
COMP3630/6360: Theory of Computation
Semester 1, 2022

The Australian National University

Regular Expressions

1 / 19



This Lecture Covers Chapter 3 of HMU: Regular Expressions and
Languages

 Introduction to regular expressions and regular languages

 Equivalence of classes of regular languages and languages accepted

 Algebraic laws of (abstract) regular expressions

Additional Reading: Chapter 3 of HMU.



Regular Expressions and Languages

Regular Expressions: Overview

ó So far: DFAs, NFAs were given a machine-like description

ó Regular expressions are user-friendly and declarative formulation

ó Regular expressions find extensive use.

ó Searching/finding strings/pattern matching or conformance in text-formatting
systems (e.g., UNIX grep, egrep, fgrep)

ó Lexical analyzers (in compilers) use regular expressions to identify tokens (e.g.,
Lex, Flex)

ó In Web forms to (structurally) validate entries (passwords, dates, email IDs)

ó A regular expression over an alphabet Σ is a string consisting of:

ó symbols from Σ
ó constants: ∅, ε
ó operators: +, ∗
ó parantheses: (, )

ó Each regular expression r denotes a language L(r) ⊆ Σ∗

3 / 19



Regular Expressions and Languages

Regular Expressions: Definition

ó Regular expressions are defined inductively as follows:

ó Basis:

B1 ∅ and ε are regular expressions, with L(∅) = ∅ and L(ε) = {ε}.
B2 For each a ∈ Σ, a is a regular expression with L(a) = {a}.

ó Induction: If r and s are regular expressions, then:

I1 so is r∗ with L(r∗) = (L(r))∗

I2 so is r + s with L(r + s) = L(r) ∪ L(s)
I3 so is rs with L(r · s) = L(r) · L(s)
I4 so is (r) with L((r)) = L(r).

ó Only those generated by the above induction are regular.

ó Remark: Some authors/texts use | instead of +. HMU uses +.

ó Precedence Rules:
(·) > ∗ > · > +

where > is ‘binds more strongly than’, and both + and · associate to the left.

4 / 19



Regular Expressions and Languages

Regular Expressions: Examples

ó r = 0 + 11∗10 is a regular expression

ó with brackets that indicate precedence: r = 0 + (1(1∗)10)
ó with more brackets indicating associativity: r = 0 + ((1(1∗))1)0

ó Computing the language:

L(r) = L(0) ∪ L(11∗10)

= {0} ∪ L(1) · L(1∗) · L(1) · L(0)

= {0} ∪ {1} · {1}∗ · {1} · {0}
= {0} ∪ {1} · {1n | n ≥ 0}∗ · {1} · {0}

= {1i0 | i 6= 1}

ó Q: What’s a regular expression that describes alternating sequences of 0s and 1s?

5 / 19



DFAs and Regular Languages

Regular Languages: Some Basic Properties

Theorem 3.2.1

Let w ∈ Σ∗. Then {w} is regular.

Proof of Theorem 3.2.1

ó By induction on the length of w . For w = ε, {w} = L(ε). For w of the form w ′x , we
have r s.t. {w ′} = L(r) so that {w} = {wx} = L(rx).

Theorem 3.2.2

Let L1 and L2 be regular languages. Then, L∗1 , L1 ∪ L2 and L1L2 are also regular.

Proof of Theorem 3.2.2

By definition of L(r∗), L(r + s) and L(rs).

ó Corollary 1: The class of regular languages is closed under finite union and
concatenation, i.e., if L1, . . . , Lk are regular languages for any k ∈ N, then L1 ∪ · · · Lk

and L1 · · · Lk are also regular languages.

ó Corollary 2: Any finite language is regular.

6 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Theorem 3.2.3

For every regular language M, there exists a DFA A such that M = L(A).

Proof of Theorem 3.2.3

ó WLOG, let Σ = {0, 1}. Let M be a regular language. Then, M = L(E) for some
regular expression E .

ó For each regular expression, we will devise an ε-NFA.

ó Basis:

q0 q1

A : 0; 1

q0 q1

A :

0; 1

q0 q1

A :

0

1

; ›

0 1

q2

q0 q1

A : 0

1

q2

7 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.3 (Cont’d)

ó Induction E∗:

...

E

...

E

›

›

›(E⇤)

›

8 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.3 (Cont’d)

ó Induction E + F:

...

...

E

F

...

...

E

F

›

›

(E + F )

9 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.1 (Cont’d)

ó Induction I3’:

...

...

E

F

...
...

E F

(EF)

10 / 19



DFAs and Regular Languages

So Far...

Regular Languages Languages accepted by

DFAs, NFAs, ›-NFAs

Finite languages

ó Is the inclusion strict?

ó Are there languages accepted by DFAs that are not regular?

11 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Theorem 3.2.4

For every DFA A, there is a regular expression E such that L(A) = L(E).

Proof of Theorem 3.2.4

ó Let DFA A = (Q,Σ, δ, q0,F ) be given.

ó Let us rename the states so that Q = {q0, q1, q2, . . . , qn−1).

ó For any string s1 . . . sk ∈ L(A), there is a path

q0
s1−→ qi1

s2−→ qi2 · · ·
sk−→ qik ∈ F

ó Define: R(i , j , k) be the set of all input strings that move the internal state of A
from qi to qj using paths whose intermediate nodes comprise only of q`, ` < k.

qi qj

States q0,. . . ,qk�1

States qk ,. . . ,qn�1

ó Idea: prove that (a) each R(i , j , k) is regular, and (b) L(A) is a union of R(i , j , k)’s.

12 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont’d)

ó Note that L(A) =
⋃

j:qj∈F
R(0, j , n). (i.e., paths that start in q0 and end in an accepting

state with intermediate nodes q0, q1, . . . , qn−1 (all nodes))

ó L(A) will be regular if each R(i , j , k) to be regular. We now proceed by induction to
show that each R(i , j , k) is regular.

ó Basis: Consider R(i , j , 0) for i , j ∈ {0, 1, . . . , n − 1}.
ó R(i , j , 0) consists of strings whose corresponding paths start in qi and end in qj

with intermediate nodes q`, ` < 0.

⇒ No intermediate nodes

⇒ R(i , j , 0) contains strings that change state qi to qj directly

⇒ R(i , j , 0) ⊆ {ε} ∪ Σ

⇒ R(i , j , 0) is a regular language [Corollary 2]

ó Induction: Let R(i , j , `) be regular for i , j ∈ {0, . . . , n − 1} and 0 ≤ ` < k. Consider
R(i , j , k) for i , j ∈ {0, . . . , n − 1}.

13 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont’d)

ó The strings in R(i , j , k) correspond either to paths whose intermediate nodes belong
to {q0, . . . , qk−1}.

ó Partition R(i , j , k) as follows:

Case (a): Strings whose paths do not have qk−1 as an intermediate node.

Case (b): Strings whose paths do pass through qk−1 as an intermediate node.

case (b)
qi qj

States q0; : : : ; qk�2

ó R(i , j , k) = {Case (a) strings} ∪ {Case (b) strings}.

ó Case (a) Strings are exactly those in R(i , j , k − 1)

ó Hence, R(i , j , k) = R(i , j , k − 1) ∪ {Case (b) strings}.

14 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont’d)

States q0; : : : ; qk�2| {z }
States q0; : : : ; qk�2States q0; : : : ; qk�2

qi qjqk�1 qk�1 qk�1
1 2 3

Case (b) path
ó Each case (b) string is the concatenation of 3 strings:

1. A string that changes the state from qi to qk−1 through a path whose
intermediate nodes are q0, . . . , qk−2, i.e., R(i , k − 1, k − 1)

2. A finite concatenation of strings, each of which take qk−1 back to qk−1 via paths
that use only q0, . . . , qk−2 as intermediate nodes. i.e., i.e., R(k − 1, k − 1, k − 1)∗

3. A string that takes qk−1 back to qj via a path that uses only q0, . . . , qk−2 as
intermediate nodes, i.e., i.e., R(k − 1, j , k − 1)

Thus,

R(i , j , k) = R(i , j , k−1) ∪ [R(i , k−1, k−1)R(k−1, k−1, k−1)∗R(k−1, j , k−1)]

ó From Thm 3.2.2, it follows that R(i , j , k) is regular for any i , j , k. Thus, L(A) is
regular.

15 / 19



DFAs and Regular Languages

Equivalence of Languages

ó The following are indeed equivalent:

ó The class of regular languages

ó The class of languages accepted by DFAs

ó The class of languages accepted by NFAs

ó The class of languages accepted by ε-NFAs

16 / 19



Properties of Regular Languages

Properties of Regular Languages

ó Regular languages are closed under finite union, concatenation, and Kleene-∗
operation. (Theorem 3.2.2)

ó They are also closed under:

ó Complementation: Given DFA A = (Q,Σ, δ, q0,F ), DFA A′ = (Q,Σ, δ, q0,F
c)

accepts L(A)c .

ó Intersection: De Morgan’s Law: R1 ∩ R2 = (Rc
1 ∪ Rc

2 )c

17 / 19



Abstract Regular Expressions

Abstract Regular Expressions

ó We can also define abstract regular expressions over languages over Σ.

ó Let V be a set of variables (which will be interpreted as languages)

ó Use the induction definition for regular languages replacing B2 alone by:
B2. M is an (abstract) regular expression for every M ∈ V

ó Remark: Even though V could be infinite, every regular expression consists only of
finitely many variables.

ó Unlike concrete regular expressions (such as 1∗, 0 + 1), abstract regular expressions
(such as M∗, M + N) don’t stand for a unique language.

ó However, we can evaluate abstract regular expressions by assigning any languages to
variables, and inductively interpreting:
ó Variable∗ −→ Kleene-∗ closure of its language
ó Sum of variables −→ union of the languages assigned to them
ó Concatenation of variables −→ concatenation of their the languages

ó We can introduce a notion of equality of (abstract) regular expression:

Abstract regular expressions E1 = E2 ⇔
For any assignment of languages to the

variables contained in E1,E2, their
evaluations equal (i.e., L(E1) = L(E2))

18 / 19



Abstract Regular Expressions

Algebraic Laws of Abstract Regular Expressions

ó Commutativity: L + M = M + L (Union is commutative)
LM 6= ML (Concatenation is not commutative)

ó Associativity: (L + M) + N = L + (M + N) (Union is associative)
(LM)N = L(MN) (Concatenation is associative)

ó Identity: ∅+ L = L + ∅ = L (∅ is the identity element for +)
εL = Lε = L (ε is the identity element for concatenation)

ó Annihilator: ∅L = L∅ = ∅

ó Idempotent: L + L = L

ó Distributive: L(M + N) = LM + LN

(M + N)L = ML + NL

ó Kleene ∗: (L∗)∗ = L∗; ∅∗ = ε; ε∗ = ε.

19 / 19


	Regular Expressions and Languages
	DFAs and Regular Languages
	Properties of Regular Languages
	Abstract Regular Expressions

