
COMP3630/6360: Theory of Computation
Semester 1, 2022

The Australian National University

Properties of Regular Expressions

1 / 17

This Lecture Covers Chapter 4 of HMU: Properties of Regular
Languages

 Pumping Lemma for regular languages

 Some more properties of regular languages

 Decision properties of regular languages

 Equivalence and minimization of automata

Additional Reading: Chapter 4 of HMU.

Pumping Lemma for Regular Languages

Pumping Lemma

ó We know: If a language is given by a regular expression, or a DFA, it is regular.

ó What can we say if a language is defined by enumeration or by a predicate?

ó Is L = {w ∈ {0, 1}∗ : w does not contain 10} regular?

ó Is L = {0n1n : n ≥ 0} regular?

ó How do we answer such questions without delving into each

ó Is there an inherent structure to the strings belonging to a regular language?

Lemma 4.1.1 (Pumping Lemma for Regular Languages)

Let L be a regular language. There there exists an n ∈ N, n ≥ 1 (depending on L) such
that for any string w ∈ L with |w | ≥ n, there exist strings x , y , z such that:
(1) w = xyz
(2) |xy | ≤ n
(3) |y | > 0
(4) xy iz ∈ L for i ∈ N ∪ {0}

3 / 17

Pumping Lemma for Regular Languages

Proof of the Pumping Lemma

ó Let DFA A = (Q,Σ, δ, q0,F) accept L, and let n := |Q|.

ó The claim is vacuously true if L contains only strings of length n − 1 or less.

ó Suppose L contains a string w = s1 · · · sk ∈ L with |w | = k ≥ n.

ó Then, there must be a sequence of transitions that move A from q0 to some final
state upon reading w .

q0 = qi0 −→ qi1 −→ qi2 −→ · · · −→ qin︸ ︷︷ ︸
n symbols and n + 1 states

−→ · · · −→ qik ∈ F

ó SOME state must be visited (at least) twice. Let qia = qib for i0 ≤ ia < ib ≤ in.

q0 = qi0

x is read︷ ︸︸ ︷
s1−→ · · ·

sia−→ qia

y is read︷ ︸︸ ︷
sia+1
−→ · · ·

sib−→ qib

z is read︷ ︸︸ ︷
sib

+1
−→ · · ·

sin−→ qin
sin+1
−→ · · ·

sik−→ qik ∈ F

ó (4) holds since the path for xy iz is derived from the above either by deleting the
subpath between qia and qib or by repeating it. All such paths end in qik ∈ F .

4 / 17

Pumping Lemma for Regular Languages

Applications of the Pumping Lemma

Using the Pumping Lemma, we can show

ó L = {0n1n : n ≥ 0} is not regular.

ó Suppose it is. By the pumping lemma, there exists k ≥ 1 such that any w ∈ L,
|w | ≥ k can be split as w = xyz , |y | ≥ 1 and |xy | ≤ k s.t. xy iz ∈ L for all i ≥ 0.

ó this applies to the string w = 0k1k ∈ L.

k︷ ︸︸ ︷ k︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸

x

0 . . . 0︸ ︷︷ ︸
y

0 . . . 01 . . . 1︸ ︷︷ ︸
z

ó As |xy | ≤ k, this means that x = 0i and y = 0j , z = 0p1k with i + j + p = k.

ó By the pumping lemma, xy 0z ∈ L but xy 0z = 0i0py k and i + p = k − j 6= k as
j ≥ 1, contradiction.

ó L = {w ∈ {0, 1}∗ : |w | is a prime} is not regular.

ó L = {wwR : w ∈ {0, 1}∗} is not regular. [wR = w read from right to left].

5 / 17

Some More Properties

Additional Properties of Regular Languages

ó We already know regular languages are closed under:
ó union, intersection, concatenation, Kleene-∗ closure, and difference.

ó We’ll see three more operations under which regular languages are closed.

ó Let LR be the language obtained by reversing each string ((01)R = 10)

Theorem 4.2.1

Let L be regular. Then LR := {wR : w ∈ L} is also regular.

Proof of Theorem 4.2.1

ó Let langauge L be accepted by DFA A.

...
...

›

›

A A0

ó Let A′ be the DFA obtained by: (a) Reversing each arrow in A; (b) swapping final
and initial states; and (c) introduce ε-transitions to make initial state (of A′) unique.

ó Then LR is accepted by A′.

6 / 17

Some More Properties

Closure under Homomorphisms

ó A homomorphism is a map h : Σ1 → Σ∗2 .

ó The map can be extended to strings by defining s1 · · · sk
h7→ h(s1) · · · h(sk).

Theorem 4.2.2

Let L be regular. Then h(L) := {h(w) : w ∈ L} is also regular.

Proof of Theorem 4.2.2

ó Let E be the regular expression corresponding to L

ó Let h(E) be the expression obtained by replacing symbols s ∈ Σ1 by h(s).

ó Then h(E) is a regular expression over Σ2

ó By a straightforward induction argument, we can show that L(h(E)) = h(L(E))

Expressions Languages

L(E)E

h(E)

h

h(L(E)) = L(h(E))

h

(language over ⌃1)

(language over ⌃2)

7 / 17

Some More Properties

Closure under Inverse Homomorphisms

Theorem 4.2.3

Let L be regular. Then h−1(L) := {w : h(w) ∈ L} is also regular.

Proof of Theorem 4.2.3

ó Let DFA A = (Q,Σ2, δ, q0,F) accept L

ó Let DFA B = (Q,Σ1, γ, q0,F) where

γ(q, s) = δ̂(q, h(s))

[Depending on the input B mimics none, one, or many transitions of A]

ó By definition, ε ∈ L(A) iff q0 ∈ F iff ε ∈ L(B)

ó By induction, we can show that

s1 · · · sk ∈ L(B)⇔ h(s1) · · · h(sk) ∈ L(A) = L

ó Hence, B accepts h−1(L).

8 / 17

Decision Properties of Regular Languages

Decision Properties

ó DFAs and regular expressions are finite representations of regular languages

ó How do we ascertain if a particular property is satisfied by a language?

ó Is the language accepted by a DFA is non-empty?

ó Does the language accepted by a DFA contain a given string w?

ó Is the language accepted by a DFA infinite?

ó Do two given DFAs accept the same language?

ó Given two DFAs A and B, is L(A) ⊆ L(B)?

ó We will look at the above 5 questions assuming that regular languages are defined by
DFAs. (If the language is specified by an expression, we can convert it to a DFA!)

9 / 17

Decision Properties of Regular Languages

Decision Properties

ó Emptiness: If one is given a DFA with n states that accepts L, we can find all the
states reachable from the initial state in O(n2) time. If no final state is reachable, L
must be empty.

ó Membership: If one is given a DFA with n states that accepts L, given string w , we
can simply identify the transitions corresponding to w one symbol at a time. If the
last state is an accepting state, then w must be in the language. This takes no more
than O(|w |) time steps.

ó Infiniteness: We can reduce the problem of infiniteness to finding a cycle in the
directed graph (a.k.a. transition diagram) of the DFA.

ó First, delete any node unreachable from the initial node (O(n2) complexity).

ó Next, delete nodes that cannot reach any final node (O(n3) complexity).

ó Use depth-first search (DFS) to find a cycle in the remaining graph (O(n2)
complexity).

10 / 17

Decision Properties of Regular Languages

Decision Properties (Cont’d)

ó Equivalence: Given A = (QA,Σ, δA, qA0,FA) and A = (QB ,Σ, δB , qB0,FB), how do
we ascertain if L(A) = L(B)?

L(A) = L(B)⇔ L(A) ∩ L(B)c = ∅
L(A)c ∩ L(B) = ∅

Run A and B in parallel.

ó L(A) ∩ L(B)c : Accept if resp. paths ends in FA and F c
B .

ó L(A)c ∩ L(B): Accept if resp. paths ends in F c
A and FB .

ó Use product DFA: Construct C = (QC ,Σ, δC , qC0,FC) defined by

QC = QA × QB [Cartesian Product]

qC0 = (qA0, qB0)

δC ((q, q′), s) = (δA(q, s), δB(q′, s)) [Both DFAs are simulated in parallel]

FC = (FA × F c
B) ∪ (F c

A × Fc) [accept strings in exactly one of L(A) or L(B)]

L(A) = L(B)⇔ L(C) = ∅

11 / 17

Decision Properties of Regular Languages

Decision Properties (Cont’d)

ó Inclusion: Given A = (QA,Σ, δA, qA0,FA) and A = (QB ,Σ, δB , qB0,FB), how do we
ascertain if L(A) ⊆ L(B)?

L(A) ⊆ L(B)⇔ L(A) ∩ L(B)c = ∅

Run A and B in parallel.

ó L(A) ∩ L(B)c : Accept if resp. paths ends in FA and F c
B .

ó Use product DFA: Construct C = (QC ,Σ, δC , qC0,FC) defined by

QC = QA × QB [Cartesian Product]

qC0 = (qA0, qB0)

δC ((q, q′), s) = (δA(q, s), δB(q′, s)) [Both DFAs are simulated in parallel]

FC = (FA × F c
B) [accept strings in exactly one of L(A) or L(B)]

L(A) ⊆ L(B)⇔ L(C) = ∅

12 / 17

Minimizing the Number of States

DFA State Minmimization

ó Given two DFAs, we know how to test if they accept the same language.

ó Is there a unique minimal DFA for a given regular language?

ó Given a DFA, can we reduce the number of states without altering the language it
accepts?

1

0
1

0

1

0

1

1

0

0

A B

C

A B

Clearly, the two DFAs accept the same language and state C is unnecessary.

ó How do we remove ‘unnecessary’ states without altering the underlying language?

13 / 17

Minimizing the Number of States

DFA State Minimimization

ó State minimization requires a notion of equivalence or distinguishability of states.

ó Clearly, distinguishability of two states must be based on finality

states p and q are equivalent ⇔ δ̂(p,w) ∈ F whenever δ̂(q,w) ∈ F
or indistinguishable for every w ∈ Σ∗.

states p and q are distinguishable ⇔ exactly one of δ̂(p,w) or δ̂(q,w) is in F
for some w ∈ Σ.

ó Table Filling Algorithm identifies equivalent and distinguishable pairs of states.

ó Any final state is distinguishable from a non-final state (and vice versa)
ó If (a) p and q are distinguishable; (b) δ̂(p′, s) = p and (c) δ̂(q′, s) = q, then p′

and q′ are also distinguishable

p0 �! p

q0 �! q

s

s

14 / 17

Minimizing the Number of States

Identifying pairs of (In)distinguishable States: An Example

ó Fill in × whenever one component of pair is final, and other is not.
ó Fill in × if 1 moves the pair of states to a distinguishable pair
ó Fill in × if 0 moves the pair of states to a distinguishable pair
ó Repeat until no progress

Theorem 4.4.1

Any two states without a × sign are equivalent.

ó Proof idea: If two states are distinguishable, the algorithm will fill a × eventually.

15 / 17

Minimizing the Number of States

Table-filling Algorithm

ó Delete states not reachable from start states

ó Delete any non-starting state that cannot reach any
final state

ó Find distinguishable and equivalent pair of states

ó Find equivalence classes of indistinguishable states. In
this example: {A}, {B}, {C ,E}, {D,F}, {G}

ó Simply collapse each equivalence class of states to a
state

ó Delete parallel transitions with same label.

Remark: The resultant transition diagram will be a DFA.

16 / 17

Minimizing the Number of States

Table-filling: Other Uses

ó Test equivalence of languages accepted by 2 DFAs.

ó Given A = (QA,Σ, δA, qA0,FA) and B = (QB ,Σ, δB , qB0,FB):

ó Rename states in QB so that QA and QB are disjoint.

ó View A and B together as one DFA
(Ignore the fact that there are 2 start states)

ó Run table-filling on QA ∪ QB .

ó qA0 and qB0 are indistinguishable ⇔ L(A) = L(B).

[Why?] If w distinguishes qA0 from qB0 then w cannot be in both L(A) and L(B)

ó Suppose a DFA A cannot be minimized further by table-filling. Then, A has the least
number of states among all DFAs that accept L(A)

17 / 17

	Pumping Lemma for Regular Languages
	Some More Properties
	Decision Properties of Regular Languages
	Minimizing the Number of States

