COMP3630/6360: Theory of Computation Semester 1, 2022 The Australian National University

Pushdown Automata

This lecture covers Chapter 6 of HMU: Pushdown Automata

- ➤ Pushdown Automata (PDA)
- ➤ Language accepted by a PDA
- > Equivalence of CFGs and the languages accepted by PDAs
- > Deterministic PDAs

Additional Reading: Chapter 6 of HMU.

Introduction to PDAs

- \rightarrow PDA '=' ϵ -NFA + Stack (LIFO)
- > At each instant, the PDA uses:
 - (a) the input symbol, if read; (b) present state; and (c) symbol atop the stack to transition to a new state and alter the top of the stack.
- > Once the string is read, the PDA decides to accept/reject the input string.
- > Note: The PDA can only read a symbol once (i.e., the reading head is unidirectional).

PDA: Formal Definition

Definition

A PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ where

- > Just like in DFAs: Q is the (finite) set of internal states; Σ is the finite alphabet of input tape symbols; $q_0 \in Q$ is the (unique) start state; F is the set of final or accepting states of the PDA.
- > Γ is the finite alphabet of stack symbols;
- $> \delta: Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \to 2^{Q \times \Gamma^*}$ (power set of $Q \times \Gamma^*$) such that $\delta(q, a, \gamma)$ is always a finite set of pairs $(q', \gamma') \in Q \times \Gamma^*$.
- $> Z_0 \in \Gamma$ is the sole symbol atop the stack at the start; and

Input symbol (or ϵ) Next state The number of possible transitions $Present \ state \qquad \delta(q, \ a, \ A) = \{(q_i', \gamma_i) : i = 1, \dots, \ell\}$

Stack symbol on top The string replacing A on top of the stack

Convention: lower case symbols s, a, and b will denote input symbols; lower case symbols u, v, w will exclusively denote strings of input symbols; stack symbols are indicated by upper case letters (e.g., A, B, etc); strings of stack symbols are indicated by greek letters (e.g., α , β , etc);

A PDA Example

Transition Diagram Notation

Notation: The label $a,A/\gamma$ on the edge from a state q to q' indicates a possible transition from state q to state q' by reading the symbol a when the top of the stack contains the symbol A. This stack symbol is then replaced by the string γ .

$$(q',\gamma)\in\delta(q,a,A)$$
 \Leftrightarrow q $a,A/\gamma$ q' q' (Note: q' can be q itself)

PDA that accepts $L = \{ww^R : w \in \{0.1\}^*\}$

Language Accepted by a PDA

Definitions

- > The Configuration or Instantaneous Description (ID) of a PDA P is a triple $(q, w, \gamma) \in Q \times \Sigma^* \times \Gamma^*$ where:
 - (i) q is the state of the PDA;
 - (ii) w is the unread part of input string; and
 - (iii) γ is the stack contents from top to bottom.
- > An ID tracks the trajectory/operation of the PDA as it reads the input string.
- > One-step computation of a PDA P, denoted by \vdash_P , indicates configuration change due to one transition. Suppose $(q', \gamma) \in \delta(q, a, A)$. For $w \in \Sigma^*$, $\alpha \in \Gamma^*$,

$$(q, a\mathbf{w}, A\alpha) \vdash (q', \mathbf{w}, \gamma\alpha),$$
 [one-step computation]

- > (multi-step) computation, denoted by \vdash_{P} , indicates configuration change due to zero or any finite number of consecutive PDA transitions.
 - \rightarrow $ID \stackrel{*}{\vdash} ID'$ if there are k IDs ID_1, \ldots, ID_k (for some $k \geq 1$) such that:
 - (i) $ID_1 = ID$ and $ID_k = ID'$, and
 - (ii) for each i = 1, ..., k 1, $ID_i \vdash ID_{i+1}$.

Beware of IDs!

Lemma 6.2.1

Let PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ be given. Let $q, q' \in Q$, $x, y, w \in \Sigma^*$, and $\alpha, \beta, \gamma \in \Sigma^*$. Then the following hold.

$$(q, x, \alpha) \stackrel{*}{\underset{p}{\vdash}} (q', y, \beta) \quad \Leftrightarrow \quad (q, x\mathbf{w}, \alpha) \stackrel{*}{\underset{p}{\vdash}} (q', y\mathbf{w}, \beta)$$
 (1)

$$(q, x, \alpha) \stackrel{*}{\underset{P}{\longrightarrow}} (q', y, \beta) \implies (q, x, \alpha\gamma) \stackrel{*}{\underset{P}{\longmapsto}} (q', y, \beta\gamma)$$
 (2)

Proof Idea

- > (1) What hasn't been read cannot affect configuration changes
- > (2) PDA transitions cannot occur on empty stack. So the $(q, x, \alpha) \stackrel{+}{\underset{p}{\vdash}} (q', y, \beta)$ must not access any location beneath the last symbol of x.

Why is the reverse implication of (2) not true?

Language Accepted by PDAs

Definition

Given PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$, the language accepted by P by final states is

$$L(P) = \left\{ w \in \Sigma^* : (\textit{q}_0, \textit{w}, \textit{Z}_0) \overset{*}{\underset{P}{\vdash}} (\textit{q}, \epsilon, \alpha) \text{ for some } \textit{q} \in \textit{F}, \alpha \in \Gamma^* \right\}.$$

The language accepted by P by empty(ing its) stack is

$$\mathit{N}(\mathit{P}) = \left\{ w \in \Sigma^* : (\mathit{q}_0, w, \mathit{Z}_0) \stackrel{*}{\underset{\scriptscriptstyle P}{\vdash}} (\mathit{q}, \epsilon, \epsilon) \text{ for some } \mathit{q} \in \mathit{Q} \right\}.$$

Can L(P) and N(P) be different?

- \Rightarrow Pick a DFA A such that $L(A) \neq \emptyset$. Convert it to a PDA P by pushing each symbol that is read onto the stack, increasing the stack size each time a symbol is read. For the derived PDA, L(P) = L(A). However, $N(P) = \emptyset$.
- > Which of the two definitions accepts 'more' languages?

Equivalence of the Two Notions of Language Acceptance

Theorem 6.2.2

Given PDA P, there exist PDAs P' and P'' such that L(P) = N(P') and N(P) = L(P'').

Proof of Existence of P''

- > Introduce a new start state and a new final state with the transitions as indicated.
- > The start state first replaces the stack symbol Z_0 by Z_0X_0 .
- > If and only if $w \in N(P)$ will the computation by P end with the stack containing precisely X_0 .
- > The PDA P'' then transitions to the final state popping X_0 . Hence, N(P) = L(P'').

Equivalence of the two Notions of Language Acceptance

Proof of Existence of P' such that L(P) = N(P')

- > Introduce a new start state and a special state with the transitions as indicated.
- > The start state first replaces the stack symbol Z_0 by Z_0X_0 .
- > If and only if $w \in L(P)$ will the computation by P end in a final state with the stack containing (at least) X_0 .
- > The PDA P' then transitions to the special state and starts to pop stack symbols one at time until the stack is empty. Hence, L(P) = N(P').

Is every CFL accepted by some PDA and vice versa?

Theorem 6.3.1

For every CFG G, there exists a PDA P such that N(P) = L(G).

Proof

- \rightarrow Let G = (V, T, P, S) be given.
- > Construct PDA $P=(\{q_0\},\, T,\, V\cup\, T,\delta,S,\{q_0\})$ with δ defined by

[Type 1]
$$\delta(q_0, a, a) = \{(q_0, \epsilon)\},$$
 whenever $a \in \Sigma$,

[Type 2]
$$\delta(q_0, \epsilon, A) = \{(q_0, \alpha) : A \longrightarrow \alpha \text{ is a production rule in } \mathcal{P}\}.$$

- > This PDA mimics all possible leftmost derivations.
- > We use induction to show that L(G) = N(P)

Proof of 1-1 Correspondence between PDA Moves and Leftmost Derivations Suppose $w \in T^*$ and $S \stackrel{*}{\underset{LM}{\Rightarrow}} w$. $x \setminus y := \text{suffix of } y \text{ in } x.$ $w_i \in T^*$ $V_i \in V$ $\alpha_i \in (V \cup T)^*$ Unread Part of Stack Symbols that Stack Input Tape have been popped S S [Start] w γ_1 [Type 2] Leftmost Derivation in Grammar G ϵ W_2 Vo α_2 V2a2 W₂ [Type 1] $V_2 \rightarrow \gamma_2$ Configurations in PDA P ₹₩ [Type 2] $w \setminus w_2$ $\gamma_2 \alpha_2$ W₂ W_3 V_3 α_3 $V_3\alpha_3$ [Type 1] $W \setminus W_3$ Wз $V_3 \rightarrow \gamma_3$ Ş₩ $\gamma_3 \alpha_3$ [Type 2] W₃ WΛ $V_4\alpha_4$ W_4 [Type 1] W_4 ₹₩ $\gamma_{k-1}\alpha_{k-1}$ W_{k-1} [Type 2] $w_k = w$ Wk [Type 1] $A \setminus B :=$ The suffix of B in A

Theorem 6.3.2

For every PDA P, there exists a CFG G such that L(G) = N(P).

Proof

- \rightarrow Given $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$, we define G = (V, T, P, S) as follows.
 - $T = \Sigma$:
 - $\rightarrow V = \{S\} \cup \{[pXq] : p, q \in Q, X \in \Gamma\};$

Interpretation: Each variable [pXq] will generate a terminal string w iff upon reading w (in finite steps) P moves from state p to q popping X from the stack.

- $\rightarrow \mathcal{P}$ contains only the following rules:
 - $\gt S \longrightarrow [q_0 Z_0 p]$ for all $p \in Q$.
 - Suppose that $(r, X_1 \cdots X_\ell) \in \delta(q, a, X)$. Then, for any states $p_1, \dots, p_\ell \in Q$,

$$[qXp_{\ell}] \longrightarrow a[rX_1p_1][p_2X_2p_2]\cdots[p_{\ell-1}X_{\ell}p_{\ell}].$$

Note that if $(r, \epsilon) \in \delta(q, a, X)$, then $[qXr] \longrightarrow a$.

> We will show $[qXp] \stackrel{*}{\underset{G}{\Rightarrow}} w \Leftrightarrow (q, w, X) \stackrel{*}{\underset{p}{\vdash}} (p, \epsilon, \epsilon)$. The proof is complete by choosing $q = q_0, X = Z_0$.

Proof of $(q, w, X) \vdash (p, \epsilon, \epsilon) \Rightarrow [qXp] \stackrel{*}{\Rightarrow} w$. (Induction on # of steps of computation)

- > Basis: Let $w \in N(P)$. Suppose there is a one-step computation $(q, w, X) \vdash_{p} (p, \epsilon, \epsilon)$. Then, $w \in \Sigma \cup \{\epsilon\}$. Since $(p, \epsilon) \in \delta(q, w, X)$, $[qXp] \longrightarrow w$ is a production rule.
- > Induction: Let $(q, w, X) \vdash_{p} (p, \epsilon, \epsilon)$. Let a be read in the first step of the computation, and let w = ax. Then the following argument completes the proof.

6

Proof of $[qXp] \stackrel{*}{\Rightarrow} w \Rightarrow (q, w, X) \stackrel{*}{\vdash} (p, \epsilon, \epsilon)$. (Induction on # of steps of derivation)

- > Basis: Let $[qXp] \stackrel{*}{\underset{G}{\longrightarrow}} w$ in one step. Then, $[qXp] \longrightarrow w$ must be a production rule. Consequently, $(p,\epsilon) \in (q,w,X)$ and $(q,w,X) \vdash_{p} (p,\epsilon,\epsilon)$.
- > Induction: Let $[qXp] \stackrel{*}{\Rightarrow} w$.

Lemma 6.2.1

$$\begin{array}{c} \P & (r_0,Y_1\cdots Y_k)\in \delta(q,a,X) \iff (q,a,X) \stackrel{\vdash}{\vdash}_P (r_0,\epsilon,Y_1\cdots Y_k) \\ & & & & & & \\ \hline \\ \P & p \stackrel{\Rightarrow}{\longrightarrow}_{LM} a \begin{bmatrix} r_0Y_1r_1 \end{bmatrix} \begin{bmatrix} r_1Y_2r_2 \end{bmatrix} \cdots \begin{bmatrix} r_{k-1}Y_kp \end{bmatrix} \stackrel{*}{\Longrightarrow}_{LM} w = aw_1\cdots w_k \\ \hline \\ Q \stackrel{\longleftarrow}{\searrow} \stackrel{\longleftarrow}{\searrow} \stackrel{\longleftarrow}{\searrow} \stackrel{\longleftarrow}{\searrow} \stackrel{\longleftarrow}{\searrow} \\ w_1 & w_2 & w_k \\ \hline \\ \P & (r_0,w_1,Y_1) \stackrel{*}{\vdash}_P (r_1,\epsilon,\epsilon) \\ \hline \\ \P & (r_1,w_2,Y_2) \stackrel{*}{\vdash}_P (r_2,\epsilon,\epsilon) \\ \hline \\ \P & (r_1,w_2,Y_2) \stackrel{*}{\vdash}_P (r_2,\epsilon,\epsilon) \\ \hline \\ \P & (r_1,w_2\cdots w_k,X) \stackrel{\longleftarrow}{\vdash}_P (r_0,w_1\cdots w_k,Y_1\cdots Y_k) \stackrel{*}{\vdash}_P (r_1,w_2\cdots w_k,Y_2\cdots Y_k) \stackrel{*}{\vdash}_P \cdots \stackrel{*}{\vdash}_P (p,\epsilon,\epsilon) \\ \hline \\ \P & (p,e,\epsilon) \\ \hline \end{array}$$

Lemma 6.2.1

Lemma 6.2.1

Deterministic PDAs (DPDAs)

- > PDAs are (by definition) non-deterministic.
- > Deterministic PDAs are defined to have **no choice** in their transitions.

Definition

A DPDA P is a PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ such that for each $q \in Q$ and $X \in \Gamma$,

- $|\delta(q,a,X)| \leq 1$ for any $a \in \Sigma \cup \{\epsilon\}$, i.e., a configuration cannot transition to more than one configuration.
- $|\delta(q,a,X)|=1$ for some $a\in\Sigma\Rightarrow\delta(q,\epsilon,X)=\emptyset$, i.e., both reading or not reading (a tape symbol) cannot be options.
- > DPDAs have a computation power that is strictly better than DFAs

> DPDAs have a computation power that is strictly worse that PDAs. (We will discuss this later)

Languages Accepted by DPDAs

- > The two notions of acceptance (empty stack and final state) are **not equivalent** in the case of DPDAs.
- > There are languages L such that L = L(P) for some DPDA P, but there exists no P' such that L = N(P').

Theorem 6.4.1

Every regular language L is the language accepted by the final states of some DPDA.

Proof

Simply view the DFA accepting L as a DPDA (with the stack always containing Z_0).

- > The regular language $L = \{0\}^*$ cannot equal N(P) for any DPDA P.
 - > Suppose DPDA P accepts L by emptying its stack. Since 0 is accepted, P eventually reaches a configuration (p, ϵ, ϵ) for some state p. Now, suppose that P is fed with the input 00. Since P is **deterministic**, P reads a 0 and eventually has to get to (p, ϵ, ϵ) . However, it hangs at this configuration and cannot read any further input symbols. Hence, P cannot accept 00.

Languages Accepted by DPDAs

> A language L is said to have the **prefix property** if no two distinct strings in the language are prefixes of one another.

Theorem 6.4.2

A language L=N(P) for some DPDA P iff L has the prefix property and L=L(P'') for some DPDA P''.

$\mathsf{Proof} \Rightarrow$

⇒ Let L = N(P) for some DPDA P. Let w, ww' be in L with $w' \neq \epsilon$. Then $(q_0, w, Z_0) \stackrel{*}{\vdash}_P (p, \epsilon, \epsilon)$ for some $p \in Q$. The DPDA hangs at this state since the stack is empty. Hence, it cannot accept ww'. The fact that L = L(P'') for some DPDA P'' follows from Theorem 6.2.2 since the construction yields a **deterministic** PDA.

Languages Accepted by DPDAs

$\mathsf{Proof} \Leftarrow$

- \Leftarrow Let DPDA P'' be given. Let $w \in L(P'')$, $(q_0, w, Z_0) \overset{*}{\vdash_{p}} (p, \epsilon, \gamma)$ for some $p \in F$, and $\gamma \in \Gamma$. Since L(P'') satisfies the prefix property, the PDA cannot enter any final state before reading all of w.
 - > Then we can delete all transitions from final states; this X ∈ Γ does not alter L(P'').
 - > Then, the construction of Theorem 6.2.2 yields a **deterministic** PDA P' such that N(P') = L(P'') = L.

DPDAs and Unambiguous Grammars

Theorem 6.4.3

If L = N(P) for some DPDA P, then L has an unambiguous CFG.

Proof

- > Let G be the CFG constructed in Theorem 6.3.2.
- > Suppose G is ambiguous. Then, for some $w \in L$ has 2 leftmost derivations.
- > However, each derivation corresponds to a unique trajectory of configurations in P that also accepts w by emptying stack.
- > Since *P* is deterministic, the trajectories, and hence, the derivations have to be identical. Hence, *G* is unambiguous.

DPDAs and unambiguous Grammars

Theorem 6.4.4

If L = L(P) for some DPDA P, then L has an unambiguous CFG.

Proof

- > Let \$ be a symbol not in the alphabet of L.
- > Consider $L' = \{w\$: w \in L\}$. Then, L' has the prefix property.
- > By Theorem 6.4.2, there must exist a DPDA P' such that L' = N(P').
- > By Theorem 6.4.3, L' has an unambiguous CFG G' = (V, T, P, S).
- \rightarrow Define CFG $G = (V \cup \{\$\}, T \setminus \{\$\}, P \cup \{\$ \longrightarrow \epsilon\}, S).$
- > G generates L.
- > Suppose G is ambiguous. Then, for some $w \in L$ has 2 leftmost derivations.
- \rightarrow The last steps in the two leftmost derivations of w must use the production $\$ \longrightarrow \epsilon$.
- > Then, the portions of the two leftmost derivations without the last production step correspond to two leftmost derivations of w\$.
- > Hence, G' must be unambiguous, which is a contradiction. Hence, G is also unambiguous.

Explanation for Slide 11

- \Rightarrow Suppose we want to show that if there is a derivation in G generating w, then there is a trajectory in P accepting w. To do that let $S \underset{IM}{\overset{*}{\Rightarrow}} w$.
- > Then there must be a LM derivation as in the left column. In each step of the leftmost derivation, a part of the string w is uncovered, and the uncovered part is succeeded by a non-terminal.
- > Let after $i=1,\ldots,k-2$ production uses: (1) the prefix w_{i+1} of w be uncovered (shown in purple); (2) the leftmost non-terminal be V_{i+1} (shown in orange); and (3) is the string to the right of the leftmost non-terminal α_{i+1} that contains both terminal and non-terminal symbols (shown in beige).
- > After the k^{th} production rule, we have derived $w_k = w$.
- > Now suppose $S \to \gamma_1 = w_2 V_2 \alpha_2$, $V_2 \to \gamma_2$, ..., $V_{k-1} \to \gamma_{k-1}$ be the k-1 production rules used in the leftmost derivation.
- > Now let us show that a trajectory exists for *P* using the above information we have laid out.
- > Since there is only one state for the PDA, the right part of the slide presents only the portion of tape yet to be read, and the stack contents; additionally, it also gives the string of terminals that has been popped up until any point in time.
- > Initially, the tape contains w, the stack contains S, and ϵ has been popped thus far.

Explanation for Slide 11 (Continued)

> Now since $S \to \gamma_1$ is a valid production rule, by the definition of P, there is a Type-22 transition that reads nothing from the input tape, reads S from the stack and pushes $\gamma_1 := w_2 \, V_2 \, \alpha_2$ onto the stack. Thus, the following one-step computation is valid

$$(q_0, w, S) \vdash_P (q_0, w, w_2 V_2 \alpha_2).$$

> Note that w_1 is the prefix of w uncovered after the first step of the derivation, and hence matches the first few symbols of w. Then, it is clear that one can perform |w| Type-1 transitions that pop each of these symbols from the stack. Thus, after popping $|w_1|$ symbols, we see that:

$$(q_0, w, S) \vdash_{P} (q_0, w, w_2 V_2 \alpha_2) \vdash_{P}^* (q_0, w \setminus w_2, V_2 \alpha_2),$$

where we let $w \setminus w_2$ to denote the suffix of w_2 in w.

> Now, note that $V_2 \to \gamma_2$ is a valid production rule; hence, there is a valid one-step computation from $(q_0, w \setminus w_2, V_2\alpha_2)$ that uses the corresponding Type-2 transition. The resultant configuration change will then be

$$(q_0, w, S) \vdash_{P} (q_0, w, w_2 V_2 \alpha_2) \vdash_{P}^* (q_0, w \setminus w_2, V_2 \alpha_2) \vdash_{P} (q_0, w \setminus w_2, (w_3 \setminus w_2) V_3 \alpha_3),$$

where $(w_3 \setminus w_2) V_3 \alpha_3 := \gamma_2 \alpha_2$.

Explanation for Slide 11 (Continued)

- > Again, we see that a portion of the top of the stack contains $w \setminus w_2$, which matches the initial segment of the input tape. Then there is a valid multi-step computation involving $|w_3 \setminus w_2|$ Type-1 transitions that pops $w_3 \setminus w_2$. The resultant configuration will then be $q_0, w \setminus w_3, V_3\alpha_3$).
- > Now, this proceeds until all of w is exhausted (read) from the input tape, and the configuration at the end will be $(q_0, \epsilon, \epsilon)$. Since the stack is empty, the original string w will be accepted.
- > \Leftarrow The direction that a trajectory accepting w in P implies a derivation of w in G is simply arguing the above in the reverse direction using the facts that:
 - > a trajectory for accepting w in P must consist only of Type-1 and Type-2 transitions, and each Type-2 transition corresponds to a unique production in G.
 - > The argument is literally the same as above except that we now uncover the production rule from the corresponding Type-2 transition.

Explanation for Slide 13

Inductive proof for $(q, w, X) \stackrel{*}{\underset{p}{\vdash}} (p, \epsilon, \epsilon) \Rightarrow [qXp] \stackrel{*}{\underset{G}{\Rightarrow}} w$ based on length of computation.

- > Basis: Let $(q, w, X) \stackrel{\vdash}{\underset{p}{\vdash}} (p, \epsilon, \epsilon)$ be a one-step computation. Thus, w has to be an input symbol or ϵ . Then, by definition of one-step computation it **must** be true that $(p, \epsilon) \in (q, w, X)$. Then, by the construction of G, we have $[qXr] \rightarrow w$ (see Slide 12 for the construction), and hence $[qXr] \stackrel{*}{\Rightarrow} w$.
- > Induction: (q,w,X) $\stackrel{\vdash}{\vdash}_{P}(p,\epsilon,\epsilon)$ in say k>1 steps. Let us assume that the in the first step of the computation, the symbol a is read from the input tape (or $a=\epsilon$). Let w=ax. Let's break the k-step computation to a single step followed by a k-1-step computation as detained in 1 (encircled in black). Let r_1 be the state of the PDA after the first step and let X be popped and $Y_1\cdots Y_k$ be pushed onto the stack after the first step/transition/move.
- > Now, the claim is that the k-1 step portion of the computation can be expanded into the sequence of computations as given in 2 (encircled in black). The reasoning is as follows. The ID $(r_1, x, Y_1 \cdots Y_k)$ eventually changes to (p, ϵ, ϵ) . There must be a finite number of moves after which the effective stack change is the popping of Y_1 , i.e., after a finite number of steps Y_2 is at the top for the very first time. The steps until then could have popped Y_1 , pushed a string, and then popped it eventually to reveal Y_2 at the top.

Explanation for Slide 13 (Continued)

> Let w_1 be the portion of the input tape read and r_2 be the state pf the PDA when this intermediate ID where Y_2 is at the top of the stack (i.e., the stack contains $Y_2 \cdots, Y_k$) is attained. Thus,

$$(r, x, Y_1 \cdots Y_k) \stackrel{*}{\underset{p}{\vdash}} (r_2, x \setminus w_1, Y_2, \cdots Y_k) \stackrel{*}{\underset{p}{\vdash}} (p, \epsilon, \epsilon),$$

where again we let $w \setminus w_1$ to be the suffix of w_1 in w.

> By a similar argument, after reading another segment, say w_2 , of the input tape and reaching (some) state r_3 , the top of the stack of the PDA contains Y_3 for the very first time. Thus,

$$(r,x,Y_1\cdots Y_k) \stackrel{*}{\underset{\rho}{\vdash}} (r_2,x\setminus w_1,Y_2,\cdots Y_k) \stackrel{*}{\underset{\rho}{\vdash}} (r_3,x\setminus (w_1w_2),Y_3,\cdots Y_k) \stackrel{*}{\underset{\rho}{\vdash}} (p,\epsilon,\epsilon).$$

- > Proceeding inductively, we see that 2 (encircled in black) holds. Note that x is then equal to the concatenation of the w_i 's, i.e., $x = w_1 \cdots w_k$.
- > Now focus on the computation within the blue block in 2. In no intermediate ID of the computation is Y_2 at the top of the stack (since $(r_2, x \setminus w_1, Y_2, \cdots Y_k)$ is the very first time Y_2 is at the top of the stack). Thus, the stack contents $Y_2 \cdots Y_k$ are never visited in this first set of moves, and hence, we see that

$$(r_1, x, Y_1 \cdots Y_k) \stackrel{*}{\underset{P}{\vdash}} (r_2, x \setminus w_1, Y_2, \cdots Y_k) \Rightarrow (r_1, w_1, Y_1) \stackrel{*}{\underset{P}{\vdash}} (r_2, \epsilon, \epsilon). \tag{3}$$

Explanation for Slide 13 (Continued)

> Similarly, we see that the in portion of the computation in orange, no intermediate ID of the computation has Y_3 at the top of the stack (since $(r_3, x \setminus (w_1w_2), Y_3, \cdots Y_k)$ is the very first time Y_3 is at the top of the stack). Hence,

$$(r_2, x \setminus w_2 \cdots w_k, Y_2, \cdots Y_k) \overset{*}{\underset{P}{\vdash}} (r_3, w_2 \cdots w_k, Y_3 \cdots Y_k) \Rightarrow (r_2, w_2, Y_2) \overset{*}{\underset{P}{\vdash}} (r_3, \epsilon, \epsilon). \tag{4}$$

- > We can proceed inductively to argue that $(r_i, w_i, Y_i) \stackrel{*}{\underset{P}{\vdash}} (r_{i+1}, \epsilon, \epsilon)$ for $i = 1, \ldots, k-1$.
- > Now each of these derivations $(r_i, w_i, Y_i) \vdash_{P} (r_{i+1}, \epsilon, \epsilon)$ for $i = 1, \ldots, k-1$ contain k-1 or less steps, because the number of steps they contain is at least one-less than the number of steps in the computation in 1 (encircled in black).
- > Consequently, by the induction hypothesis, we have $[r_iY_ir_{i+1}] \stackrel{*}{\Rightarrow}_G w_i$, $i=1,\ldots,k-1$. By the very same argument $[r_kY_kp] \stackrel{*}{\Rightarrow} w_k$.
- > Now focus on the yellow box at the top, the first one-step computation guarantees that there exists a production rule

$$[qXp] \to a[r_1Y_1r_2][r_2Y_2r_3] \cdots [r_{k-1}Y_{k-1}r_k][r_kY_kp]. \tag{5}$$

Now combining the above production with the known derivations in 4 (encircled in black), we see that $[qXp] \stackrel{*}{\Rightarrow} aw_1 \cdots w_k = ax = w$.

Explanation for Slide 14

Inductive proof for $(q, w, X) \stackrel{\hat{\vdash}}{\underset{p}{\vdash}} (p, \epsilon, \epsilon) \leftarrow [qXp] \stackrel{*}{\underset{c}{\Rightarrow}} w$ based on length of leftmost derivation.

- > Basis: $[qXp] \stackrel{*}{\underset{LM}{\Longrightarrow}} w$ be a one-step derivation. This can be possible only if $(p,\epsilon) \in (q,w,X)$, which then means $(q,w,X) \vdash_{p} (p,\epsilon,\epsilon)$.
- > Induction: Let $[qXp] \stackrel{*}{\underset{c}{\Rightarrow}} w$ in k > 1 steps. As in the previous direction, let us split the leftmost derivation into the first step and then rest.
- > The first step must involve the application of some production rule, say, $[qXp] \rightarrow a[r_0Y_1r_1][r_1Y_2r_2]\cdots [r_{k-1}Y_kp].$
- > By 1 (encircled in 1) each non-terminal $[r_{i-1}Y_ir_i]$ $i=1,\ldots,k$ must derive (via a leftmost derivation) a segment of w, say w_i in k-1 steps or less. $[w_i$ is the yield of the parse subtree in the parse tree of [qXp] with yield w, and the depth of the subtree is at most 1 less than the depth of the parse tree of [qXp].).
- \Rightarrow Hence, $[r_{i-1}Y_ir_i] \stackrel{*}{\underset{lM}{\Rightarrow}} w_i$ for $i=1,\ldots,k$ in k-1 steps or less (I've set $r_k=p$ here).

By induction hypothesis, then $(r_{i-1}, w_i, Y_i) \stackrel{*}{\underset{p}{\vdash}} (r_i, \epsilon, \epsilon)$.

> Then by Lemma 6.2.1, $(r_{i-1}, w_i \cdots w_k, Y_i \cdots Y_k) \stackrel{*}{\vdash}_p (r_i, w_{i+1} \cdots w_k, Y_{i+1} \cdots Y_k)$. Thus,

$$(q, w, X) \vdash_{p} (r_0, w_1 \cdots w_k, Y_1 \cdots Y_k) \vdash_{p}^* (r_1, w_2 \cdots w_k, Y_2 \cdots Y_k) \vdash_{p}^* (r_k, \epsilon, \epsilon) = (p, \epsilon, \epsilon).$$