
COMP3630/6360: Theory of Computation
Semester 1, 2022

The Australian National University

Finite Automata

1 / 24

COMP3630/6363: Theoory of Computation

Textbook. Introduction to Automata Theory, Languages and Computation John E.
Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman [HMU].

Prerequisites. Chapter 1 of HMU (sets, functions, relations, induction)

Assessment. 3 Assignments @ 10% each, Final Exam @ 70%.

Content. Languages / Automata / Computability / Complexity.

Lecturer. Dirk Pattinson, dirk.pattinson@anu.edu.au

2 / 24

1

CECS Class Representatives
Roles and Responsibilities

 Be creative and proactive in gathering feedback from your class mates about the

course.

 Act as the official liaison between your classmates and your lecturers in

communicating feedback about the course and providing course-related updates to

your classmates. You’ll also provide regular reports to the Associate Director

(Education) on the feedback you’ve been gathering.

Benefits of Being a Class Rep

 The opportunity to develop skills sought by employers – particularly interpersonal,

dispute resolution, leadership and communication skills.

 Empowerment: Play a more active role in determining the direction of your education.

Become more aware of issues influencing your University and current issues in

higher education.

Nominations

 Please contact CECS Student Services (studentadmin.cecs@anu.edu.au) with your

name, Student ID and the course number (e.g. ENGN1211) you are interested in

becoming a Class Representative for.

3 / 24

This Lecture Covers Chapter 2 of HMU: Finite Automata

 Deterministic Finite Automata

 Nondeterministic Finite Automata

 NFA with ε-transitions

 An Equivalence among the above three.

Additional Reading: Chapter 2 of HMU.

Preliminary Concepts

ó Alphabet Σ: A finite set of symbols, e.g.,

ó Σ = {0, 1} (binary alphabet)

ó Σ = {a, b, . . . , z} (Roman alphabet)

ó String (or word) is a finite sequence of symbols.
Strings are usually represented without commas, e.g., 0011 instead of (0, 0, 1, 1)

ó Concatenation x · y of strings x and y is the string xy .

ó ε is the identity element for concatenation, i.e., ε · x = x · ε = x .

ó Concatenation of sets of strings: A · B = {a · b : a ∈ A, b ∈ B}

ó Concatenation of the same set: A2 = AA; A3 = (AA)A, etc

(We often elide the concatenation operator and write AB for A · B)

ó Kleene-∗ or closure operator: A∗ = {ε} ∪ A ∪ A2 ∪ A3 · · · =
⋃

n≥0 A
n

(Viewing Σ as a set of length-1 strings, Σ∗ is the set of all strings over Σ.)

ó A (formal) language is a subset of Σ∗.

5 / 24

The Deterministic Finite Automaton

Deterministic Finite Automaton (DFA)

Informally:

s1 s2 s3 s‘: : : [Input tape]

Finite Control q0

q1

q3

q4

q5

q2

[Movable Reading Head]

ó The device consisting of: (a) input tape; (b) reading head; and (c) finite control
(Finite-state machine)

ó The input is read from left to right

ó Each read operation changes the internal state of the finite-state machine (FSM)

ó Input is accepted/rejected based on the final state after reading all symbols

6 / 24

The Deterministic Finite Automaton

Deterministic Finite Automaton (DFA)

Definition: DFA

ó A DFA A = (Q,Σ, δ, q0,F)

ó Q: A finite set (of internal states)

ó Σ: The alphabet corresponding to the input

ó δ : Q × Σ→ Q , (Transition Function)
(If present state is q ∈ Q, and a ∈ Σ is read, the DFA moves to δ(q, a).)

ó q0: The (unique) starting state of the DFA (prior to any reading). (q0 ∈ Q)

ó F ⊆ Q is the set of final (or accepting) states

Transition Table: Transition Diagram:

q0

q1

q2

0 1

q2

q2

q0

q1 q1

q1

⇤

F = {q1}
‹(q0; 0) = q2

‹(q0; 1) = q0

q0
q1q2

1

10

0; 10

7 / 24

Languages accepted by DFAs

Language accepted by a DFA

ó The language L(A) accepted by a DFA A = (Q,Σ, δ, q0,F) is:

ó The set of all input strings that move the state of the DFA from q0 to a state in F

ó This is formalized via the extended transition function δ̂ : Q × Σ∗ → Q:

ó Basis:

δ̂(q, ε) = q (no state change)

ó Induction:

δ̂(q,ws) = δ(δ̂(q,w), s) (process w , then s)

ó L(A) := all strings that take q0 to some final state = {w ∈ Σ∗ : δ̂(q0,w) ∈ F}.

In other words:

ó ε ∈ L(A)⇔ q0 ∈ F

ó For k > 0,

w = s1s2 · · · sk ∈ L(A) ⇔ q0
s1−→ P1

s2−→ P2
s3−→ · · · sk−→ Pk ∈ F

8 / 24

Languages accepted by DFAs

An Example

q0
q1q2

1

10

0; 10

A:

ó Is 00 accepted by A?

ó q0
0−→ q2

0−→ q2 /∈ F

ó Thus, 00 /∈ L(A)

ó Is 001 accepted by A?

ó q0
0−→ q2

0−→ q2
1−→ q1 ∈ F

ó Thus, 001 ∈ L(A)

ó The only way one can reach q1 from q0 is if the string contains 01.

ó L(A) is the set of strings containing 01.

ó Remark 1: In general, each string corresponds to a unique path of states.

ó Remark 2: Multiple strings can have the same path of states. For example, 0010 and
0011 have the same sequence of states.

9 / 24

Languages accepted by DFAs

Limitations of DFAs

ó Can all languages be accepted by DFAs?

ó DFAs have a finite number of states (and hence finite memory).

ó Given a DFA, there is always a long pattern it cannot ’remember’ or ’track’

ó e.g., L = {0n1n : n ∈ N} cannot be accepted by any DFA.

ó Can generalize DFAs in one of many ways:

ó Allow transitions to multiple states for each symbol read.

ó Allow transitions without reading any symbol

ó Allow the device to have an additional tape to store symbols

ó Allow the device to edit the input tape

ó Allow bidirectional head movement

10 / 24

Non-deterministic Finite Automaton (NFA)

Non-deterministic Finite Automaton (NFA)

ó Allow transitions to multiple states at each symbol reading.

ó Multiple transitions allows the device to:

ó clone itself, traverse through and consider all possible parallel outcomes.

ó hypothesize/guess multiple eventualities concerning its input.

ó Non-determinism seems bizarre, but aids in the simplification of describing an
automaton.

Definition: NFA

ó NFA A = (Q,Σ, δ, q0,F) is defined similar to a DFA with the exception of the
transition function, which takes the following form.

ó δ : Q × Σ→ 2Q (Transition Function)

ó Remark 1: δ(q, s) can be a set with two or more states, or even be empty!

ó Remark 2: If δ(·, ·) is a singleton for all argument pairs, then NFA is a DFA.
(So every DFA is trivally an NFA).

11 / 24

Languages Accepted by NFAs

Language Accepted by an NFA

ó The language accepted by an NFA is formally defined via the extended transition
function δ̂ : Q × Σ∗ → 2Q :

ó Basis:

δ̂(q, ε) = {q} (no state change)

ó Induction:

δ̂(q,ws) =
⋃

p∈δ̂(q,w)

δ(p, s), s ∈ Σ,w ∈ Σ∗.

q

‹̂(q; w)

...

...

...

...

w

s

s

‹̂(q; ws)

ó L(A) := {w ∈ Σ∗ : δ̂(q0,w) ∩ F 6= ∅}.

In other words:

ó ε ∈ L(A)⇔ q0 ∈ F

ó For k > 0,

w = s1s2 · · · sk ∈ L(A) ⇔ ∃ a path q0
s1−→ P1

s2−→ P2
s3−→ · · · sk−→ Pk ∈ F

12 / 24

Languages Accepted by NFAs

An Example

ó L(A) = {w : penultimate symbol in w is a 1}.

q0

q1

q2

0

q2

⇤
q0 q1 q2

1

0; 1

0; 1

1

q0 {q0; q1}
q2

; ;

ó δ̂(q0, 00) = {q0} q0
0−→ q0

0−→ q0

ó δ̂(q0, 01) = {q0, q1} q0
0−→ q0

1−→ q1 q0
0−→ q0

1−→ q0

ó δ̂(q0, 10) = {q0, q2} q0
1−→ q0

0−→ q0 q0
1−→ q1

0−→ q2

ó δ̂(q0, 100) = {q0} q0
1−→ q1

0−→ q0
0−→ q0

ó An input can move the state from q0 to q2 only if it ends in 10 or 11.

ó Each time the NFA reads a 1 (in state q0) it considers two parallel possibilities:

ó the 1 is the penultimate symbol. (These paths die if the 1 is not actually the
penultimate symbol)

ó the 1 is not the penultimate symbol.

13 / 24

Languages Accepted by NFAs

Is Non-determinism Better?

ó Non-determinism was introduced to increase the computational power.

ó So is there a language L that is accepted by an NDA, but not by any DFA?

Theorem 2.4.1

Every Language L that is accepted by an NFA is also accepted by some DFA.

14 / 24

Languages Accepted by NFAs

Is Non-determinism Better?

Proof of Theorem 2.4.1

ó Let N = (QN ,Σ, δN , q0,FN) generate the given language L

ó Idea: Devise a DFA D such that at any time instant the state of the DFA is the set
of all states that NFA N can be in.

ó Define DFA D = (QD ,Σ, δD , qD,0,FD) from N using the following subset
construction:

QD = 2QN qD,0 = {q0} FD = {S ⊆ QN : S ∩ FN 6= ∅}

q0 q1 q2
1

0; 1

0; 1 ;

{q0}

{q1}

{q2}

{q1; q2}

{q0; q1}

{q0; q2}

{q0; q1; q2}

N : D :

ó Hence, ε ∈ L(N) ⇔ q0 ∈ F ⇔ {q0} ∈ FD ⇔ ε ∈ L(D)

15 / 24

Languages Accepted by NFAs

Is Non-determinism Better?

Proof of Theorem 2.4.1

ó To define δD(P, s) for each P ⊆ Q and s ∈ Σ:

ó Assume NFA N is simultaneously in all states of P
ó Let P ′ be the states to which N can transition from states in P upon reading s
ó Set δD(P, s) := P ′ =

⋃
p∈P δN(p, s).

P P 0

s

N: D :

P P 0�!
s,

ó By Induction: δ̂N(q0,w) = δ̂D({q0},w) for all w ∈ Σ∗

ó Basis: Let s ∈ Σ

δ̂N(q0, ε)
def
= {q0}

def
= δ̂D({q0})

ó Induction: assume δ̂N(q0,w) = δ̂D({q0},w) for w ∈ Σ∗

δ̂N(q0,ws)
def
=

⋃
p∈δ̂N (q0,w)

δN(p, s)
ind
=

⋃
p∈δ̂D ({q0},w)

δN(p, s)
def
= δD(δ̂D({q0},w), s)

def
= δ̂D({q0},ws)

ó Thus, δ̂N(q0, ·) = δ̂D({q0}, ·), and hence the languages have to be identical.

16 / 24

Languages Accepted by NFAs

Comments about the Subset Construction Method

ó Generally, the DFA constructed using subset construction has 2n states (n = number
of states in the NFA).

ó Not all states are reachable! (see example below)

ó The state corresponding to the empty set is never a final state.

q0 q1 q2
1

0; 1

0; 1

;

{q0}

{q1}

{q2}

{q1; q2}

{q0; q1}

{q0; q2}

{q0; q1; q2}

0; 1

0

1

0; 1

0; 1

0; 1

1
0

1

0 0

1

D :

17 / 24

Transtions without Symbol Reading

ε-Transitions

ó State transitions occur without reading any symbols.

Definition: ε-transitions

An ε-Nondeterministic Finite Automaton is a 5-tuple (Q,Σ, δ, q0,F) defined similar to a
DFA with the exception of the transition function, which is defined to be:

δ : Q × (Σ ∪ {ε})→ 2Q

ó An Example:

q0

q1 q2 q3

q4 q5 q6

›

› ›

›

›a

b
⇤

q0

q1

q2

› a b

q3

q4

q5

q6

{q2}
{q3}

{q5}

{q6}

;

{q1; q4}

;;

;

;;

{q3}

;
; ;
; ;;

; ;;

ó Without reading any input symbols, the state of the ε-NFA can transition:

From q0 to q1, q4, q2, or q3. From q1 to q2, or q3.

From q2 to q3. From q5 to q6.
18 / 24

Transtions without Symbol Reading

Language Accepted by an ε-NFA

ó ε-closure of a state

ó ECLOSE(q) = all states that are reachable from q by ε-transitions alone.

q0

q1 q2 q3

q4 q5 q6

›

›

›a

b

› ›

ECLOSE(q0) = {q0, q1, q4, q2, q3}
ECLOSE(q1) = {q1, q2, q3}
ECLOSE(q2) = {q2, q3}
ECLOSE(q3) = {q3}
ECLOSE(q4) = {q4}
ECLOSE(q5) = {q5, q6}
ECLOSE(q6) = {q6}

19 / 24

Transtions without Symbol Reading

Language Accepted by an ε-NFA

Given ε-NFA N = (Q,Σ, δ, q0,F) define extended transition function δ̂ : Q × Σ∗ → 2Q

by induction:

ó Basis:

δ̂(q, ε) = ECLOSE(q)

› ›
q

›
: : : › = ›2 = ›3 = · · ·q1 q0

δ̂(q, s) =
⋃

p∈ECLOSE(q)

(⋃
p′∈δ(p,s)

ECLOSE(p′)

)
[s = ε · · · ε︸ ︷︷ ︸

finitely many

s ε · · · ε︸ ︷︷ ︸
finitely many

]

› ›
q

›
: : :

s › ›
: : :

›
q1 q0 p0 p1 p

ó Induction:

δ̂(q,ws) =
⋃

p∈δ̂(q,w)

(⋃
p′∈δ(p,s)

ECLOSE(p′)

)
q

w

‹̂(q; w)

s
›

‹̂(q; ws)

ó w ∈ L(N) if and only if δ̂(q0,w) ∩ F 6= ∅
20 / 24

Transtions without Symbol Reading

Language Accepted by an ε-NFA

ó w ∈ L(N) if and only if δ̂(q0,w) ∩ F 6= ∅

ó In other words:

ó ε ∈ L(N)⇔ ECLOSE(q0) ∩ F 6= ∅
› › ›: : :q0 p1 pr 2 F

ó For k > 0,

w = s1s2 · · · sk 2 L(A) ,

› › ›
: : :

›

p1

p2

s1

s2

sk

p1

...

: : :

: : :

› › ›

› › ›

: : :
›

›

› ›

pkpk�1

pk qF 2 F

q0

9 a path such as the following

21 / 24

Transtions without Symbol Reading

Do ε-NFAs Accept More Languages?

Theorem 2.5.1

Every Language L that is accepted by an ε-NFA is also accepted by some DFA.

Proof of Theorem 2.5.1

ó Given L that is accepted by some ε-NFA, we must find an NFA that accepts L. ([NFA
to DFA conversion can then be done as in Theorem 2.4.1].

ó Let ε-NFA N = (QN ,Σ, δN , q0,FN) accept L.

ó Let us devise NFA N ′ = (QN′ ,Σ, δN′ , q′0,FN′) as follows:

QN′ = QN q′0 = q0 F ′N = {q ∈ QN : ECLOSE(q) ∩ FN 6= ∅}

δN′ : QN′ × Σ→ 2QN′ defined by: δN′(q, s) =
⋃

p∈ECLOSE(q)

δ(p, s)

› ›
q

›
: : :

s
pN : p0

N 0 : p0q
s

m
N :

N 0: q can transition to p0 after reading s.

q can transition to p0 after a few ›-transitions, and a single read of s 2 ⌃.

22 / 24

Transtions without Symbol Reading

Do ε-NFAs Accept More Languages?

Proof of Theorem 2.5.1 (Cont’d)

[Argument is handwavy, but can be formalized!]

N :

m

p1

p2

s2

sk

pk

,

q
s1

...

ECLOSE(pk) \ FN 6= ;

N 0 :

m
s1 : : : sk is accepted by ›-NFA N s1 : : : sk is accepted by NFA N 0

› ›
q0

›
: : :

›

p1

p2

s1

s2

sk

p1

...

: : :

: : :

› › ›

› › ›

: : :
›

›

› ›

pkpk�1

pk qF 2 F

23 / 24

Transtions without Symbol Reading

To Summarize...

Languages accepted
by DFAs

=
Languages accepted

by NFAs
=

Languages accepted
by ε-NFAs

ó Allowing non-determinism and/or ε-transitions does not improve the language
acceptance power of (finite) automata.

24 / 24

	The Deterministic Finite Automaton
	Languages accepted by DFAs
	Non-deterministic Finite Automaton (NFA)
	Languages Accepted by NFAs
	Transtions without Symbol Reading

