

Deterministic Finite Automaton (DFA)

Informally:

S1|%52]53

st

[Movable Reading Head]

Finite Control

qa

o0
/v Q1

a3

a2

[Input tape]

> The device consisting of: (a) input tape; (b) reading head; and (c) finite control

(Finite-state machine)

> The input is read from left to right

> Each read operation changes the internal state of the finite-state machine (FSM)

> Input is accepted/rejected based on the final state after reading all symbols

6/24

The Deterministic Finite Automaton

Deterministic Finite Automaton (DFA)

Definition: DFA
> ADFA A= (Q,X,9, qo, F)
> Q: A finite set (of internal states)

> 3: The alphabet corresponding to the input

>6: Qx X — Q, (Transition Function)
(If present state is g € Q, and a € X is read, the DFA moves to 6(g, a).)

> qgo: The (unique) starting state of the DFA (prior to any reading). (qo € Q)
> F C Q is the set of final (or accepting) states

y
Transition Table: Transition Diagram:
0 1
—> Qo g2 do
* q1 a1 a1
a2 a2 a1

_ 8(q0.0) = 2
F=lad 6(q0,1) = qo

7/24

Languages accepted by DFAs

Language accepted by a DFA

> The language L(A) accepted by a DFA A= (Q, X, 0, qo, F) is:
> The set of all input strings that move the state of the DFA from qo to a state in F

> This is formalized via the extended transition function 6 : QXX — Q:
> Basis:

d(g,e) = q (no state change)

> Induction:
6(q, ws) = 8(5(q,w),s) (process w, then s)

> L(A) := all strings that take qo to some final state = {w € X" : §(qo, w) € F}.

In other words:
>eel(A) & q € F

> For kK > 0,
W:S152-‘~Sk€L(A) = qoi>P1i>P2i>~"i>Pk€F

8/24

Languages accepted by DFAs

An Example

1

> Is 00 accepted by A?
> g0 2 @2~ @2 ¢F

> Thus, 00 ¢ L(A)

> Is 001 accepted by A?
0 0 1
>Go— @ —> G —q €F

> Thus, 001 € L(A)
> The only way one can reach g; from qo is if the string contains 01.
> L(A) is the set of strings containing 01.
> Remark 1: In general, each string corresponds to a unique path of states.

> Remark 2: Multiple strings can have the same path of states. For example, 0010 and
0011 have the same sequence of states.
9/24

Languages accepted by DFAs

Limitations of DFAs

> Can all languages be accepted by DFAs?
> DFAs have a finite number of states (and hence finite memory).

> Given a DFA, there is always a long pattern it cannot 'remember’ or 'track’
> e.g., L={0"1": n € N} cannot be accepted by any DFA.

> Can generalize DFAs in one of many ways:
> Allow transitions to multiple states for each symbol read.

> Allow transitions without reading any symbol
> Allow the device to have an additional tape to store symbols
> Allow the device to edit the input tape

> Allow bidirectional head movement

10/24

Non-deterministic Finite Automaton (NFA)

Non-deterministic Finite Automaton (NFA)

> Allow transitions to multiple states at each symbol reading.

> Multiple transitions allows the device to:
> clone itself, traverse through and consider all possible parallel outcomes.

> hypothesize/guess multiple eventualities concerning its input.

> Non-determinism seems bizarre, but aids in the simplification of describing an
automaton.

Definition: NFA

> NFA A= (Q, X, 6, qo, F) is defined similar to a DFA with the exception of the
transition function, which takes the following form.

>5:Qx X — 2% (Transition Function)

> Remark 1: §(q,s) can be a set with two or more states, or even be empty!

> Remark 2: If 4(-,) is a singleton for all argument pairs, then NFA is a DFA.
(So every DFA is trivally an NFA).

11/24

Languages Accepted by NFAs
Language Accepted by an NFA
> The language accepted by an NFA is formally defined via the extended transition

function 4 : Q x I* — 2€9;

> Basis:

5(g,€) ={q} (no state change)

> Induction:

3(q, ws) = U 5(p,s), seT,wex".

pES(qw)

> L(A) :=={w € X" : 5(qo,w) N F # 0}.

In other words:
>eel(A) & q € F

> For k > 0,

W:5152--'Sk€L(A) = Elapath qoi>P1i>Pzi>---i>Pk€F

12/24

An Example

Languages Accepted by NFAs

> L(A) = {w: penultimate symbol in w is a 1}.

0 1
0,1
—> Q q {q0. g1} '
i IR () —— ()
* q2 0 0

> 3(qo,00) = {qo}
> 6(q0,01) = {qo, g1}

> 6(q07 10) = {q07 q2}
> 5(go,100) = {qo}

0 0
do —> qo —> qo
0 1 0 1
o —> qo — q1 do —> qo — qo
QO%qoLQO qo—1>CI1i>q2

1 0 0
o —>q1 —>qo —> Qo

> An input can move the state from qo to g2 only if it ends in 10 or 11.

> Each time the NFA reads a 1 (in state qo) it considers two parallel possibilities:
> the 1 is the penultimate symbol. (These paths die if the 1 is not actually the
penultimate symbol)
> the 1 is not the penultimate symbol.

13/24

Languages Accepted by NFAs

Is Non-determinism Better?

> Non-determinism was introduced to increase the computational power.

> So is there a language L that is accepted by an NDA, but not by any DFA?

Theorem 2.4.1

Every Language L that is accepted by an NFA is also accepted by some DFA.

14 /24

Languages Accepted by NFAs

Is Non-determinism Better?

Proof of Theorem 2.4.1
> Let N = (Qnw, 3, dn, qo, Fn) generate the given language L

> Idea: Devise a DFA D such that at any time instant the state of the DFA is the set
of all states that NFA N can be in.

> Define DFA D = (Qp, %, 0p, gp,0, Fp) from N using the following subset
construction:

Qp =2 qp,0 = {qo} Fp={S
N D:

N

Qv : SN Fy#0}

{0, 1. 02}

> Hence, e € L(N) & que F < {q} € Fp & ecL(D))

15/24

Languages Accepted by NFAs

Is Non-determinism Better?

Proof of Theorem 2.4.1

> To define 6p(P,s) for each P C Q and s € X:
> Assume NFA N is simultaneously in all states of P

> Let P’ be the states to which N can transition from states in P upon reading s
> Set 0p(P,s) := P' = U,cp on(p; s).

s
N: D: 5
< p— P

> By Induction: dn(qo, w) = dp({qo}, w) for all w € *
> Basis: Let s € &

(g0, €) & {ao} & dp({q0})

> Induction: assume dn(qo, w) = dp({qo}, w) for w € ©*

Su(ao,ws) = | Jou(p,s) ™ | dnlp,s) 60(3n({a0}, w),s) Z db({ao}, ws)

PESN(qo,w) PESp ({q0},w)

> Thus, dn(qo,-) = 0o({qo},-), and hence the languages have to be identical.

16/24

Languages Accepted by NFAs

Comments about the Subset Construction Method

> Generally, the DFA constructed using subset construction has 2" states (n = number
of states in the NFA).

> Not all states are reachable! (see example below)

> The state corresponding to the empty set is never a final state.

0,1
1 0,1
— @)

17 /24

Transtions without Symbol Reading

e-Transitions

> State transitions occur without reading any symbols.

Definition: e-transitions

An e-Nondeterministic Finite Automaton is a 5-tuple (Q, X, d, qo, F) defined similar to a
DFA with the exception of the transition function, which is defined to be:

§:Qx (ZU{e}) »2°

> An Example: e 2 b
—» q [[{aa} 0 0
a || {e o o
@ || {st 0 0
*q3 0 []
[0 {as} 0
3 {a} o {as}
6 0 0 0

> Without reading any input symbols, the state of the e-NFA can transition:

From qo to g1, g4, g2, or gs. From g1 to g, or gs.

From g» to gs. From gs to ge.

18/24

Transtions without Symbol Reading

Language Accepted by an e-NFA

> e-closure of a state
> ECLOSE(q) = all states that are reachable from g by e-transitions alone.

ECLOSE(qo) = {qo, q1, G4, G2, 93}
ECLOSE(q1) = {q1, ¢2, g3}
ECLOSE(q2) = {q2, g3}
ECLOSE(qs) = {q3}

ECLOSE(qs) = {qa}

ECLOSE(gs) = {gs, g6}
ECLOSE(qs) = {qs}

19/24

Transtions without Symbol Reading
Language Accepted by an e-NFA

Given e-NFA N = (Q, X%, §, qo, F) define extended transition function §:Qxx*— 29

by induction:
> Basis:
4(q, €) = ECLOSE(q)
€ € €
G —> G —> - —» ¢ ===
oa,s)= (U ECLOSE(p/)) [s= €€ s €€]
PEECLOSE(q) p’€8(p,s) finitely many finitely many
€ € € ’ S p € € €
q —» g —»--- —»q —»p —»p —» .- P
> Induction:

Saw)= U (U soosse)) o

pEd(q,w) P E(P,S)

> w e L(N) if and only if §(qo,w) N F # 0

20/24

Transtions without Symbol Reading

Language Accepted by an e-NFA

> w e L(N) if and only if §(qo,w) N F # 0
> In other words:

> e € L(N) & ECLOSE(qo) N F #£ 0

o <> p —> ... S pEF

> For k > 0,

3 a path such as the following

€ € € S
do —» - - > —> P

g 52

PITP —>€ __ép —» m

r’g

w=s15s€lLA) &

€ € € Sk
Pk—1 —» — - — —> Pk
€
~ ¢

Pk —> —>---—€»qF€F

21/24

Transtions without Symbol Reading

Do e-NFAs Accept More Languages?

Theorem 2.5.1
Every Language L that is accepted by an e-NFA is also accepted by some DFA.

Proof of Theorem 2.5.1

> Given L that is accepted by some e-NFA, we must find an NFA that accepts L. ([NFA
to DFA conversion can then be done as in Theorem 2.4.1].

> Let eNFA N = (Qw, X, dn, qo, Fn) accept L.
> Let us devise NFA N = (Qnr, X, dnr, qo, Far) as follows:

Qv =Qv g =q Fy=1{q€ Qu:ECLOSE(q) N Fy # 0}

Sw : Que x B — 29 defined by: dn(g,8)=) d(p,s)
PEECLOSE(q)
€ € & S
N : q —» — - —» p —>

N : g can transition to p’ after a few e-transitions, and a single read of s € ¥.

N: q ——» p

22/24

Transtions without Symbol Reading

Do e-NFAs Accept More Languages?

Proof of Theorem 2.5.1 (Cont’'d)

[Argument is handwavy, but can be formalized!]

s1... 5k is accepted by e-NFA N s1... sk is accepted by NFA N/
() (s
€ € € s1
G —> — - — —> P 5
N: N: ¢ —> p
€
y7 LSE
9
P —> — ... —> —> P

€ € € P2
5 S *

€ € € Sk :
Pk—1 > —_— - — —> P *Sk
/ £ Pk
€ € €
Pk —» —» - —» grE€F

ECLOSE(px) N Fy # 0

23/24

Transtions without Symbol Reading

To Summarize...

Languages accepted Languages accepted Languages accepted

by DFAs o by NFAs a by e-NFAs

> Allowing non-determinism and/or e-transitions does not improve the language
acceptance power of (finite) automata.

24/24

	The Deterministic Finite Automaton
	Languages accepted by DFAs
	Non-deterministic Finite Automaton (NFA)
	Languages Accepted by NFAs
	Transtions without Symbol Reading

