
COMP3630/6360: Theory of Computation
Semester 1, 2022

The Australian National University

Turing Machines

1 / 23

This lecture covers Chapter 8 of HMU: Turing Machines

 Turing Machine

 Extensions of Turing Machines

 Restrictions of Turing Machines

Additional Reading: Chapter 8 of HMU.

Turing Machine: Informal Definition

Finite Control

B B B B BBa bc a b b · · ·· · ·

ó An tape extending infinitely in both sides

ó A reading head that can edit tape, move right or left.

ó A finite control.

ó A string is accepted if finite control reaches a final/accepting state

3 / 23

Turing Machine: Formal Definition

A Turing machine M = (Q,Σ,Γ, δ, q0,B,F) comprises of:

ó Q: finite set of states

ó Σ: finite set of input symbols

ó Γ: finite set of tape symbols such that Σ ⊆ Γ

ó δ: transition function. δ is a partial function over Q × Γ, where the first
component is viewed as the present state, and the second is viewed as the tape
symbol read. If δ(q,X) is defined, then

Present state

Next StateTape symbol Reading head direction to move next

‹(q;X) = (q0; Y; D) The symbol replacing X

ó B ∈ Γ \ Σ is the blank symbol. All but a finite number of tape symbols are Bs.

ó q0: the initial state of the TM.

ó F : the set of final/accepting states fo the TM.

ó Head always moves to the left or right. Being stationary is not an option.

ó The Turing Machine is deterministic.

4 / 23

Describing TMs

ó Turing machines can be defined by describing δ using a transition table.

ó They can also be defined using transition diagrams (with labels appropriately altered)

q q0If ‹(q;X) = (q0; Y; D)

X=Y D

A TM that accepts any binary string that does not contain 111

q0

1=
1
!

1=1 !

1=1 !

0=0!

0=
0
!

q1

q2q3

qf

B=B
!

B=B !

B
=B

!

0=0 !

5 / 23

Instantaneous Descriptions of TMs

ó An instantaneous description (or configuration) of a TM is a complete description of
the system that enables one to determine the trajectory of the TM as it operates.

ó The instantaneous description or configuration or ID of a TM contains 3 parts: (a)
The (finite, non-trivial) portion of tape to the left of the reading head; (b) the state
that the TM is presently in; and (c) the (finite, non-trivial) portion of the tape to the
right of the reading head.

q B B X1 X2 X3 X‘· · · · · · · · ·· · · Xi

1 i ‘

head

q B B X1 X2 X3 · · · · · ·· · · X‘

B B

B B

z }| {
i Blanks

segment to the strict leftz }| {
X1 · · ·Xi�1

statez}|{
q

segment from the head onwardsz }| {
Xi · · ·X‘

segment to the strict leftz }| {
X1 · · ·X‘Bi�1

statez}|{
q

head

· · ·

q B BX1 X2 X3 · · ·· · · X‘B B

z }| {

head

· · ·

i Blanks

· · · statez}|{
q

segment from the head onwardsz }| {
BiX1 · · ·X‘

IDState, Tape contents, Reading head location

6 / 23

‘Moves’ of a TM

ó Just as in the case of a PDA, we use
M̀

to indicate a single move of a TM M, and
∗

M̀

to indicate zero or a finite number of moves of a TM.

Next IDPresent ID

X1 · · ·Xi�1qXi · · ·X‘

X1 · · ·X‘Bi�1q

qBiX1 : : : X‘

Transition

‹(q;Xi) = (q0; Y; R)

‹(q;Xi) = (q0; Y; L)

X1 · · ·Xi�1Y q
0Xi+1 · · ·X‘

X1 · · ·Xi�2q
0Xi�1Y Xi+1 · · ·X‘

‹(q;B) = (q0; Y; R)

‹(q;B) = (q0; Y; R)

‹(q;B) = (q0; Y; L)

‹(q;B) = (q0; Y; L)

X1 · · ·X‘Bi�1Y q0

(1 < i < ‘)

X1 · · ·X‘�1q
0X‘Y i = 1

X1 · · ·X‘Bi�2q0BY i > 1
{
Y q0X2 · · ·X‘ i = 0

Y q0Bi�1X1 · · ·X‘ i > 0
{
q0BY Bi�1X1 · · ·X‘ i > 0

q0BY X2 · · ·X‘ i = 0{
7 / 23

Language accepted by a TM

ó A string w is in the language accepted by a TM M iff q0w
∗

M̀
αpβ for some p ∈ F .

ó Another notion of acceptance that is common is to require a TM to halt (i.e., no
further transitions are possible).

ó It is always possible to design a TM such that the TM halts when it reaches a final
state without changing the language the TM accepts.

ó However, we cannot require (all) TMs to halt for all inputs.

ó A language L is recursively enumerable if it is accepted by some TM.

ó A language L is recursive if it is accepted by a TM that always halts on its input.

Rec
ur

siv
eRegular

Con
tex

t-f
re

e

Rec
ur

siv
ely

Enu
mer

ab
le

(R
E)

8 / 23

Extensions of TMs

Extensions of TMs

9 / 23

Extensions of TMs

Multiple-Track TMs

Multiple-track TM

ó There are k tracks, each having symbols written on them.

ó The machine can only read symbols from each tape corresponding to one location,
i.e., all symbols in a column at any one time.

ó A k-track TM with tape alphabet Γ has the same langauge-acceptance power as a
TM with tape alphabet Γk .

Finite Control

· · ·· · ·
· · ·· · ·

· · ·· · ·

...

X1

X2

Xk

10 / 23

Extensions of TMs

Multi-tape TMs

Multiple-tape TM

ó There are k tapes, each having symbols written on them.

ó The machine can each tape independently, i.e., the symbols read from each tape need
not correspond to the same location

ó After a read of each tapes, each reading head can move independently to the right,
left, or stay stationary.

Finite Control

· · ·· · ·

· · ·· · ·

· · ·· · ·

...

X1

X2

Xk

11 / 23

Extensions of TMs

Multi-tape TMs

Theorem 7.1.1

Every language that is accepted by a multi-tape TM is also recursively enumerable (i.e.,
accepted by some ‘standard’ TM).

Proof of Theorem 7.1.1

ó Let L be accepted by a k-tape TM M. We’ll devise a 2k-track TM M ′ that accepts L.

ó Every even tape of M ′ has the same alphabet as that of the k-tape TM. The 2i th

track of M ′ contains exactly the same contents as the i th tape of M.

ó Every odd track has an alphabet {B, †, }, and contains a single †. The 2i − 1th track
of M ′ contains † at the location where the i th reading head of M is located.

Finite Control Finite Control

· · ·· · ·

· · ·· · ·

· · ·· · ·· · ·

10 11

54

1312

6 14

†

12

†

†

0 1 1 0 0 1 1 0 0

1 1 1 1 0 0 0
0 0 0 0

0 1 1 0 0 1 1 0 0

0
1 1 1 1

1 0 1 0 1 0 1 0 11 0 1 0 1 0 1 0 1

M 0 M

· · ·· · ·

12 / 23

Extensions of TMs

Multi-tape TMs

Proof of Theorem 7.1.1

ó The state of M ′ has 3 components: (a) the state of M; (b) the number of †s to its
strict left; and (c) a vector of length k with each component taking value in Γ∪ {?} .

ó Each move of M takes multiple moves of M ′, and is a sweep of the tape from the
location of the leftmost † to that of the rightmost † and back performing the changes
to tracks that M would do to its corresponding tapes.

ó At the beginning of the sweep, the head of M ′ is at a location where the leftmost † is
and the state of M ′ is (q, 0, [?, · · · , ?]). The head moves to the right uncovering †s
and the corresponding track symbols (are stored in the third component of the state).

ó The right sweep ends when the second component is k.

Finite Control Finite Control

· · ·· · ·

· · ·· · ·

· · ·· · ·· · ·

1

0 1 1 0 0 1 1 0 0

1 1 1 1 0 0 0
0 0 0 0

0
1 1 1 1

1 0 1 0 1 0 1 0 11 0 1 0 1 0 1 0 1

M 0 M

· · ·· · ·

†
0 1 1 0 0 1 1 0 0

†

†

1

1

1

State: q0State: (q0; 0; [0; 1; 1])

13 / 23

Extensions of TMs

Multi-tape TMs

Proof of Theorem 7.1.1

ó At this stage, M ′ knows the input symbols M will have read, and knows what actions
to take.

ó It then sweeps left making appropriate changes to the tracks (just like M does to its
tape) each time a † is encountered. M ′ also moves the †s accordingly.

ó The left sweep ends when the second component is zero. At this time, M ′ would
have completed moving the †s and the track contents; they’ll now match those of M.

ó M ′ then moves the state to (q′, 0, [?, · · · , ?]) and start the next sweep if q′ is not a
final state.

ó Note that M ′ mimics M and hence the languages accepted are identical.

14 / 23

Extensions of TMs

Multi-tape TMs

ó The running time of a TM M with input w is the number of moves M makes before
it halts. (If it does not, the running time is ∞).

ó The time complexity TM : {0, 1, . . .} → {0, 1, . . .} of a TM M is defined as follows:

ó TM(n) := maximum running time of M for an input w of length n symbols.

Theorem 7.1.2

The time taken for M ′ in Theorem 7.1.2 to process n moves of M is O(n2).

Outline of Proof of Theorem 7.1.2

ó After n moves of M, any two heads of M can
be at most 2n locations apart.

ó Each sweep then requires 4n moves of M ′.

ó Each track update requires a finite number of
moves. Totally, to update the tracks, Θ(k)
time steps are needed.

! ! !

!

· · ·

· · ·

Moves of M0 n

Lo
ca

tio
n

of
ta

pe
he

ad
s

n

0

�n

2n
ap

ar
t

15 / 23

Extensions of TMs

Non-deterministic TMs

Non-deterministic TM: δ(q,X) is a set of triples representing possible moves.

Theorem 7.1.3

For every non-deterministic TM M, there is a TM N such that L(M) = L(N).

Outline of Proof of Theorem 7.1.3

ID1

ID2;1 ID2;2 ID2;k

ID3;1 ID3;2 ID3;3 ID3;4 ID3;‘

· · ·

· · ·

ID1

ID3;1 ID3;2

ID3;3 ID3;4

‡ †

ID1 ID2;1 ID2;2‡ † † · · ·† † ID2;k †

ID1 ID2;1 ID2;2‡ † · · ·† † ID2;k † † †

ID3;1 ID3;2ID1 ID2;1 ID2;2‡ · · ·† † ID2;k † † † † †

‡

‡ ‡

Tape 1

(If M does not halt at ID1)

(If M does not halt at ID1 and ID2;1)

(If M does not halt at ID1, ID2;1 and ID2;2)

(N does Breadth-First exploration of IDs of M)

16 / 23

Extensions of TMs

Outline of Proof of Theorem 7.1.3

ó We can devise a 2-tape TM M that simulates N.

ó M first replaces the content of the first tape by ‡ followed by the ID that N is initially
in, which is then followed by a special symbol †, which serves as ID separator. (M
uses the second tape as scratch tape to enable this operation).

ó If the ID corresponds to a final state, N halts (as would M).

ó If not, M then identifies all possible choices for the next IDs for N and enters each
one of them followed by † at the right end of it’s first tape. (Again, M uses the
second tape as scratch tape to enable this operation)

ó M then searches for † to the right of ‡, changes the † to a ‡ (to signify that it is
processing the succeeding ID), and processes that ID in the similar way.

ó M halts at an ID iff M would at that ID.

17 / 23

Restrictions of TMs

Restrictions of TMs

18 / 23

Restrictions of TMs

TM Semi-infinite Tape

Theorem 7.2.1

Every recursively enumerable language is also accepted by a TM with semi-infinite tape.

Outline of Proof of Theorem 7.2.1

ó Given a TM M that accepts a language L, construct a two-track TM M ′ as follows.

ó The first and second tracks of M ′ are the R and L semi-infinite parts of the tape of M.

ó First, write a special symbol, say † at the leftmost part of the second track; this
indicates to M ′ that a left move is not to be attempted at this location.

ó At any time, M ′ keeps track of whether M is to the right or left of its start location.

ó If M is to the strict right of its start location, M ′ mimics M on the first track. If M is
to the strict left of its start location, M ′ mimics M on second track, but with the
head directions reversed. M ′ detects the start by the † symbol.

ó It can be formally shown that M ′ accepts a string iff M accepts it.

0 1�1 2�2

BB ab b ab b

† BB

�1 �2

0 1 2

· · ·· · ·
· · ·· · ·

· · ·

· · ·

· · ·

M 0
M L$ RL$ RL$ R

R $ L

19 / 23

Restrictions of TMs

Multi-stack Machines

A multistack machne is a PDA with several independent stacks (i.e., one can be popping
a symbol, while the other is writing a symbol).

Theorem 7.2.2

Every recursively enumerable language is accepted by a two-stack PDA

Outline of Proof of Theorem 7.2.2

ab

S S

B B

TM

Finite Control Finite Control

ab

PDA

aa

SFinite Control

ab

PDA

a

†

a

a

b
1 2

Finite Control

ab

PDA

a

3
†
a

a

b †

R semi-infinite portion of TM’s tape

Strict L semi-infinite portion of TM’s tape

ó † indicates the end of the stack content (to prevent PDA from halting)

ó If TM moves right changing tape symbol X to Y and state from q to q′, PDA moves
from state q to q′ popping X from left stack and pushing Y to the right stack.

20 / 23

Restrictions of TMs

Counter Machines

ó A counter machine is a multi-stack machine whose stack alphabet contains two
symbols: Z0 (stack end marker) and X

ó Z0 is initially in the stack.

ó Z0 may be replaced by X iZ0 for some i ≥ 0

ó X may be replaced by X i for some i ≥ 0.

ó A counter machine effectively stores a non-negative number.

Finite Control

X
Z0

X

X

X

Z0

X

X

X

X

21 / 23

Restrictions of TMs

Counter Machines

Theorem 7.2.3

Every recursively enumerable language is accepted by a three-counter machine

Outline of Proof of Theorem 7.2.3

ó We know a two-stack PDA can simulate any TM.

ó We’ll show that a 3-counter machine can simulate any (two stack) PDA.

ó WLOG, let the stack alphabet of Γ = {0, 1, . . . , r − 1}.
ó Suppose the first stack contains Y1(top), . . . ,Yk . Then the first counter stores
Y1 + rY2 + · · ·+ r k−1Yk . Similarly for the second stack.

ó The third counter is used to change the two stack contents.

ó Popping the top symbol a stack (say A) = finding quotient when
Y1 + rY2 + · · ·+ r k−1Yk is divided by r .

ó pop r X’s from stack A, and push a single X on the third stack. Repeat until all
X s are exhausted on the stack where popping is performed.

ó Now empty stack A and copy the third stack contents onto stack A.

ó Change Y1 to some Y ′1 requires adding or subtracting, which is done by popping or
pushing the corresponding number of X s.

22 / 23

Restrictions of TMs

Counter Machines

Outline of Proof of Theorem 7.2.3

ó pushing a symbol Z onto a stack (say A) = compute rC + Z where C is the number
presently stored in the stack A.

ó pop one X from stack A, and push r X s on the third stack.
ó Finally push Z X s onto the third stack. Now empty stack A and copy the third

stack contents onto stack A.

ó Since the above three are the only operations needed to simulate a TM on a two-stack
PDA, we can stimulate a 2-stack PDA and hence a TM using a 3-counter machine.

Theorem 7.2.4

Every recursively enumerable language is accepted by a two-counter machine

Outline of Proof of Theorem 7.2.4

ó The key idea: simulate three counters using one, and use the other for manipulations.

ó The first counter stores 2i3j5k where i , j , k are the contents of the 3-counter machine.

ó Updates to the stack involve: (a) divide by 2,3, or 5; (b) multiply by 2,3, or 5; or (c)
identify if i or j or k is zero (check divisibility).

ó Each operation can be easily seen to be done with a spare counter.

23 / 23

	Extensions of TMs
	Restrictions of TMs

