COMP3630/6360: Theory of Computation Semester 1, 2022 The Australian National University

Properties of Regular Expressions

This Lecture Covers Chapter 4 of HMU: Properties of Regular Languages

- > Pumping Lemma for regular languages
- > Some more properties of regular languages
- > Decision properties of regular languages
- > Equivalence and minimization of automata

Additional Reading: Chapter 4 of HMU.

Pumping Lemma

- > We know: If a language is given by a regular expression, or a DFA, it is regular.
- > What can we say if a language is defined by enumeration or by a predicate?
 - \rightarrow Is $L = \{w \in \{0,1\}^* : w \text{ does not contain } 10\}$ regular?
 - > Is $L = \{0^n 1^n : n \ge 0\}$ regular?
 - > How do we answer such questions without delving into each
- > Is there an inherent structure to the strings belonging to a regular language?

Lemma 4.1.1 (Pumping Lemma for Regular Languages)

Let L be a regular language. There there exists an $n \in \mathbb{N}$, $n \ge 1$ (depending on L) such that for any string $w \in L$ with |w| > n, there exist strings x, y, z such that:

- (1) w = xyz
- $(2) |xy| \leq n$
- (3) |y| > 0
- (4) $xy^iz \in L$ for $i \in \mathbb{N} \cup \{0\}$

Proof of the Pumping Lemma

- \rightarrow Let DFA $A=(Q,\Sigma,\delta,q_0,F)$ accept L, and let n:=|Q|.
- > The claim is vacuously true if L contains only strings of length n-1 or less.
- > Suppose *L* contains a string $w = s_1 \cdots s_k \in L$ with $|w| = k \ge n$.
- > Then, there must be a sequence of transitions that move A from q_0 to some final state upon reading w.

$$q_0 = q_{i_0} \longrightarrow q_{i_1} \longrightarrow q_{i_2} \longrightarrow \cdots \longrightarrow q_{i_n} \longrightarrow \cdots \longrightarrow q_{i_k} \in F$$

> SOME state must be visited (at least) twice. Let $q_{i_a} = q_{i_b}$ for $i_0 \le i_a < i_b \le i_n$.

$$q_0 = q_{i_0} \xrightarrow{\stackrel{s_1}{\longrightarrow} \cdots \xrightarrow{s_{i_a}}} q_{i_a} \xrightarrow{\stackrel{s_{i_a}+1}{\longrightarrow} \cdots \xrightarrow{s_{i_b}}} q_{i_b} \xrightarrow{\stackrel{s_{i_b}+1}{\longrightarrow} \cdots \xrightarrow{s_{i_n}}} q_{i_n} \xrightarrow{\stackrel{s_{i_n}+1}{\longrightarrow} \cdots \xrightarrow{s_{i_k}}} q_{i_k} \in F$$

> (4) holds since the path for xy^iz is derived from the above either by deleting the subpath between q_{i_a} and q_{i_b} or by repeating it. All such paths end in $q_{i_k} \in F$.

Applications of the Pumping Lemma

Using the Pumping Lemma, we can show

- > $L = \{0^n 1^n : n \ge 0\}$ is **not** regular.
 - > Suppose it is. By the pumping lemma, there exists $k \ge 1$ such that any $w \in L$, $|w| \ge k$ can be split as $w = xyz, |y| \ge 1$ and $|xy| \le k$ s.t. $xy^iz \in L$ for all $i \ge 0$.
 - > this applies to the string $w = 0^k 1^k \in L$.

- As $|xy| \le k$, this means that $x = 0^i$ and $y = 0^j$, $z = 0^p 1^k$ with i + j + p = k.
- > By the pumping lemma, $xy^0z \in L$ but $xy^0z = 0^i0^py^k$ and $i + p = k j \neq k$ as $j \geq 1$, contradiction.
- > $L = \{w \in \{0,1\}^* : |w| \text{ is a prime}\}\$ is **not** regular.
- $L = \{ww^R : w \in \{0,1\}^*\}$ is **not** regular. $[w^R = w \text{ read from right to left}]$.

Additional Properties of Regular Languages

- > We already know regular languages are closed under:
 - > union, intersection, concatenation, Kleene-* closure, and difference.
- > We'll see three more operations under which regular languages are closed.
- > Let L^R be the language obtained by reversing each string $((01)^R = 10)$

Theorem 4.2.1

Let L be regular. Then $L^R := \{w^R : w \in L\}$ is also regular.

Proof of Theorem 4.2.1

> Let langauge L be accepted by DFA A.

- > Let A' be the DFA obtained by: (a) Reversing each arrow in A; (b) swapping final and initial states; and (c) introduce ϵ -transitions to make initial state (of A') unique.
- > Then L^R is accepted by A'.

Closure under Homomorphisms

- \rightarrow A homomorphism is a map $h: \Sigma_1 \rightarrow \Sigma_2^*$.
- > The map can be extended to strings by defining $s_1 \cdots s_k \stackrel{h}{\mapsto} h(s_1) \cdots h(s_k)$.

Theorem 4.2.2

Let L be regular. Then $h(L) := \{h(w) : w \in L\}$ is also regular.

Proof of Theorem 4.2.2

- \rightarrow Let E be the regular expression corresponding to L
- > Let h(E) be the expression obtained by replacing symbols s ∈ Σ_1 by h(s).
- > Then h(E) is a regular expression over Σ_2
- > By a straightforward induction argument, we can show that L(h(E)) = h(L(E))

Closure under Inverse Homomorphisms

Theorem 4.2.3

Let L be regular. Then $h^{-1}(L) := \{w : h(w) \in L\}$ is also regular.

Proof of Theorem 4.2.3

- \rightarrow Let DFA $A = (Q, \Sigma_2, \delta, q_0, F)$ accept L
- \rightarrow Let DFA $B = (Q, \Sigma_1, \gamma, q_0, F)$ where

$$\gamma(q,s) = \hat{\delta}(q,h(s))$$

[Depending on the input B mimics none, one, or many transitions of A]

- > By definition, $\epsilon \in L(A)$ iff $q_0 \in F$ iff $\epsilon \in L(B)$
- > By induction, we can show that

$$s_1 \cdots s_k \in L(B) \Leftrightarrow h(s_1) \cdots h(s_k) \in L(A) = L$$

> Hence, B accepts $h^{-1}(L)$.

Decision Properties

- > DFAs and regular expressions are **finite representations** of regular languages
- > How do we ascertain if a particular property is satisfied by a language?
 - > Is the language accepted by a DFA is non-empty?
 - \rightarrow Does the language accepted by a DFA contain a given string w?
 - > Is the language accepted by a DFA infinite?
 - > Do two given DFAs accept the same language?
 - > Given two DFAs A and B, is $L(A) \subseteq L(B)$?
- > We will look at the above 5 questions assuming that regular languages are defined by DFAs. (If the language is specified by an expression, we can convert it to a DFA!)

Decision Properties

- > **Emptiness:** If one is given a DFA with n states that accepts L, we can find all the states reachable from the initial state in $O(n^2)$ time. If no final state is reachable, L must be empty.
- > **Membership:** If one is given a DFA with n states that accepts L, given string w, we can simply identify the transitions corresponding to w one symbol at a time. If the last state is an accepting state, then w must be in the language. This takes no more than O(|w|) time steps.
- > Infiniteness: We can reduce the problem of infiniteness to finding a cycle in the directed graph (a.k.a. transition diagram) of the DFA.
 - > First, delete any node unreachable from the initial node ($O(n^2)$ complexity).
 - > Next, delete nodes that cannot reach any final node $(O(n^3))$ complexity.
 - > Use depth-first search (DFS) to find a cycle in the remaining graph ($O(n^2)$ complexity).

Decision Properties (Cont'd)

> Equivalence: Given $A = (Q_A, \Sigma, \delta_A, q_{A0}, F_A)$ and $A = (Q_B, \Sigma, \delta_B, q_{B0}, F_B)$, how do we ascertain if L(A) = L(B)?

$$L(A) = L(B) \Leftrightarrow L(A) \cap L(B)^{c} = \emptyset$$

 $L(A)^{c} \cap L(B) = \emptyset$

Run A and B in parallel

- \rightarrow $L(A) \cap L(B)^c$: Accept if resp. paths ends in F_A and F_B^c .
- > $L(A)^c \cap L(B)$: Accept if resp. paths ends in F_A^c and F_B .
- \rightarrow Use **product** DFA: Construct $C = (Q_C, \Sigma, \delta_C, q_{C0}, F_C)$ defined by

$$Q_C = Q_A \times Q_B$$
 [Cartesian Product]

$$q_{C0}=(q_{A0},q_{B0})$$

 $\delta_{\mathcal{C}}((q,q'),s) = (\delta_{\mathcal{A}}(q,s),\delta_{\mathcal{B}}(q',s)) \qquad \text{[Both DFAs are simulated in parallel]}$

$$F_C = (F_A \times F_B^c) \cup (F_A^c \times F_c)$$
 [accept strings in exactly one of $L(A)$ or $L(B)$]

$$L(A) = L(B) \Leftrightarrow L(C) = \emptyset$$

Decision Properties (Cont'd)

> **Inclusion:** Given $A = (Q_A, \Sigma, \delta_A, q_{A0}, F_A)$ and $A = (Q_B, \Sigma, \delta_B, q_{B0}, F_B)$, how do we ascertain if $L(A) \subseteq L(B)$?

$$L(A) \subseteq L(B) \Leftrightarrow L(A) \cap L(B)^c = \emptyset$$

Run A and B in parallel.

- $\rightarrow L(A) \cap L(B)^c$: Accept if resp. paths ends in F_A and F_B^c .
- > Use **product** DFA: Construct $C = (Q_C, \Sigma, \delta_C, q_{C0}, F_C)$ defined by

$$Q_C = Q_A \times Q_B$$
 [Cartesian Product] $q_{C0} = (q_{A0}, q_{B0})$

$$\begin{split} \delta_{\mathcal{C}}((q,q'),s) &= (\delta_{\mathcal{A}}(q,s),\delta_{\mathcal{B}}(q',s)) & \text{ [Both DFAs are simulated in parallel]} \\ F_{\mathcal{C}} &= (F_{\mathcal{A}} \times F_{\mathcal{B}}^c) & \text{ [accept strings in exactly one of } L(\mathcal{A}) \text{ or } L(\mathcal{B})] \end{split}$$

$$L(A) \subset L(B) \Leftrightarrow L(C) = \emptyset$$

DFA State Minmimization

- > Given two DFAs, we know how to test if they accept the same language.
- > Is there a unique minimal DFA for a given regular language?
- > Given a DFA, can we reduce the number of states without altering the language it accepts?

Clearly, the two DFAs accept the same language and state C is unnecessary.

> How do we remove 'unnecessary' states without altering the underlying language?

DFA State Minimimization

- > State minimization requires a notion of **equivalence** or **distinguishability** of states.
- > Clearly, distinguishability of two states must be based on finality

states
$$p$$
 and q are **equivalent** \Leftrightarrow $\hat{\delta}(p,w) \in F$ whenever $\hat{\delta}(q,w) \in F$ or indistinguishable for every $w \in \Sigma^*$.

states p and q are **distinguishable** \Leftrightarrow exactly one of $\hat{\delta}(p,w)$ or $\hat{\delta}(q,w)$ is in F for some $w \in \Sigma$.

- > Table Filling Algorithm identifies equivalent and distinguishable pairs of states.
 - > Any final state is **distinguishable** from a non-final state (and vice versa)
 - > If (a) p and q are distinguishable; (b) $\hat{\delta}(p',s)=p$ and (c) $\hat{\delta}(q',s)=q$, then p' and q' are also distinguishable

Identifying pairs of (In)distinguishable States: An Example

- > Fill in × whenever one component of pair is final, and other is not.
- \rightarrow Fill in \times if 1 moves the pair of states to a distinguishable pair
- > Fill in x if 0 moves the pair of states to a distinguishable pair
- > Repeat until no progress

Theorem 4.4.1

Any two states without a × sign are equivalent.

 \rightarrow Proof idea: If two states are distinguishable, the algorithm will fill a \times eventually.

Table-filling Algorithm

- > Delete states not reachable from start states
- > Delete any non-starting state that cannot reach any final state
- > Find distinguishable and equivalent pair of states
- > Find equivalence classes of indistinguishable states. In this example: {A}, {B}, {C, E}, {D, F}, {G}
- > Simply collapse each equivalence class of states to a state
- > Delete parallel transitions with same label.

Remark: The resultant transition diagram will be a DFA.

Table-filling: Other Uses

- > Test equivalence of languages accepted by 2 DFAs.
 - > Given $A = (Q_A, \Sigma, \delta_A, q_{A0}, F_A)$ and $B = (Q_B, \Sigma, \delta_B, q_{B0}, F_B)$:
 - > Rename states in Q_B so that Q_A and Q_B are disjoint.
 - > View A and B together as one DFA (Ignore the fact that there are 2 start states)
 - > Run table-filling on $Q_A \cup Q_B$.
 - > q_{A0} and q_{B0} are indistinguishable $\Leftrightarrow L(A) = L(B)$.

[Why?] If w distinguishes q_{A0} from q_{B0} then w cannot be in both L(A) and L(B)

> Suppose a DFA A cannot be minimized further by table-filling. Then, A has the least number of states among all DFAs that accept L(A)