COMP3630/6360: Theory of Computation
Semester 1, 2022
The Australian National University

Context Free Languages

1/15

This lecture covers Chapter 5 of HMU: Context-free Grammars

> (Context-free) Grammars

> (Leftmost and Rightmost) Derivations

> Parse Trees

> An Equivalence between Derivations and Parse Trees

¥ Ambiguity in Grammars

Additional Reading: Chapter 5 of HMU.

Grammars

Introduction to Grammars

> We have so far seen machine-like means (e.g., DFAs) and declarative means (e.g.,
regular expressions) of defining languages

> Grammars are a generative means of defining languages.
> Grammars can be used to create a strictly larger class of languages.
> They are especially useful in compiler and parser design; they can be used to check if:

> parantheses are balanced in a program,
> else occurrences have a matching if, etc.

3/15

Grammars

Grammars: Formal Definition

> A context-free grammar (CFG) G = (V, T,P,S), where

> V is a finite set whose elements are called variables or non-terminal symbols.
Notation: upper case letters, e.g., A, B,
> T is a finite set whose elements are called terminal symbols; T is precisely the
alphabet of the language generated by the grammar G.
Notation: lower case letters, e.g., s1, %,
> P CVx(VUT)"is a finite set of production rules.
> Each production rule (A, «) is also written as A — «.
Terminology: A, « are called the head and body of the production rule, resp.

> S € T is the unique variable/non-terminal that ‘generates’ the language.

> Strings consisting of non-terminals and/or terminals will be denoted by
greek symbols, e.g., o, 3,
> Strings of terminals will be denoted by lower case letters, e.g., w, u, v

4/15

Derivations

How do Grammars Generate Languages?

Y Astring w € T is in the language L(G) generated by G = (V, T, P, S) iff we can

derive w from S, i.e.,

start from S and use production rule(s) repeatedly to replace
heads of the rules by their bodies until a string in T™ is obtained.

Let G = ({S},{0,1},P,S) be
a CFG with P given by

(5,¢),(S,0),(S,1)
(1) { (S,050), (S,151) }
S— e
S 0
2 S—1
S — 050
S — 181

(3) S—¢|0|1|050]|151

1

¥

11011
101 111 1111 11111
w

Vol
AN /11511 0110
/51\ /4 01010

11

s 01510—1110
\(iart) 10501—> 10101
/ \ ™ 10001
A0 1001
00 00500
000 010 ¥\
0000 | 00100

00000

5/15

Derivations

Derivation: Formal Definition

Definition

Given G = (V,T,P,S) and o, 8 € (VU T)*, a derivation of 8 from « is a finite
sequence of strings v =M T T % for some k € N where

1. vi =« and v = B;

2 y,...,k €E(VUT)*

3. Foreachi=1,...,k —1, viy1 is obtained from ~y; by replacing the head of a
production rule of P by its body.

The following phrases are used interchangeably.
B is derived from o < there exists a derivation of from a & « :Z> B.

|

Example
For the grammar G = ({S},{0,1}, P, S)with P given by S — ¢|0|1|0S50| 151, the
following is a derivation of 010111010 from S

S = 050 = 01510 = 0105010 = 010151010 = 010111010.
5—050 5—151 5—0S0 5—1S51 S5—1

M

6/15

Derivations

Sentential Forms and Language Generated by a Grammar: Definitions

Definition
Given G = (V, T, P,S), any string in (VU T)* derived from S is a sentential form.

> The set of all sentential forms of G (denoted by SF(G)) is defined inductively:
> Basis: S € SF(G)
> Induction: if aAy € SF(G) for some o,y € (VUT)" and A€ V,and A— S is
a production rule, then a8y € SF(G).
> Only those strings that are generated by the above induction are sentential forms.

Definition

Given CFG G = (V, T, P,S), the language L(G) generated by G are the sentential forms
that are in T*, j.e., L(G) =SF(G)N T".

.

Example

For the CFG G = ({S},{0,1},P, S)with P given by S — ¢|0|1]|050|151,

(1) S, e,0,1 050, 00, 000, 010, 151, 11, 101, 111,... are all sentential forms.
(2) S, €,0,1 856, 00, 000, 010, +5%, 11, 101, 111,... are in L(G).

S

7/15

Derivations

Other Sentential Forms

2 At each step of a derivation, one can replace any variable by a suitable production.

> If at each non-trivial step of the derivation the leftmost (or rightmost) variable is
replaced by a production rule, then the derivation is said to be a leftmost (or
rightmost) derivation, respectively. We let a = 3 (or o =) to denote the
LM RM
existence of a leftmost (or rightmost) derivation of 8 from «, respectively.

¥ Sentential forms derived via leftmost (or rightmost) derivations are known as
leftmost (or rightmost) sentential forms, respectively.

Balanced Parantheses Example

Consider the CFG G = ({S},{(,)},P,S) with P given by S — SS|(S) | ().

[Derivation] S = .?5 = (5)? = (.?)() = (00

T ¢
[Leftmost Derivation] ? = %5 = (?)5 = (())? = 00O

[Rightmost Derivation ? = S? = ?() = (?)() > (9)0)

In the above, 1 indicates the variable that is replaced in the following step

8/15

Parse Trees

Parse Trees

> Parse trees are a graphical method of representing derivations.

9 They are used in compilers to represent the source program.

Given a CFG G = (V, T, P,S), a parse tree for G is any 6 = ({SHIOLP.S)
directed labelled tree that meets the following three DS _> S S’\(é)|€
conditions: ’
> every interior node is labelled by a non-terminal (i.e., S
variable); / \

> every leaf node is labelled by a non-terminal, or a
terminal or €; however if it is labelled by ¢, it is the
sole child of its parent.

> if an interior node is labelled by A € V, and it's
children are labelled s, . ..,sx € VU T U {e}, then
A — s1--- sk is a production rule in P.

The yield of a parse tree is the string formed from the
labels of the tree leaves read from left to right.
Note: The yield is not necessarily a string of terminals.

9/15

An Equivalence between Parse Trees and Derivations

Derivations and Parse Trees

> Parse trees, derivations, leftmost derivations, and rightmost derivations are equivalent
means of generating the language L(G) of a CFG G.

> The proof for equivalence of rightmost derivations mirrors that of leftmost
derivations. (So we'll not delve into rightmost derivations).

Theorem 5.5.1

Let CFG G = (V,T,P,S) be given. Let A€ V and w € T*. Then,

A ::> w & A % w <& there exists a parse tree with root A and yield w < A % w.

Proof Idea

We'll show the following implications.
Existence of a parse tree
with root A and yield w

(b) (@)

o By Definition >
A= w @ A= w
G

LM

10/15

An Equivalence between Parse Trees and Derivations

Part (a) of Proof of Theorem 5.5.1: A ::_> w = 3 Parse Tree

Y We use induction on the (length of the) derivation.

Lemma 5.5.2

Let CFG G = (V,T,P,S) be given. Let A€ V and a € SF(G). If A =Z> «, then there
exists a parse tree with root A and yield c.

Proof of Lemma 5.5.2 (Induction on the length of derivation)

> Suppose A = « is a derivation of length 0.
G

> Then A is a parse tree with root A and yield A.

11/15

An Equivalence between Parse Trees and Derivations

Part (a) of Proof of Theorem 5.5.1: A ::_> w = 3 Parse Tree

Proof of Lemma 5.5.2 (Induction on derivations) Parse tree for

"
> Hypothesis: the claim is true for all derivations of length A Z Prw = o
k — 1 or lesser for some k > 1.

> Suppose a derivation of o from A in k steps exists.

A== =>B= = Y% l1=>T=Q
mErET <7 <7 Parse tree for
> The last step must involve the application of a A :;> Yk—1
production rule. Hence, v4x—1 = fBw and a = fA\w
where (a) B,w € (VU T)*, (b) B € V, and (b)
B — X is a production rule.

> Extend the parse tree from the first k — 1 steps by:

o lf A=Xi... X, with Xq,..., X, € VUT, add
childen Xi, ..., X, to node B.

12/15

An Equivalence between Parse Trees and Derivations

Part (b) of Proof of Theorem 5.5.1: Parse Tree = A L:*A; w

Proof of Theorem 5.5.1 (Induction on the height of the tree)

> Base case: the parse tree has height 0 e

> Then A is a leftmost derivation in zero steps. ,//\

> Induction: Let the claim be true for all parse trees of up a=s-
to height ¢ — 1. (A,a):(A—)a)G'P

> Consider the root and its (say k) children. This corre- ------——————————.
sponds to a production rule A — X - - - Xj. Induction:

by induction hypothesis, X; L:*,a w;.

> If X; is a leaf, then the yield of the sub-tree rooted at A
X; is w; = X; itself. Then trivially X; ﬁi w;. ‘//
> If X; is not a leaf, let w; be the yield of the parse x5 X X
(sub-)tree rooted at X; of depth £ — 1 or less. Then, /\ A .- Depth
Then, the following is a leftmost derivation for a from A
A:>X1X2--'Xk:*> W1X2---Xk:*> W1W2X3---Xk=*>~--=*> Wy - Wi
G LM Lm Lm LM

13/15

Ambiguous Grammars

Ambiguity in CFGs

Definition

A given CFG G is ambiguous if a string w € L(G) is the yield of two different parse
trees. Equivalently, a CFG G is ambiguous if a string w € L(G) has two different
leftmost (or rightmost) derivations.

> Ambiguity is a property of a grammar, and not the language it generates.

An Example

> CFG G = ({E},{0,1,...,9,+,%},P,E) with P: E— E + E|E * E|0|1]--- |9
> Consider the parse trees for 9 + 2 x 2.

> Since there are two distinct parse trees, a compiler will not know to reduce this to 13

| E/E\E E/i\E
E'/£\E E/Jlr\E
N

> This ambiguity is addressed by precedence rules for operators.

.

14 /15

Ambiguous Grammars

Ambiguity in CFGs

> Some languages are generated by unambiguous as well as ambiguous grammars.

Balanced Parantheses Example
> CFG G1 = ({S},{(,)},P,S) with P: S — SS|(S)|()
> CFG G, = ({B, R}, {(,)}, 9, B) with O : B— (RB|e and R —)|(RR

> Gi is ambiguous for there are two leftmost derivations for ()()().
S=55=(5=055=(005= 000
§=55=555=()SS = ()(S = 000

> Gz is not ambiguous, since there is precisely only one rule at any stage of derivation.

B = (RB= ()B= ()(RB= (0B = 0008 = 000

> Some languages are intrinsically ambiguous, e.g., {0'1/2% : j = j or j = k}. All
grammars for such languages are ambiguous.

> In general, there is no way to tell if a grammar is ambiguous.

15/15

	Grammars
	Derivations
	Parse Trees
	An Equivalence between Parse Trees and Derivations
	Ambiguous Grammars

