
COMP3630/6360: Theory of Computation
Semester 1, 2022

The Australian National University

Pushdown Automata

1 / 28

This lecture covers Chapter 6 of HMU: Pushdown Automata

 Pushdown Automata (PDA)

 Language accepted by a PDA

 Equivalence of CFGs and the languages accepted by PDAs

 Deterministic PDAs

Additional Reading: Chapter 6 of HMU.

Pushdown Automata

Introduction to PDAs

ó PDA ‘=’ ε-NFA + Stack (LIFO)

ó At each instant, the PDA uses:

(a) the input symbol, if read; (b) present state; and (c) symbol atop the stack

to transition to a new state and alter the top of the stack.

ó Once the string is read, the PDA decides to accept/reject the input string.

ó Note: The PDA can only read a symbol once (i.e., the reading head is unidirectional).

· · ·

Finite
Control

Internal
Stack

01 00 1 0

Reading head

Accept/Reject

PDA ‘=’ ›-NFA + Stack

3 / 28

Pushdown Automata

PDA: Formal Definition

Definition

A PDA P = (Q,Σ,Γ, δ, q0,Z0,F) where

ó Just like in DFAs: Q is the (finite) set of internal states; Σ is the finite alphabet of
input tape symbols; q0 ∈ Q is the (unique) start state; F is the set of final or
accepting states of the PDA.

ó Γ is the finite alphabet of stack symbols;

ó δ : Q × (Σ∪ {ε})× Γ→ 2Q×Γ∗
(power set of Q × Γ∗) such that δ(q, a, γ) is always a

finite set of pairs (q′, γ′) ∈ Q × Γ∗.

ó Z0 ∈ Γ is the sole symbol atop the stack at the start; and

Present state

Stack symbol on top

Next state

The string replacing A on top of the stack

The number of possible transitionsInput symbol (or ›)

‹(q; a; A) = {(q0i ; ‚i) : i = 1; : : : ; ‘}

Convention: lower case symbols s, a, and b will denote input symbols; lower case
symbols u, v , w will exclusively denote strings of input symbols; stack symbols are
indicated by upper case letters (e.g., A, B, etc); strings of stack symbols are indicated by
greek letters (e.g., α, β, etc);

4 / 28

Pushdown Automata

A PDA Example

Transition Diagram Notation

Notation: The label a,A/γ on the edge from a state q to q′ indicates a possible
transition from state q to state q′ by reading the symbol a when the top of the stack
contains the symbol A. This stack symbol is then replaced by the string γ.

(q0; ‚) 2 ‹(q; a; A) , q q0
a; A=‚

(Note: q0 can be q itself)

PDA that accepts L = {wwR : w ∈ {0.1}∗}

›; Z0=Z0

›; 0=0

›; 1=1

›; Z0=Z0

0; Z0=0Z0

1; Z0=1Z0

1; 0=10

1; 1=11

0; 1=01

0; 0=00

0; 0=›

1; 1=›

q0 q1 q2

5 / 28

Language Accepted by a PDA

Language Accepted by a PDA

Definitions

ó The Configuration or Instantaneous Description (ID) of a PDA P is a triple
(q,w , γ) ∈ Q × Σ∗ × Γ∗ where:

(i) q is the state of the PDA;
(ii) w is the unread part of input string; and
(iii) γ is the stack contents from top to bottom.

ó An ID tracks the trajectory/operation of the PDA as it reads the input string.

ó One-step computation of a PDA P, denoted by
P̀

, indicates configuration change

due to one transition. Suppose (q′, γ) ∈ δ(q, a,A). For w ∈ Σ∗, α ∈ Γ∗,

(q, aw ,Aα)
P̀

(q′,w , γα), [one-step computation]

ó (multi-step) computation, denoted by
∗

P̀
, indicates configuration change due to zero

or any finite number of consecutive PDA transitions.

ó ID
∗

P̀
ID ′ if there are k IDs ID1, . . . , IDk (for some k ≥ 1) such that:

(i) ID1 = ID and IDk = ID ′, and
(ii) for each i = 1, . . . , k − 1, IDi

P̀
IDi+1.

6 / 28

Language Accepted by a PDA

Beware of IDs!

Lemma 6.2.1

Let PDA P = (Q,Σ,Γ, δ, q0,Z0,F) be given. Let q, q′ ∈ Q, x , y ,w ∈ Σ∗, and
α, β, γ ∈ Σ∗. Then the following hold.

(q, x , α)
∗

P̀
(q′, y , β) ⇔ (q, xw , α)

∗

P̀
(q′, yw , β) (1)

(q, x , α)
∗

P̀
(q′, y , β) ⇒ (q, x , αγ)

∗

P̀
(q′, y , βγ) (2)

Proof Idea

ó (1) What hasn’t been read cannot affect configuration changes

ó (2) PDA transitions cannot occur on empty stack. So the (q, x , α)
∗

P̀
(q′, y , β) must

not access any location beneath the last symbol of x .

Why is the reverse implication of (2) not true?

7 / 28

Language Accepted by a PDA

Language Accepted by PDAs

Definition

Given PDA P = (Q,Σ,Γ, δ, q0,Z0,F), the language accepted by P by final states is

L(P) =

{
w ∈ Σ∗ : (q0,w ,Z0)

∗

P̀
(q, ε, α) for some q ∈ F , α ∈ Γ∗

}
.

The language accepted by P by empty(ing its) stack is

N(P) =

{
w ∈ Σ∗ : (q0,w ,Z0)

∗

P̀
(q, ε, ε) for some q ∈ Q

}
.

Can L(P) and N(P) be different?

ó Pick a DFA A such that L(A) 6= ∅. Convert it to a PDA P by pushing each symbol
that is read onto the stack, increasing the stack size each time a symbol is read.
For the derived PDA, L(P) = L(A). However, N(P) = ∅.

ó Which of the two definitions accepts ‘more’ languages?

8 / 28

Language Accepted by a PDA

Equivalence of the Two Notions of Language Acceptance

Theorem 6.2.2

Given PDA P, there exist PDAs P ′ and P ′′ such that L(P) = N(P ′) and N(P) = L(P ′′).

Proof of Existence of P ′′

PDA P PDA P

›; Z0; Z0X0

›; X0=›

›; X
0=
›

›; X
0=›

›; X0=›

PDA P 00

ó Introduce a new start state and a new final state with the transitions as indicated.

ó The start state first replaces the stack symbol Z0 by Z0X0.

ó If and only if w ∈ N(P) will the computation by P end with the stack containing
precisely X0.

ó The PDA P ′′ then transitions to the final state popping X0. Hence, N(P) = L(P ′′).

9 / 28

Language Accepted by a PDA

Equivalence of the two Notions of Language Acceptance

Proof of Existence of P ′ such that L(P) = N(P ′)

PDA P PDA P

›; Z0; Z0X0

›; any=›

›; any=›
›; any=›

PDA P 0

›; any=›

ó Introduce a new start state and a special state with the transitions as indicated.

ó The start state first replaces the stack symbol Z0 by Z0X0.

ó If and only if w ∈ L(P) will the computation by P end in a final state with the stack
containing (at least) X0.

ó The PDA P ′ then transitions to the special state and starts to pop stack symbols one
at time until the stack is empty. Hence, L(P) = N(P ′).

10 / 28

CFGs and PDAs

CFGs and PDAs

Is every CFL accepted by some PDA and vice versa?

Theorem 6.3.1

For every CFG G , there exists a PDA P such that N(P) = L(G).

Proof

ó Let G = (V ,T ,P, S) be given.

ó Construct PDA P = ({q0},T ,V ∪ T , δ,S , {q0}) with δ defined by

[Type 1] δ(q0, a, a) = {(q0, ε)}, whenever a ∈ Σ,

[Type 2] δ(q0, ε,A) = {(q0, α) : A −→ α is a production rule in P}.

ó This PDA mimics all possible leftmost derivations.

ó We use induction to show that L(G) = N(P)

11 / 28

CFGs and PDAs

CFGs and PDAs

Proof of 1-1 Correspondence between PDA Moves and Leftmost Derivations

Suppose w ∈ T ∗ and S
∗⇒
LM

w . x \ y :=suffix of y in x .

w2

w3

w4

V2

V3

V4

¸2

¸3

¸4

V2 ! ‚2

V3 ! ‚3

V4 ! ‚4

)L
M

S

)L
M

)L
M

)L
M

)L
M

...

wi 2 T ⇤ ¸i 2 (V [T)⇤Vi 2 V Stack
Stack Symbols that
have been popped

wk = w

S ›

[Type 2]

[Type 1]

‚1

S ! ‚1

Unread Part of
Input Tape

›

V3¸3

V2¸2

w3

‚2¸2

‚3¸3

V4¸4

wk

w4

› ›

‚k�1¸k�1 wk�1

w3

w2

w2 [Type 2]

[Type 1]

[Type 2]

[Type 1]

[Type 2]

[Type 1]

A \ B := The suffix of B in A

...

{
{
{
{

[Start]

Le
ftm

os
tD

er
iv

at
io

n
in

G
ra

m
m

ar
G

C
onfigurations

in
P

D
A
P

w

w

w \ w2

w \ w2

w \ w3

w \ w3

w \ w4

w \ wk�1

12 / 28

CFGs and PDAs

CFGs and PDAs

Theorem 6.3.2

For every PDA P, there exists a CFG G such that L(G) = N(P).

Proof

ó Given P = (Q,Σ,Γ, δ, q0,Z0,F), we define G = (V ,T ,P, S) as follows.

ó T = Σ;
ó V = {S} ∪ {[pXq] : p, q ∈ Q,X ∈ Γ};

Interpretation: Each variable [pXq] will generate a terminal string w iff upon
reading w (in finite steps) P moves from state p to q popping X from the stack.

ó P contains only the following rules:

ó S −→ [q0Z0p] for all p ∈ Q.
ó Suppose that (r ,X1 · · ·X`) ∈ δ(q, a,X). Then, for any states p1, . . . , p` ∈ Q,

[qXp`] −→ a[rX1p1][p2X2p2] · · · [p`−1X`p`].

Note that if (r , ε) ∈ δ(q, a,X), then [qXr] −→ a.

ó We will show [qXp]
∗⇒
G

w ⇔ (q,w ,X)
∗

P̀
(p, ε, ε). The proof is complete by choosing

q = q0, X = Z0.

13 / 28

CFGs and PDAs

CFGs and PDAs

Proof of (q,w ,X)
∗

P̀
(p, ε, ε) ⇒ [qXp]

∗⇒
G

w . (Induction on # of steps of computation)

ó Basis: Let w ∈ N(P). Suppose there is a one-step computation (q,w ,X)
P̀

(p, ε, ε).

Then, w ∈ Σ ∪ {ε}. Since (p, ε) ∈ δ(q,w ,X), [qXp] −→ w is a production rule.

ó Induction: Let (q,w ,X)
∗

P̀
(p, ε, ε). Let a be read in the first step of the computation,

and let w = ax . Then the following argument completes the proof.

∗

(r1;

=xz }| {
w1w2 · · ·w‘; Y1Y2 · · · Yk)

P̀

⇤
(r2; w2 · · ·wk ; Y2 · · · Yk) (r3; w3 · · ·wk ; Y3 · · · Yk) (rk ; wk ; Yk)

P̀

⇤
P̀

⇤
P̀

⇤
(p; ›; ›)

(r1; w1; Y1) (r2; ›; ›) (r2; w2; Y2) (r3; ›; ›)
P̀

⇤

[qXp] �! a|{z}
w=ax

[r1Y1r2][r2Y2r3] · · · [rkYkp]

Induc.Induc.

Defn. G

· · ·

· · ·
+ +

+ +

Induc.+

)1

2

3

4

5

[r1Y2r2] w1
⇤
)
G

[r2Y3r3] w2
⇤
)
G

[rkYkp] wk
⇤
)
G

A portion of x is read, and Y1 is popped; more is read, Y2 is popped,: : :

(q; w;X)
P̀

(r1; x; Y1; : : : ; Yk)
⇤

P̀
(p; ›; ›)

| {z }

14 / 28

CFGs and PDAs

CFGs and PDAs

Proof of [qXp]
∗⇒
G

w ⇒ (q,w ,X)
∗

P̀
(p, ε, ε). (Induction on # of steps of derivation)

ó Basis: Let [qXp]
∗⇒
G

w in one step. Then, [qXp] −→ w must be a production rule.

Consequently, (p, ε) ∈ (q,w ,X) and (q,w ,X)
P̀

(p, ε, ε).

ó Induction: Let [qXp]
∗⇒
G

w .

(r0; w1 · · ·wk ; Y1 · · · Yk)

)
LM

⇤

)L
M ⇤)L
M ⇤)L
M ⇤

w1 w2 wk

w = aw1 · · ·wk

+Induc.

+ +Induc.
Induc.

(r1; w2; Y2) (r2; ›; ›)
(rk�1; wk ; Yk) (p; ›; ›)

P̀

⇤

P̀

⇤ P̀

⇤

(r0; Y1 · · · Yk) 2 ‹(q; a; X)

(r0; w1; Y1) (r1; ›; ›)

() (q; a; X) (r0; ›; Y1 · · · Yk)
P̀

(q; aw1w2 · · ·wk| {z }
w

; X)
P̀ P̀

⇤
(r1; w2 · · ·wk ; Y2 · · · Yk)

P̀

⇤ · · ·
P̀

⇤
(p; ›; ›)

)
LM[qXp]

+

a [r0Y1r1] [r1Y2r2] · · · [rk�1Ykp]1

2

3

4

5

Lemma 6.2.1 Lemma 6.2.1 Lemma 6.2.1
15 / 28

Deterministic PDAs

Deterministic PDAs (DPDAs)

ó PDAs are (by definition) non-deterministic.

ó Deterministic PDAs are defined to have no choice in their transitions.

Definition

A DPDA P is a PDA P = (Q,Σ,Γ, δ, q0,Z0,F) such that for each q ∈ Q and X ∈ Γ,

ó |δ(q, a,X)| ≤ 1 for any a ∈ Σ ∪ {ε},
i.e., a configuration cannot transition to more than one configuration.

ó |δ(q, a,X)| = 1 for some a ∈ Σ ⇒ δ(q, ε,X) = ∅,
i.e., both reading or not reading (a tape symbol) cannot be options.

ó DPDAs have a computation power that is strictly better than DFAs

Example: L(P) = N(P) = {0n1n : n ≥ 1}

›; Z0=Z0

0; Z0=0Z0

0; 0=00

P :

q0 q1 q2
1; 0=›

P :

ó DPDAs have a computation power that is strictly worse that PDAs.
(We will discuss this later)

16 / 28

Deterministic PDAs

Languages Accepted by DPDAs

ó The two notions of acceptance (empty stack and final state) are not equivalent in
the case of DPDAs.

ó There are languages L such that L = L(P) for some DPDA P, but there exists no P ′

such that L = N(P ′).

Theorem 6.4.1

Every regular language L is the language accepted by the final states of some DPDA.

Proof

Simply view the DFA accepting L as a DPDA (with the stack always containing Z0).

ó The regular language L = {0}∗ cannot equal N(P) for any DPDA P.

ó Suppose DPDA P accepts L by emptying its stack. Since 0 is accepted, P
eventually reaches a configuration (p, ε, ε) for some state p.
Now, suppose that P is fed with the input 00. Since P is deterministic, P reads
a 0 and eventually has to get to (p, ε, ε). However, it hangs at this configuration
and cannot read any further input symbols. Hence, P cannot accept 00.

17 / 28

Deterministic PDAs

Languages Accepted by DPDAs

ó A language L is said to have the prefix property if no two distinct strings in the
language are prefixes of one another.

Theorem 6.4.2

A language L = N(P) for some DPDA P iff L has the prefix property and L = L(P ′′) for
some DPDA P ′′.

Proof ⇒
⇒ Let L = N(P) for some DPDA P. Let w ,ww ′ be in L with w ′ 6= ε. Then

(q0,w ,Z0)
∗

P̀
(p, ε, ε) for some p ∈ Q. The DPDA hangs at this state since the stack

is empty. Hence, it cannot accept ww ′. The fact that L = L(P ′′) for some DPDA P ′′

follows from Theorem 6.2.2 since the construction yields a deterministic PDA.

PDA P PDA P

›; Z0; Z0X0

›; X0=›

›; X
0=
›

›; X
0=›

›; X0=›

PDA P 00

18 / 28

Deterministic PDAs

Languages Accepted by DPDAs

Proof ⇐

⇐ Let DPDA P ′′ be given. Let w ∈ L(P ′′), (q0,w ,Z0)
∗

P̀
(p, ε, γ) for some p ∈ F , and

γ ∈ Γ. Since L(P ′′) satisfies the prefix property, the PDA cannot enter any final state
before reading all of w .

ó Then we can delete all transitions from final states; this X ∈ Γ does not alter L(P ′′).

ó Then, the construction of Theorem 6.2.2 yields a deterministic PDA P ′ such that
N(P ′) = L(P ′′) = L.

PDA P 00 PDA P 00

›; Z0; Z0X0

›; any=›

›; any=›
›; any=›

›; any=›
⇥

⇥

19 / 28

Deterministic PDAs

DPDAs and Unambiguous Grammars

Theorem 6.4.3

If L = N(P) for some DPDA P, then L has an unambiguous CFG.

Proof

ó Let G be the CFG constructed in Theorem 6.3.2.

ó Suppose G is ambiguous. Then, for some w ∈ L has 2 leftmost derivations.

ó However, each derivation corresponds to a unique trajectory of configurations in P
that also accepts w by emptying stack.

ó Since P is deterministic, the trajectories, and hence, the derivations have to be
identical. Hence, G is unambiguous.

20 / 28

Deterministic PDAs

DPDAs and unambiguous Grammars

Theorem 6.4.4

If L = L(P) for some DPDA P, then L has an unambiguous CFG.

Proof

ó Let $ be a symbol not in the alphabet of L.

ó Consider L′ = {w$: w ∈ L}. Then, L′ has the prefix property.

ó By Theorem 6.4.2, there must exist a DPDA P ′ such that L′ = N(P ′).

ó By Theorem 6.4.3, L′ has an unambiguous CFG G ′ = (V ,T ,P, S).

ó Define CFG G = (V ∪ {$},T \ {$},P ∪ {$ −→ ε}, S).

ó G generates L.

ó Suppose G is ambiguous. Then, for some w ∈ L has 2 leftmost derivations.

ó The last steps in the two leftmost derivations of w must use the production $ −→ ε.

ó Then, the portions of the two leftmost derivations without the last production step
correspond to two leftmost derivations of w$.

ó Hence, G ′ must be unambiguous, which is a contradiction. Hence, G is also
unambiguous.

21 / 28

Additional Slides

Explanation for Slide 11

ó ⇒ Suppose we want to show that if there is a derivation in G generating w , then
there is a trajectory in P accepting w . To do that let S

∗⇒
LM

w .

ó Then there must be a LM derivation as in the left column. In each step of the
leftmost derivation, a part of the string w is uncovered, and the uncovered part is
succeeded by a non-terminal.

ó Let after i = 1, . . . , k − 2 production uses: (1) the prefix wi+1 of w be uncovered
(shown in purple); (2) the leftmost non-terminal be Vi+1 (shown in orange); and (3)
is the string to the right of the leftmost non-terminal αi+1 that contains both
terminal and non-terminal symbols (shown in beige).

ó After the k th production rule, we have derived wk = w .

ó Now suppose S → γ1 = w2V2α2, V2 → γ2, . . ., Vk−1 → γk−1 be the k − 1 production
rules used in the leftmost derivation.

ó Now let us show that a trajectory exists for P using the above information we have
laid out.

ó Since there is only one state for the PDA, the right part of the slide presents only the
portion of tape yet to be read, and the stack contents; additionally, it also gives the
string of terminals that has been popped up until any point in time.

ó Initially, the tape contains w , the stack contains S , and ε has been popped thus far.

22 / 28

Additional Slides

Explanation for Slide 11 (Continued)

ó Now since S → γ1 is a valid production rule, by the definition of P, there is a Type-22
transition that reads nothing from the input tape, reads S from the stack and pushes
γ1 := w2V2α2 onto the stack. Thus, the following one-step computation is valid

(q0,w , S)
P̀

(q0,w ,w2V2α2).

ó Note that w1 is the prefix of w uncovered after the first step of the derivation, and
hence matches the first few symbols of w . Then, it is clear that one can perform |w |
Type-1 transitions that pop each of these symbols from the stack. Thus, after
popping |w1| symbols, we see that:

(q0,w , S)
P̀

(q0,w ,w2V2α2)
∗

P̀
(q0,w \ w2,V2α2),

where we let w \ w2 to denote the suffix of w2 in w .

ó Now, note that V2 → γ2 is a valid production rule; hence, there is a valid one-step
computation from (q0,w \ w2,V2α2) that uses the corresponding Type-2 transition.
The resultant configuration change will then be

(q0,w ,S)
P̀

(q0,w ,w2V2α2)
∗

P̀
(q0,w \ w2,V2α2)

P̀
(q0,w \ w2, (w3 \ w2)V3α3),

where (w3 \ w2)V3α3 := γ2α2.

23 / 28

Additional Slides

Explanation for Slide 11 (Continued)

ó Again, we see that a portion of the top of the stack contains w \ w2, which matches
the initial segment of the input tape. Then there is a valid multi-step computation
involving |w3 \ w2| Type-1 transitions that pops w3 \ w2. The resultant configuration
will then be q0,w \ w3,V3α3).

ó Now, this proceeds until all of w is exhausted (read) from the input tape, and the
configuration at the end will be (q0, ε, ε). Since the stack is empty, the original string
w will be accepted.

ó ⇐ The direction that a trajectory accepting w in P implies a derivation of w in G is
simply arguing the above in the reverse direction using the facts that:

ó a trajectory for accepting w in P must consist only of Type-1 and Type-2
transitions, and each Type-2 transition corresponds to a unique production in G .

ó The argument is literally the same as above except that we now uncover the
production rule from the corresponding Type-2 transition.

24 / 28

Additional Slides

Explanation for Slide 13

Inductive proof for (q,w ,X)
∗

P̀
(p, ε, ε)⇒ [qXp]

∗⇒
G

w based on length of computation.

ó Basis: Let (q,w ,X)
∗

P̀
(p, ε, ε) be a one-step computation. Thus, w has to be an

input symbol or ε. Then, by definition of one-step computation it must be true that
(p, ε) ∈ (q,w ,X). Then, by the construction of G , we have [qXr]→ w (see Slide 12

for the construction), and hence [qXr]
∗⇒
G

w .

ó Induction: (q,w ,X)
∗

P̀
(p, ε, ε) in say k > 1 steps. Let us assume that the in the first

step of the computation, the symbol a is read from the input tape (or a = ε). Let
w = ax . Let’s break the k-step computation to a single step followed by a k − 1-step
computation as detained in 1 (encircled in black). Let r1 be the state of the PDA
after the first step and let X be popped and Y1 · · ·Yk be pushed onto the stack after
the first step/transition/move.

ó Now, the claim is that the k − 1 step portion of the computation can be expanded
into the sequence of computations as given in 2 (encircled in black). The reasoning is
as follows. The ID (r1, x ,Y1 · · ·Yk) eventually changes to (p, ε, ε). There must be a
finite number of moves after which the effective stack change is the popping of Y1,
i.e., after a finite number of steps Y2 is at the top for the very first time. The steps
until then could have popped Y1, pushed a string, and then popped it eventually to
reveal Y2 at the top.

25 / 28

Additional Slides

Explanation for Slide 13 (Continued)

ó Let w1 be the portion of the input tape read and r2 be the state pf the PDA when
this intermediate ID where Y2 is at the top of the stack (i.e., the stack contains
Y2 · · · ,Yk) is attained. Thus,

(r , x ,Y1 · · ·Yk)
∗

P̀
(r2, x \ w1,Y2, · · ·Yk)

∗

P̀
(p, ε, ε),

where again we let w \ w1 to be the suffix of w1 in w .
ó By a similar argument, after reading another segment, say w2, of the input tape and

reaching (some) state r3, the top of the stack of the PDA contains Y3 for the very
first time. Thus,

(r , x ,Y1 · · ·Yk)
∗

P̀
(r2, x \ w1,Y2, · · ·Yk)

∗

P̀
(r3, x \ (w1w2),Y3, · · ·Yk)

∗

P̀
(p, ε, ε).

ó Proceeding inductively, we see that 2 (encircled in black) holds. Note that x is then
equal to the concatenation of the wi ’s, i.e., x = w1 · · ·wk .

ó Now focus on the computation within the blue block in 2. In no intermediate ID of
the computation is Y2 at the top of the stack (since (r2, x \ w1,Y2, · · ·Yk) is the very
first time Y2 is at the top of the stack). Thus, the stack contents Y2 · · ·Yk are never
visited in this first set of moves, and hence, we see that

(r1, x ,Y1 · · ·Yk)
∗

P̀
(r2, x \ w1,Y2, · · ·Yk)⇒ (r1,w1,Y1)

∗

P̀
(r2, ε, ε). (3)

26 / 28

Additional Slides

Explanation for Slide 13 (Continued)

ó Similarly, we see that the in portion of the computation in orange, no intermediate ID
of the computation has Y3 at the top of the stack (since (r3, x \ (w1w2),Y3, · · ·Yk) is
the very first time Y3 is at the top of the stack). Hence,

(r2, x \ w2 · · ·wk ,Y2, · · ·Yk)
∗

P̀
(r3,w2 · · ·wk ,Y3 · · ·Yk)⇒ (r2,w2,Y2)

∗

P̀
(r3, ε, ε). (4)

ó We can proceed inductively to argue that (ri ,wi ,Yi)
∗

P̀
(ri+1, ε, ε) for i = 1, . . . , k − 1.

ó Now each of these derivations (ri ,wi ,Yi)
∗

P̀
(ri+1, ε, ε) for i = 1, . . . , k − 1 contain

k − 1 or less steps, because the number of steps they contain is at least one-less than
the number of steps in the computation in 1 (encircled in black).

ó Consequently, by the induction hypothesis, we have [riYi ri+1]
∗⇒
G

wi , i = 1, . . . , k − 1.

By the very same argument [rkYkp]
∗⇒
G

wk .

ó Now focus on the yellow box at the top, the first one-step computation guarantees
that there exists a production rule

[qXp]→ a[r1Y1r2][r2Y2r3] · · · [rk−1Yk−1rk][rkYkp]. (5)

Now combining the above production with the known derivations in 4 (encircled in

black), we see that [qXp]
∗⇒
G

aw1 · · ·wk = ax = w .

27 / 28

Additional Slides

Explanation for Slide 14

Inductive proof for (q,w ,X)
∗

P̀
(p, ε, ε)⇐ [qXp]

∗⇒
G

w based on length of leftmost

derivation.

ó Basis: [qXp]
∗⇒
LM

w be a one-step derivation. This can be possible only if

(p, ε) ∈ (q,w ,X), which then means (q,w ,X)
P̀

(p, ε, ε).

ó Induction: Let [qXp]
∗⇒
G

w in k > 1 steps. As in the previous direction, let us split the

leftmost derivation into the first step and then rest.
ó The first step must involve the application of some production rule, say,

[qXp]→ a[r0Y1r1][r1Y2r2] · · · [rk−1Ykp].
ó By 1 (encircled in 1) each non-terminal [ri−1Yi ri] i = 1, . . . , k must derive (via a

leftmost derivation) a segment of w , say wi in k − 1 steps or less. [wi is the yield of
the parse subtree in the parse tree of [qXp] with yield w , and the depth of the subtree
is at most 1 less than the depth of the parse tree of [qXp].).

ó Hence, [ri−1Yi ri]
∗⇒
LM

wi for i = 1, . . . , k in k − 1 steps or less (I’ve set rk = p here).

By induction hypothesis, then (ri−1,wi ,Yi)
∗

P̀
(ri , ε, ε).

ó Then by Lemma 6.2.1, (ri−1,wi · · ·wk ,Yi · · ·Yk)
∗

P̀
(ri ,wi+1 · · ·wk ,Yi+1 · · ·Yk). Thus,

(q,w ,X)
P̀

(r0,w1 · · ·wk ,Y1 · · ·Yk)
∗

P̀
(r1,w2 · · ·wk ,Y2 · · ·Yk)

∗

P̀
(rk , ε, ε) = (p, ε, ε).

(6)28 / 28

	Pushdown Automata
	Language Accepted by a PDA
	CFGs and PDAs
	Deterministic PDAs
	Additional Slides

