
COMP3630/6360: Theory of Computation
Semester 1, 2022

The Australian National University

Finite Automata

1 / 24

COMP3630/6363: Theoory of Computation

Textbook. Introduction to Automata Theory, Languages and Computation John E.
Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman [HMU].

Prerequisites. Chapter 1 of HMU (sets, functions, relations, induction)

Assessment. 3 Assignments @ 10% each, Final Exam @ 70%.

Content. Languages / Automata / Computability / Complexity.

Lecturer. Dirk Pattinson, dirk.pattinson@anu.edu.au

2 / 24

1

CECS Class Representatives
Roles and Responsibilities

 Be creative and proactive in gathering feedback from your class mates about the

course.

 Act as the official liaison between your classmates and your lecturers in

communicating feedback about the course and providing course-related updates to

your classmates. You’ll also provide regular reports to the Associate Director

(Education) on the feedback you’ve been gathering.

Benefits of Being a Class Rep

 The opportunity to develop skills sought by employers – particularly interpersonal,

dispute resolution, leadership and communication skills.

 Empowerment: Play a more active role in determining the direction of your education.

Become more aware of issues influencing your University and current issues in

higher education.

Nominations

 Please contact CECS Student Services (studentadmin.cecs@anu.edu.au) with your

name, Student ID and the course number (e.g. ENGN1211) you are interested in

becoming a Class Representative for.

3 / 24

This Lecture Covers Chapter 2 of HMU: Finite Automata

 Deterministic Finite Automata

 Nondeterministic Finite Automata

 NFA with ε-transitions

 An Equivalence among the above three.

Additional Reading: Chapter 2 of HMU.

Preliminary Concepts

ó Alphabet Σ: A finite set of symbols, e.g.,

ó Σ = {0, 1} (binary alphabet)

ó Σ = {a, b, . . . , z} (Roman alphabet)

ó String (or word) is a finite sequence of symbols.
Strings are usually represented without commas, e.g., 0011 instead of (0, 0, 1, 1)

ó Concatenation x · y of strings x and y is the string xy .

ó ε is the identity element for concatenation, i.e., ε · x = x · ε = x .

ó Concatenation of sets of strings: A · B = {a · b : a ∈ A, b ∈ B}

ó Concatenation of the same set: A2 = AA; A3 = (AA)A, etc

(We often elide the concatenation operator and write AB for A · B)

ó Kleene-∗ or closure operator: A∗ = {ε} ∪ A ∪ A2 ∪ A3 · · · =
⋃

n≥0 A
n

(Viewing Σ as a set of length-1 strings, Σ∗ is the set of all strings over Σ.)

ó A (formal) language is a subset of Σ∗.

5 / 24

The Deterministic Finite Automaton

Deterministic Finite Automaton (DFA)

Informally:

s1 s2 s3 s‘: : : [Input tape]

Finite Control q0

q1

q3

q4

q5

q2

[Movable Reading Head]

ó The device consisting of: (a) input tape; (b) reading head; and (c) finite control
(Finite-state machine)

ó The input is read from left to right

ó Each read operation changes the internal state of the finite-state machine (FSM)

ó Input is accepted/rejected based on the final state after reading all symbols

6 / 24

The Deterministic Finite Automaton

Deterministic Finite Automaton (DFA)

Definition: DFA

ó A DFA A = (Q,Σ, δ, q0,F)

ó Q: A finite set (of internal states)

ó Σ: The alphabet corresponding to the input

ó δ : Q × Σ→ Q , (Transition Function)
(If present state is q ∈ Q, and a ∈ Σ is read, the DFA moves to δ(q, a).)

ó q0: The (unique) starting state of the DFA (prior to any reading). (q0 ∈ Q)

ó F ⊆ Q is the set of final (or accepting) states

Transition Table: Transition Diagram:

q0

q1

q2

0 1

q2

q2

q0

q1 q1

q1

⇤

F = {q1}
‹(q0; 0) = q2

‹(q0; 1) = q0

q0
q1q2

1

10

0; 10

7 / 24

Languages accepted by DFAs

Language accepted by a DFA

ó The language L(A) accepted by a DFA A = (Q,Σ, δ, q0,F) is:

ó The set of all input strings that move the state of the DFA from q0 to a state in F

ó This is formalized via the extended transition function δ̂ : Q × Σ∗ → Q:

ó Basis:

δ̂(q, ε) = q (no state change)

ó Induction:

δ̂(q,ws) = δ(δ̂(q,w), s) (process w , then s)

ó L(A) := all strings that take q0 to some final state = {w ∈ Σ∗ : δ̂(q0,w) ∈ F}.

In other words:

ó ε ∈ L(A)⇔ q0 ∈ F

ó For k > 0,

w = s1s2 · · · sk ∈ L(A) ⇔ q0
s1−→ P1

s2−→ P2
s3−→ · · · sk−→ Pk ∈ F

8 / 24

Languages accepted by DFAs

An Example

q0
q1q2

1

10

0; 10

A:

ó Is 00 accepted by A?

ó q0
0−→ q2

0−→ q2 /∈ F

ó Thus, 00 /∈ L(A)

ó Is 001 accepted by A?

ó q0
0−→ q2

0−→ q2
1−→ q1 ∈ F

ó Thus, 001 ∈ L(A)

ó The only way one can reach q1 from q0 is if the string contains 01.

ó L(A) is the set of strings containing 01.

ó Remark 1: In general, each string corresponds to a unique path of states.

ó Remark 2: Multiple strings can have the same path of states. For example, 0010 and
0011 have the same sequence of states.

9 / 24

Languages accepted by DFAs

Limitations of DFAs

ó Can all languages be accepted by DFAs?

ó DFAs have a finite number of states (and hence finite memory).

ó Given a DFA, there is always a long pattern it cannot ’remember’ or ’track’

ó e.g., L = {0n1n : n ∈ N} cannot be accepted by any DFA.

ó Can generalize DFAs in one of many ways:

ó Allow transitions to multiple states for each symbol read.

ó Allow transitions without reading any symbol

ó Allow the device to have an additional tape to store symbols

ó Allow the device to edit the input tape

ó Allow bidirectional head movement

10 / 24

Non-deterministic Finite Automaton (NFA)

Non-deterministic Finite Automaton (NFA)

ó Allow transitions to multiple states at each symbol reading.

ó Multiple transitions allows the device to:

ó clone itself, traverse through and consider all possible parallel outcomes.

ó hypothesize/guess multiple eventualities concerning its input.

ó Non-determinism seems bizarre, but aids in the simplification of describing an
automaton.

Definition: NFA

ó NFA A = (Q,Σ, δ, q0,F) is defined similar to a DFA with the exception of the
transition function, which takes the following form.

ó δ : Q × Σ→ 2Q (Transition Function)

ó Remark 1: δ(q, s) can be a set with two or more states, or even be empty!

ó Remark 2: If δ(·, ·) is a singleton for all argument pairs, then NFA is a DFA.
(So every DFA is trivally an NFA).

11 / 24

Languages Accepted by NFAs

Language Accepted by an NFA

ó The language accepted by an NFA is formally defined via the extended transition
function δ̂ : Q × Σ∗ → 2Q :

ó Basis:

δ̂(q, ε) = {q} (no state change)

ó Induction:

δ̂(q,ws) =
⋃

p∈δ̂(q,w)

δ(p, s), s ∈ Σ,w ∈ Σ∗.

q

‹̂(q; w)

...

...

...

...

w

s

s

‹̂(q; ws)

ó L(A) := {w ∈ Σ∗ : δ̂(q0,w) ∩ F 6= ∅}.

In other words:

ó ε ∈ L(A)⇔ q0 ∈ F

ó For k > 0,

w = s1s2 · · · sk ∈ L(A) ⇔ ∃ a path q0
s1−→ P1

s2−→ P2
s3−→ · · · sk−→ Pk ∈ F

12 / 24

Languages Accepted by NFAs

An Example

ó L(A) = {w : penultimate symbol in w is a 1}.

q0

q1

q2

0

q2

⇤
q0 q1 q2

1

0; 1

0; 1

1

q0 {q0; q1}
q2

; ;

ó δ̂(q0, 00) = {q0} q0
0−→ q0

0−→ q0

ó δ̂(q0, 01) = {q0, q1} q0
0−→ q0

1−→ q1 q0
0−→ q0

1−→ q0

ó δ̂(q0, 10) = {q0, q2} q0
1−→ q0

0−→ q0 q0
1−→ q1

0−→ q2

ó δ̂(q0, 100) = {q0} q0
1−→ q1

0−→ q0
0−→ q0

ó An input can move the state from q0 to q2 only if it ends in 10 or 11.

ó Each time the NFA reads a 1 (in state q0) it considers two parallel possibilities:

ó the 1 is the penultimate symbol. (These paths die if the 1 is not actually the
penultimate symbol)

ó the 1 is not the penultimate symbol.

13 / 24

Languages Accepted by NFAs

Is Non-determinism Better?

ó Non-determinism was introduced to increase the computational power.

ó So is there a language L that is accepted by an NDA, but not by any DFA?

Theorem 2.4.1

Every Language L that is accepted by an NFA is also accepted by some DFA.

14 / 24

Languages Accepted by NFAs

Is Non-determinism Better?

Proof of Theorem 2.4.1

ó Let N = (QN ,Σ, δN , q0,FN) generate the given language L

ó Idea: Devise a DFA D such that at any time instant the state of the DFA is the set
of all states that NFA N can be in.

ó Define DFA D = (QD ,Σ, δD , qD,0,FD) from N using the following subset
construction:

QD = 2QN qD,0 = {q0} FD = {S ⊆ QN : S ∩ FN 6= ∅}

q0 q1 q2
1

0; 1

0; 1 ;

{q0}

{q1}

{q2}

{q1; q2}

{q0; q1}

{q0; q2}

{q0; q1; q2}

N : D :

ó Hence, ε ∈ L(N) ⇔ q0 ∈ F ⇔ {q0} ∈ FD ⇔ ε ∈ L(D)

15 / 24

Languages Accepted by NFAs

Is Non-determinism Better?

Proof of Theorem 2.4.1

ó To define δD(P, s) for each P ⊆ Q and s ∈ Σ:

ó Assume NFA N is simultaneously in all states of P
ó Let P ′ be the states to which N can transition from states in P upon reading s
ó Set δD(P, s) := P ′ =

⋃
p∈P δN(p, s).

P P 0

s

N: D :

P P 0�!
s,

ó By Induction: δ̂N(q0,w) = δ̂D({q0},w) for all w ∈ Σ∗

ó Basis: Let s ∈ Σ

δ̂N(q0, ε)
def
= {q0}

def
= δ̂D({q0})

ó Induction: assume δ̂N(q0,w) = δ̂D({q0},w) for w ∈ Σ∗

δ̂N(q0,ws)
def
=

⋃
p∈δ̂N (q0,w)

δN(p, s)
ind
=

⋃
p∈δ̂D ({q0},w)

δN(p, s)
def
= δD(δ̂D({q0},w), s)

def
= δ̂D({q0},ws)

ó Thus, δ̂N(q0, ·) = δ̂D({q0}, ·), and hence the languages have to be identical.

16 / 24

Languages Accepted by NFAs

Comments about the Subset Construction Method

ó Generally, the DFA constructed using subset construction has 2n states (n = number
of states in the NFA).

ó Not all states are reachable! (see example below)

ó The state corresponding to the empty set is never a final state.

q0 q1 q2
1

0; 1

0; 1

;

{q0}

{q1}

{q2}

{q1; q2}

{q0; q1}

{q0; q2}

{q0; q1; q2}

0; 1

0

1

0; 1

0; 1

0; 1

1
0

1

0 0

1

D :

17 / 24

Transtions without Symbol Reading

ε-Transitions

ó State transitions occur without reading any symbols.

Definition: ε-transitions

An ε-Nondeterministic Finite Automaton is a 5-tuple (Q,Σ, δ, q0,F) defined similar to a
DFA with the exception of the transition function, which is defined to be:

δ : Q × (Σ ∪ {ε})→ 2Q

ó An Example:

q0

q1 q2 q3

q4 q5 q6

›

› ›

›

›a

b
⇤

q0

q1

q2

› a b

q3

q4

q5

q6

{q2}
{q3}

{q5}

{q6}

;

{q1; q4}

;;

;

;;

{q3}

;
; ;
; ;;

; ;;

ó Without reading any input symbols, the state of the ε-NFA can transition:

From q0 to q1, q4, q2, or q3. From q1 to q2, or q3.

From q2 to q3. From q5 to q6.
18 / 24

Transtions without Symbol Reading

Language Accepted by an ε-NFA

ó ε-closure of a state

ó ECLOSE(q) = all states that are reachable from q by ε-transitions alone.

q0

q1 q2 q3

q4 q5 q6

›

›

›a

b

› ›

ECLOSE(q0) = {q0, q1, q4, q2, q3}
ECLOSE(q1) = {q1, q2, q3}
ECLOSE(q2) = {q2, q3}
ECLOSE(q3) = {q3}
ECLOSE(q4) = {q4}
ECLOSE(q5) = {q5, q6}
ECLOSE(q6) = {q6}

19 / 24

Transtions without Symbol Reading

Language Accepted by an ε-NFA

Given ε-NFA N = (Q,Σ, δ, q0,F) define extended transition function δ̂ : Q × Σ∗ → 2Q

by induction:

ó Basis:

δ̂(q, ε) = ECLOSE(q)

› ›
q

›
: : : › = ›2 = ›3 = · · ·q1 q0

δ̂(q, s) =
⋃

p∈ECLOSE(q)

(⋃
p′∈δ(p,s)

ECLOSE(p′)

)
[s = ε · · · ε︸ ︷︷ ︸

finitely many

s ε · · · ε︸ ︷︷ ︸
finitely many

]

› ›
q

›
: : :

s › ›
: : :

›
q1 q0 p0 p1 p

ó Induction:

δ̂(q,ws) =
⋃

p∈δ̂(q,w)

(⋃
p′∈δ(p,s)

ECLOSE(p′)

)
q

w

‹̂(q; w)

s
›

‹̂(q; ws)

ó w ∈ L(N) if and only if δ̂(q0,w) ∩ F 6= ∅
20 / 24

Transtions without Symbol Reading

Language Accepted by an ε-NFA

ó w ∈ L(N) if and only if δ̂(q0,w) ∩ F 6= ∅

ó In other words:

ó ε ∈ L(N)⇔ ECLOSE(q0) ∩ F 6= ∅
› › ›: : :q0 p1 pr 2 F

ó For k > 0,

w = s1s2 · · · sk 2 L(A) ,

› › ›
: : :

›

p1

p2

s1

s2

sk

p1

...

: : :

: : :

› › ›

› › ›

: : :
›

›

› ›

pkpk�1

pk qF 2 F

q0

9 a path such as the following

21 / 24

Transtions without Symbol Reading

Do ε-NFAs Accept More Languages?

Theorem 2.5.1

Every Language L that is accepted by an ε-NFA is also accepted by some DFA.

Proof of Theorem 2.5.1

ó Given L that is accepted by some ε-NFA, we must find an NFA that accepts L. ([NFA
to DFA conversion can then be done as in Theorem 2.4.1].

ó Let ε-NFA N = (QN ,Σ, δN , q0,FN) accept L.

ó Let us devise NFA N ′ = (QN′ ,Σ, δN′ , q′0,FN′) as follows:

QN′ = QN q′0 = q0 F ′N = {q ∈ QN : ECLOSE(q) ∩ FN 6= ∅}

δN′ : QN′ × Σ→ 2QN′ defined by: δN′(q, s) =
⋃

p∈ECLOSE(q)

δ(p, s)

› ›
q

›
: : :

s
pN : p0

N 0 : p0q
s

m
N :

N 0: q can transition to p0 after reading s.

q can transition to p0 after a few ›-transitions, and a single read of s 2 ⌃.

22 / 24

Transtions without Symbol Reading

Do ε-NFAs Accept More Languages?

Proof of Theorem 2.5.1 (Cont’d)

[Argument is handwavy, but can be formalized!]

N :

m

p1

p2

s2

sk

pk

,

q
s1

...

ECLOSE(pk) \ FN 6= ;

N 0 :

m
s1 : : : sk is accepted by ›-NFA N s1 : : : sk is accepted by NFA N 0

› ›
q0

›
: : :

›

p1

p2

s1

s2

sk

p1

...

: : :

: : :

› › ›

› › ›

: : :
›

›

› ›

pkpk�1

pk qF 2 F

23 / 24

Transtions without Symbol Reading

To Summarize...

Languages accepted
by DFAs

=
Languages accepted

by NFAs
=

Languages accepted
by ε-NFAs

ó Allowing non-determinism and/or ε-transitions does not improve the language
acceptance power of (finite) automata.

24 / 24

	The Deterministic Finite Automaton
	Languages accepted by DFAs
	Non-deterministic Finite Automaton (NFA)
	Languages Accepted by NFAs
	Transtions without Symbol Reading

