COMP3630/6360: Theory of Computation Semester 1, 2022 The Australian National University

Turing Machines

This lecture covers Chapter 8 of HMU: Turing Machines

- > Turing Machine
- > Extensions of Turing Machines
- > Restrictions of Turing Machines

Additional Reading: Chapter 8 of HMU.

Turing Machine: Informal Definition

- > An tape extending infinitely in both sides
- > A reading head that can edit tape, move right or left.
- > A finite control.
- ightarrow A string is accepted if finite control reaches a final/accepting state

Turing Machine: Formal Definition

- A Turing machine $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ comprises of:
 - > Q: finite set of states
 - Σ : finite set of input symbols
 - Σ Γ : finite set of tape symbols such that $\Sigma \subseteq \Gamma$
 - > δ : transition function. δ is a **partial function** over $Q \times \Gamma$, where the first component is viewed as the present state, and the second is viewed as the tape symbol read. If $\delta(q,X)$ is defined, then

- ightarrow $B \in \Gamma \setminus \Sigma$ is the blank symbol. All but a finite number of tape symbols are Bs.
- $> q_0$: the initial state of the TM.
- > F: the set of final/accepting states fo the TM.
- > Head always moves to the left or right. Being stationary is not an option.
- > The Turing Machine is deterministic.

Describing TMs

- > Turing machines can be defined by describing δ using a transition table.
- > They can also be defined using transition diagrams (with labels appropriately altered)

A TM that accepts any binary string that does not contain 111

Instantaneous Descriptions of TMs

- > An instantaneous description (or configuration) of a TM is a complete description of the system that enables one to determine the trajectory of the TM as it operates.
- > The instantaneous description or configuration or ID of a TM contains 3 parts: (a) The (finite, non-trivial) portion of tape to the left of the reading head; (b) the state that the TM is presently in; and (c) the (finite, non-trivial) portion of the tape to the right of the reading head.

'Moves' of a TM

> Just as in the case of a PDA, we use \vdash to indicate a single move of a TM M, and \vdash to indicate zero or a finite number of moves of a TM.

Present ID	Transition	Next ID
$X_1\cdots X_{i-1}qX_i\cdots X_\ell$	$\delta(q,X_i)=(q',Y,R)$	$X_1 \cdots X_{i-1} Y q' X_{i+1} \cdots X_{\ell}$
$(1 < i < \ell)$	$\delta(q,X_i)=(q',Y,L)$	$X_1 \cdots X_{i-2} q' X_{i-1} Y X_{i+1} \cdots X_{\ell}$
$X_1 \cdots X_{\ell} B^{i-1} q$	$\delta(q,B)=(q',Y,R)$	$X_1 \cdots X_\ell B^{i-1} Y q'$
	$\delta(q,B)=(q',Y,L)$	$\begin{cases} X_1 \cdots X_{\ell-1} q' X_{\ell} Y & i = 1 \\ X_1 \cdots X_{\ell} B^{i-2} q' B Y & i > 1 \end{cases}$
	$\delta(q,B)=(q',Y,R)$	$\begin{cases} Yq'X_2\cdots X_{\ell} & i=0\\ Yq'B^{i-1}X_1\cdots X_{\ell} & i>0 \end{cases}$
$qB^iX_1\ldots X_\ell$	$\delta(q,B)=(q',Y,L)$	$\begin{cases} q'BYX_2\cdots X_{\ell} & i=0\\ q'BYB^{i-1}X_1\cdots X_{\ell} & i>0 \end{cases}$

Language accepted by a TM

- > A string w is in the language accepted by a TM M iff $q_0w \overset{*}{\underset{M}{\vdash}} \alpha p \beta$ for some $p \in F$.
- > Another notion of acceptance that is common is to require a TM to halt (i.e., no further transitions are possible).
- > It is always possible to design a TM such that the TM halts when it reaches a final state without changing the language the TM accepts.
- > However, we cannot require (all) TMs to halt for all inputs.
- > A language *L* is **recursively enumerable** if it is accepted by some TM.
- > A language L is **recursive** if it is accepted by a TM that **always** halts on its input.

Extensions of TMs

Multiple-Track TMs

Multiple-track TM

- > There are *k* tracks, each having symbols written on them.
- > The machine can only read symbols from each tape corresponding to **one** location, i.e., all symbols in a column at any one time.
- > A k-track TM with tape alphabet Γ has the same langauge-acceptance power as a TM with tape alphabet Γ^k .

Multiple-tape TM

- > There are *k* tapes, each having symbols written on them.
- > The machine can each tape independently, i.e., the symbols read from each tape need not correspond to the same location
- > After a read of each tapes, each reading head can move independently to the right, left, or stay stationary.

Theorem 7.1.1

Every language that is accepted by a multi-tape TM is also recursively enumerable (i.e., accepted by some 'standard' TM).

Proof of Theorem 7.1.1

- \rightarrow Let L be accepted by a k-tape TM M. We'll devise a 2k-track TM M' that accepts L.
- > Every even tape of M' has the same alphabet as that of the k-tape TM. The $2i^{\text{th}}$ track of M' contains exactly the same contents as the i^{th} tape of M.
- > Every odd track has an alphabet $\{B, \dagger, \}$, and contains a single \dagger . The $2i-1^{\text{th}}$ track of M' contains \dagger at the location where the i^{th} reading head of M is located.

Proof of Theorem 7.1.1

- > The state of M' has 3 components: (a) the state of M; (b) the number of †s to its strict left; and (c) a vector of length k with each component taking value in $\Gamma \cup \{?\}$.
- \rightarrow Each move of M takes multiple moves of M', and is a sweep of the tape from the location of the leftmost \dagger to that of the rightmost \dagger and back performing the changes to tracks that M would do to its corresponding tapes.
- > At the beginning of the sweep, the head of M' is at a location where the leftmost \dagger is and the state of M' is $(q,0,[?,\cdots,?])$. The head moves to the right uncovering \dagger s and the corresponding track symbols (are stored in the third component of the state).

and the state of M is (4, 6, [1, 7]). The head moves to the right uncovering (4, 6, [1, 7]) and the corresponding track symbols (are stored in the third component of the state).

The right sweep ends when the second component is k.

M Finite Control

Proof of Theorem 7.1.1

- > At this stage, M' knows the input symbols M will have read, and knows what actions to take.
- > It then sweeps left making appropriate changes to the tracks (just like M does to its tape) each time a \dagger is encountered. M' also moves the \dagger s accordingly.
- > The left sweep ends when the second component is zero. At this time, M' would have completed moving the †s and the track contents; they'll now match those of M.
- > M' then moves the state to $(q', 0, [?, \cdots, ?])$ and start the next sweep if q' is not a final state.
- \rightarrow Note that M' mimics M and hence the languages accepted are identical.

- > The running time of a TM M with input w is the number of moves M makes before it halts. (If it does not, the running time is ∞).
- > The time complexity $T_M:\{0,1,\ldots\}\to\{0,1,\ldots\}$ of a TM M is defined as follows:
 - $T_M(n) := maximum running time of M for an input w of length n symbols.$

Theorem 7.1.2

The time taken for M' in Theorem 7.1.2 to process n moves of M is $O(n^2)$.

Outline of Proof of Theorem 7.1.2

- > After *n* moves of *M*, any two heads of *M* can be at most 2*n* locations apart.
- \rightarrow Each sweep then requires 4n moves of M'.
- > Each track update requires a finite number of moves. Totally, to update the tracks, $\Theta(k)$ time steps are needed.

Non-deterministic TMs

Non-deterministic TM: $\delta(q, X)$ is a set of triples representing possible moves.

Theorem 7.1.3

For every non-deterministic TM M, there is a TM N such that L(M) = L(N).

Outline of Proof of Theorem 7.1.3

- \rightarrow We can devise a 2-tape TM M that simulates N.
- > M first replaces the content of the first tape by ‡ followed by the ID that N is initially in, which is then followed by a special symbol †, which serves as ID separator. (M uses the second tape as scratch tape to enable this operation).
- \rightarrow If the ID corresponds to a final state, N halts (as would M).
- > If not, M then identifies all possible choices for the next IDs for N and enters each one of them followed by \dagger at the right end of it's first tape. (Again, M uses the second tape as scratch tape to enable this operation)
- > *M* then searches for † to the right of ‡, changes the † to a ‡ (to signify that it is processing the succeeding ID), and processes that ID in the similar way.
- > M halts at an ID iff M would at that ID.

Restrictions of TMs

Restrictions of TMs

TM Semi-infinite Tape

Theorem 7.2.1

Every recursively enumerable language is also accepted by a TM with semi-infinite tape.

Outline of Proof of Theorem 7.2.1

- \rightarrow Given a TM M that accepts a language L, construct a two-track TM M' as follows.
- \rightarrow The first and second tracks of M' are the R and L semi-infinite parts of the tape of M.
- > First, write a special symbol, say \dagger at the leftmost part of the second track; this indicates to M' that a left move is not to be attempted at this location.
- \rightarrow At any time, M' keeps track of whether M is to the right or left of its start location.
- > If M is to the strict right of its start location, M' mimics M on the first track. If M is to the strict left of its start location, M' mimics M on second track, but with the head directions reversed. M' detects the start by the \dagger symbol.
- \rightarrow It can be formally shown that M' accepts a string iff M accepts it.

Multi-stack Machines

A multistack machne is a PDA with several independent stacks (i.e., one can be popping a symbol, while the other is writing a symbol).

Theorem 7.2.2

Every recursively enumerable language is accepted by a two-stack PDA

- > † indicates the end of the stack content (to prevent PDA from halting)
- > If TM moves **right** changing tape symbol X to Y and state from q to q', PDA moves from state q to q' popping X from **left** stack and pushing Y to the **right** stack.

Counter Machines

- > A counter machine is a multi-stack machine whose stack alphabet contains two symbols: Z₀ (stack end marker) and X
- $> Z_0$ is initially in the stack.
- > Z_0 may be replaced by $X^i Z_0$ for some $i \ge 0$
- > X may be replaced by X^i for some $i \ge 0$.
- > A counter machine effectively stores a non-negative number.

Counter Machines

Theorem 7.2.3

Every recursively enumerable language is accepted by a three-counter machine

Outline of Proof of Theorem 7.2.3

- > We know a two-stack PDA can simulate any TM.
- > We'll show that a 3-counter machine can simulate any (two stack) PDA.
- \rightarrow WLOG, let the stack alphabet of $\Gamma = \{0, 1, \dots, r-1\}$.
- > Suppose the first stack contains $Y_1(top), \ldots, Y_k$. Then the first counter stores $Y_1 + rY_2 + \cdots + r^{k-1}Y_k$. Similarly for the second stack.
- > The third counter is used to change the two stack contents.
- > Popping the top symbol a stack (say A) = finding quotient when $Y_1 + rY_2 + \cdots + r^{k-1}Y_k$ is divided by r.
 - > pop r X's from stack A, and push a single X on the third stack. Repeat until all Xs are exhausted on the stack where popping is performed.
 - > Now empty stack A and copy the third stack contents onto stack A.
- > Change Y_1 to some Y_1' requires adding or subtracting, which is done by popping or pushing the corresponding number of X_s .

Counter Machines

Outline of Proof of Theorem 7.2.3

- > pushing a symbol Z onto a stack (say A) = compute rC + Z where C is the number presently stored in the stack A.
 - \rightarrow pop one X from stack A, and push r Xs on the third stack.
 - > Finally push Z Xs onto the third stack. Now empty stack A and copy the third stack contents onto stack A.
- > Since the above three are the only operations needed to simulate a TM on a two-stack PDA, we can stimulate a 2-stack PDA and hence a TM using a 3-counter machine.

Theorem 7.2.4

Every recursively enumerable language is accepted by a two-counter machine

Outline of Proof of Theorem 7.2.4

- > The key idea: simulate three counters using one, and use the other for manipulations.
- \rightarrow The first counter stores $2^{i}3^{j}5^{k}$ where i,j,k are the contents of the 3-counter machine.
- > Updates to the stack involve: (a) divide by 2,3, or 5; (b) multiply by 2,3, or 5; or (c) identify if *i* or *j* or *k* is zero (check divisibility).
- > Each operation can be easily seen to be done with a spare counter.