COMP3630/6360: Theory of Computation
Semester 1, 2022
The Australian National University

Properties of Regular Expressions

1/17

This Lecture Covers Chapter 4 of HMU: Properties of Regular
Languages

> Pumping Lemma for regular languages
> Some more properties of regular languages
> Decision properties of regular languages

¥ Equivalence and minimization of automata

Additional Reading: Chapter 4 of HMU.

Pumping Lemma for Regular Languages

Pumping Lemma

> We know: If a language is given by a regular expression, or a DFA, it is regular.
> What can we say if a language is defined by enumeration or by a predicate?
>Is L={w € {0,1}" : w does not contain 10} regular?
>Is L={0"1": n > 0} regular?
> How do we answer such questions without delving into each

> Is there an inherent structure to the strings belonging to a regular language?

Lemma 4.1.1 (Pumping Lemma for Regular Languages)

Let L be a regular language. There there exists an n € N, n > 1 (depending on L) such
that for any string w € L with |w| > n, there exist strings x,y, z such that:

(1) w = xyz

(2) Ixyl <n

(3)lyl >0

(4) xy'z € L fori € NU{0}

3/17

Pumping Lemma for Regular Languages

Proof of the Pumping Lemma

> Let DFA A= (Q, X%, 4, qo, F) accept L, and let n:=|Q)|.
> The claim is vacuously true if L contains only strings of length n — 1 or less.
> Suppose L contains a string w = s1---s¢ € L with |w| = k > n.

> Then, there must be a sequence of transitions that move A from qo to some final
state upon reading w.

qo:q,-o—>q,-1—>q,-2—>---—>q,-,,—>---—>q,-k€F

n symbols and n 4 1 states

> SOME state must be visited (at least) twice. Let gi, = qj, for io < in < ip < in.

x is read y is read z is read
s1 Sia sia +1 Sip sip+1 Sin 1 Sik
Go=Qqip —> " —qQi, —> - —= iy — - Hq,n*w~*>q,-k€F

> (4) holds since the path for xy’z is derived from the above either by deleting the
subpath between q;, and g;, or by repeating it. All such paths end in g;, € F.

4/17

Pumping Lemma for Regular Languages

Applications of the Pumping Lemma

Using the Pumping Lemma, we can show
> L ={0"1": n > 0} is not regular.
> Suppose it is. By the pumping lemma, there exists k > 1 such that any w € L,

|w| > k can be split as w = xyz,|y| > 1 and |xy| < k s.t. xy’z € L for all i > 0.

> this applies to the string w = 01% € L.

K K
—_———
0...00...00...01...1
— N —
X y z
> As |xy| < k, this means that x = 0" and y = O/, z = 0P1% with i 4+ + p = k.

> By the pumping lemma, xy°z € L but xy°z = 0'0Py* and i+ p=k — j # k as
Jj > 1, contradiction.

> L={w € {0,1}" : |w| is a prime} is not regular.

> L={ww®:we€{0,1}"} is not regular. [w” = w read from right to left].

5/17

Some More Properties

Additional Properties of Regular Languages

> We already know regular languages are closed under:
> union, intersection, concatenation, Kleene-x closure, and difference.
> We'll see three more operations under which regular languages are closed.

> Let LR be the language obtained by reversing each string ((01)F = 10)
Theorem 4.2.1

Let L be regular. Then LR := {wF : w € L} is also regular.

Proof of Theorem 4.2.1

> Let langauge L be accepted by DFA A.

.

,,,,,,,,,,,,,,,,,,,,,,,,,

> Let A’ be the DFA obtained by: (a) Reversing each arrow in A; (b) swapping final
and initial states; and (c) introduce e-transitions to make initial state (of A’) unique.

> Then LF is accepted by A’.

6/17

Some More Properties
Closure under Homomorphisms
> A homomorphism is a map h: ¥; — X5.

> The map can be extended to strings by defining s; - - - s¢ s h(s1) - h(sk).

Theorem 4.2.2

Let L be regular. Then h(L) := {h(w) : w € L} is also regular.

.

Proof of Theorem 4.2.2

> Let E be the regular expression corresponding to L

> Let h(E) be the expression obtained by replacing symbols s € ¥; by h(s).
> Then h(E) is a regular expression over X

> By a straightforward induction argument, we can show that L(h(E)) = h(L(E))
Expressions Languages

E—————I(F) (language over ¥;)

h(E)————h(L(E)) = L(h(E)) (language over ¥,)

.

7/17

Some More Properties

Closure under Inverse Homomorphisms

Theorem 4.2.3

Let L be regular. Then h™*(L) := {w : h(w) € L} is also regular.

A\

Proof of Theorem 4.2.3
> Let DFA A= (Q, %>, 6, qo, F) accept L
> Let DFA B = (Q, 21,7, qo, F) where

7(g,5) = 8(q, h(s))
[Depending on the input B mimics none, one, or many transitions of A]

> By definition, € € L(A) iff qo € F iff ¢ € L(B)

> By induction, we can show that

S1---Sk € L(B) 4 h(Sl) e 'h(Sk) € L(A) =L

> Hence, B accepts h*(L).

8/17

Decision Properties of Regular Languages

Decision Properties

> DFAs and regular expressions are finite representations of regular languages

> How do we ascertain if a particular property is satisfied by a language?
> Is the language accepted by a DFA is non-empty?

> Does the language accepted by a DFA contain a given string w?
> Is the language accepted by a DFA infinite?

> Do two given DFAs accept the same language?

> Given two DFAs A and B, is L(A) C L(B)?

> We will look at the above 5 questions assuming that regular languages are defined by
DFAs. (If the language is specified by an expression, we can convert it to a DFA!)

9/17

Decision Properties of Regular Languages

Decision Properties

> Emptiness: If one is given a DFA with n states that accepts L, we can find all the
states reachable from the initial state in O(n?) time. If no final state is reachable, L
must be empty.

> Membership: If one is given a DFA with n states that accepts L, given string w, we
can simply identify the transitions corresponding to w one symbol at a time. If the
last state is an accepting state, then w must be in the language. This takes no more
than O(Jw|) time steps.

> Infiniteness: We can reduce the problem of infiniteness to finding a cycle in the
directed graph (a.k.a. transition diagram) of the DFA.

> First, delete any node unreachable from the initial node (O(n®) complexity).
> Next, delete nodes that cannot reach any final node (O(n®) complexity).

> Use depth-first search (DFS) to find a cycle in the remaining graph (O(n?)
complexity).

10/17

Decision Properties of Regular Languages

Decision Properties (Cont'd)

> Equivalence: Given A = (QA, E, 5A, qao, FA) and A = (QB, E, (53, dBo; FB), how do
we ascertain if L(A) = L(B)?

N

Run A and B in parallel.
> L(A) N L(B)“: Accept if resp. paths ends in Fa and Fg.
> L(A)* N L(B): Accept if resp. paths ends in F4 and Fg.

> Use product DFA: Construct C = (Qc¢, X, dc, gco, Fc) defined by
Qc = Qax Qs [Cartesian Product]

qco = (qao, g80)
5c((q,4"),s) = (6a(q,s),08(q’,s)) [Both DFAs are simulated in parallel]
Fc = (Fa x Fg) U (F4 x F.) [accept strings in exactly one of L(A) or L(B)]

L(A) = L(B) < L(C) =0

11/17

Decision Properties of Regular Languages

Decision Properties (Cont'd)

> Inclusion: Given A = (Qa, %, 04, gao, Fa) and A = (Qg, X, 48, gro, Fg), how do we
ascertain if L(A) C L(B)?
L(A) C L(B) & L(A)NL(B) =0
Run A and B in parallel.
> L(A) N L(B)°: Accept if resp. paths ends in Fa and F§.

> Use product DFA: Construct C = (Qc¢, X, dc, gco, Fc) defined by

Qc = Qax Qs [Cartesian Product]

gco = (qao; gso)
5c((q,q'),s) = (0a(q,s),68(q’,s)) [Both DFAs are simulated in parallel]
Fc = (Fax F§) [accept strings in exactly one of L(A) or L(B)]

L(A) C L(B) < L(C) =0

12/17

Minimizing the Number of States

DFA State Minmimization

> Given two DFAs, we know how to test if they accept the same language.
> Is there a unique minimal DFA for a given regular language?

> Given a DFA, can we reduce the number of states without altering the language it
accepts?

Clearly, the two DFAs accept the same language and state C is unnecessary.

> How do we remove ‘unnecessary’ states without altering the underlying language?

13/17

Minimizing the Number of States

DFA State Minimimization

> State minimization requires a notion of equivalence or distinguishability of states.

> Clearly, distinguishability of two states must be based on finality

states p and g are equivalent < S(p, w) € F whenever S(q, w) € F
or indistinguishable for every w € X",

states p and g are distinguishable < exactly one of 5(p, w) or S(q, w) isin F
for some w € 3.

> Table Filling Algorithm identifies equivalent and distinguishable pairs of states.
> Any final state is distinguishable from a non-final state (and vice versa)
> If (a) p and g are distinguishable; (b) &(p’,s) = p and (c) (¢’,s) = g, then p’
and ¢’ are also distinguishable

also p—=p if

distinguishable — s, +— distinguishable

q q

14 /17

Minimizing the Number of States

Identifying pairs of (In)distinguishable States: An Example

G FEDCBA

Mmoo ® >
X
X

Q

> Fill in X whenever one component of pair is final, and other is not.
> Fill in x if 1 moves the pair of states to a distinguishable pair

> Fill in x if 0 moves the pair of states to a distinguishable pair

> Repeat until no progress

Theorem 4.4.1

Any two states without a X sign are equivalent.

> Proof idea: If two states are distinguishable, the algorithm will fill a x eventually.

15/17

Minimizing the Number of States

Table-filling Algorithm

Delete states not reachable from start states

v Vv

Delete any non-starting state that cannot reach any
final state

v

Find distinguishable and equivalent pair of states

v

Find equivalence classes of indistinguishable states. In
this example: {A},{B},{C,E},{D, F},{G}

Simply collapse each equivalence class of states to a
state

v

> Delete parallel transitions with same label.

Remark: The resultant transition diagram will be a DFA.

16 /17

Minimizing the Number of States

Table-filling: Other Uses

> Test equivalence of languages accepted by 2 DFAs.
> Given A = (QA7 N 5/47 qAo0, FA) and B = (QB, DR o8, qBo, FB):
> Rename states in Qg so that Q4 and Qg are disjoint.

> View A and B together as one DFA
(Ignore the fact that there are 2 start states)

> Run table-filling on Qa U Q5.

> qao and ggo are indistinguishable < L(A) = L(B).
[Why?] If w distinguishes gao from ggo then w cannot be in both L(A) and L(B)

> Suppose a DFA A cannot be minimized further by table-filling. Then, A has the least
number of states among all DFAs that accept L(A)

17/17

	Pumping Lemma for Regular Languages
	Some More Properties
	Decision Properties of Regular Languages
	Minimizing the Number of States

