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This lecture covers Chapter 8 of HMU: Turing Machines

 Turing Machine

 Extensions of Turing Machines

 Restrictions of Turing Machines

Additional Reading: Chapter 8 of HMU.



Turing Machine: Informal Definition

Finite Control

B B B B BBa bc a b b · · ·· · ·

ó An tape extending infinitely in both sides

ó A reading head that can edit tape, move right or left.

ó A finite control.

ó A string is accepted if finite control reaches a final/accepting state
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Turing Machine: Formal Definition

A Turing machine M = (Q,Σ,Γ, δ, q0,B,F ) comprises of:

ó Q: finite set of states

ó Σ: finite set of input symbols

ó Γ: finite set of tape symbols such that Σ ⊆ Γ

ó δ: transition function. δ is a partial function over Q × Γ, where the first
component is viewed as the present state, and the second is viewed as the tape
symbol read. If δ(q,X ) is defined, then

Present state

Next StateTape symbol Reading head direction to move next

‹(q;X) = (q0; Y; D) The symbol replacing X

ó B ∈ Γ \ Σ is the blank symbol. All but a finite number of tape symbols are Bs.

ó q0: the initial state of the TM.

ó F : the set of final/accepting states fo the TM.

ó Head always moves to the left or right. Being stationary is not an option.

ó The Turing Machine is deterministic.
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Describing TMs

ó Turing machines can be defined by describing δ using a transition table.

ó They can also be defined using transition diagrams (with labels appropriately altered)

q q0If ‹(q;X) = (q0; Y; D)

X=Y D

A TM that accepts any binary string that does not contain 111

q0
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1
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1=1 !
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B=B
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B
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Instantaneous Descriptions of TMs

ó An instantaneous description (or configuration) of a TM is a complete description of
the system that enables one to determine the trajectory of the TM as it operates.

ó The instantaneous description or configuration or ID of a TM contains 3 parts: (a)
The (finite, non-trivial) portion of tape to the left of the reading head; (b) the state
that the TM is presently in; and (c) the (finite, non-trivial) portion of the tape to the
right of the reading head.

q B B X1 X2 X3 X‘· · · · · · · · ·· · · Xi

1  i  ‘

head

q B B X1 X2 X3 · · · · · ·· · · X‘

B B

B B

z }| {
i Blanks

segment to the strict leftz }| {
X1 · · ·Xi�1

statez}|{
q

segment from the head onwardsz }| {
Xi · · ·X‘

segment to the strict leftz }| {
X1 · · ·X‘Bi�1

statez}|{
q

head

· · ·

q B BX1 X2 X3 · · ·· · · X‘B B

z }| {

head

· · ·

i Blanks

· · · statez}|{
q

segment from the head onwardsz }| {
BiX1 · · ·X‘

IDState, Tape contents, Reading head location
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‘Moves’ of a TM

ó Just as in the case of a PDA, we use
M̀

to indicate a single move of a TM M, and
∗

M̀

to indicate zero or a finite number of moves of a TM.

Next IDPresent ID

X1 · · ·Xi�1qXi · · ·X‘

X1 · · ·X‘Bi�1q

qBiX1 : : : X‘

Transition

‹(q;Xi ) = (q0; Y; R)

‹(q;Xi ) = (q0; Y; L)

X1 · · ·Xi�1Y q
0Xi+1 · · ·X‘

X1 · · ·Xi�2q
0Xi�1Y Xi+1 · · ·X‘

‹(q;B) = (q0; Y; R)

‹(q;B) = (q0; Y; R)

‹(q;B) = (q0; Y; L)

‹(q;B) = (q0; Y; L)

X1 · · ·X‘Bi�1Y q0

(1 < i < ‘)

X1 · · ·X‘�1q
0X‘Y i = 1

X1 · · ·X‘Bi�2q0BY i > 1
{
Y q0X2 · · ·X‘ i = 0

Y q0Bi�1X1 · · ·X‘ i > 0
{
q0BY Bi�1X1 · · ·X‘ i > 0

q0BY X2 · · ·X‘ i = 0{
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Language accepted by a TM

ó A string w is in the language accepted by a TM M iff q0w
∗

M̀
αpβ for some p ∈ F .

ó Another notion of acceptance that is common is to require a TM to halt (i.e., no
further transitions are possible).

ó It is always possible to design a TM such that the TM halts when it reaches a final
state without changing the language the TM accepts.

ó However, we cannot require (all) TMs to halt for all inputs.

ó A language L is recursively enumerable if it is accepted by some TM.

ó A language L is recursive if it is accepted by a TM that always halts on its input.
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Extensions of TMs

Extensions of TMs
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Extensions of TMs

Multiple-Track TMs

Multiple-track TM

ó There are k tracks, each having symbols written on them.

ó The machine can only read symbols from each tape corresponding to one location,
i.e., all symbols in a column at any one time.

ó A k-track TM with tape alphabet Γ has the same langauge-acceptance power as a
TM with tape alphabet Γk .

Finite Control

· · ·· · ·
· · ·· · ·

· · ·· · ·

...

X1

X2

Xk
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Extensions of TMs

Multi-tape TMs

Multiple-tape TM

ó There are k tapes, each having symbols written on them.

ó The machine can each tape independently, i.e., the symbols read from each tape need
not correspond to the same location

ó After a read of each tapes, each reading head can move independently to the right,
left, or stay stationary.

Finite Control

· · ·· · ·

· · ·· · ·

· · ·· · ·

...

X1

X2

Xk
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Extensions of TMs

Multi-tape TMs

Theorem 7.1.1

Every language that is accepted by a multi-tape TM is also recursively enumerable (i.e.,
accepted by some ‘standard’ TM).

Proof of Theorem 7.1.1

ó Let L be accepted by a k-tape TM M. We’ll devise a 2k-track TM M ′ that accepts L.

ó Every even tape of M ′ has the same alphabet as that of the k-tape TM. The 2i th

track of M ′ contains exactly the same contents as the i th tape of M.

ó Every odd track has an alphabet {B, †, }, and contains a single †. The 2i − 1th track
of M ′ contains † at the location where the i th reading head of M is located.

Finite Control Finite Control

· · ·· · ·

· · ·· · ·

· · ·· · ·· · ·

10 11

54

1312

6 14

†

12

†

†

0 1 1 0 0 1 1 0 0

1 1 1 1 0 0 0
0 0 0 0

0 1 1 0 0 1 1 0 0

0
1 1 1 1

1 0 1 0 1 0 1 0 11 0 1 0 1 0 1 0 1

M 0 M

· · ·· · ·
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Extensions of TMs

Multi-tape TMs

Proof of Theorem 7.1.1

ó The state of M ′ has 3 components: (a) the state of M; (b) the number of †s to its
strict left; and (c) a vector of length k with each component taking value in Γ∪ {?} .

ó Each move of M takes multiple moves of M ′, and is a sweep of the tape from the
location of the leftmost † to that of the rightmost † and back performing the changes
to tracks that M would do to its corresponding tapes.

ó At the beginning of the sweep, the head of M ′ is at a location where the leftmost † is
and the state of M ′ is (q, 0, [?, · · · , ?]). The head moves to the right uncovering †s
and the corresponding track symbols (are stored in the third component of the state).

ó The right sweep ends when the second component is k.

Finite Control Finite Control

· · ·· · ·

· · ·· · ·

· · ·· · ·· · ·

1

0 1 1 0 0 1 1 0 0

1 1 1 1 0 0 0
0 0 0 0

0
1 1 1 1

1 0 1 0 1 0 1 0 11 0 1 0 1 0 1 0 1

M 0 M

· · ·· · ·

†
0 1 1 0 0 1 1 0 0

†

†

1

1

1

State: q0State: (q0; 0; [0; 1; 1])
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Extensions of TMs

Multi-tape TMs

Proof of Theorem 7.1.1

ó At this stage, M ′ knows the input symbols M will have read, and knows what actions
to take.

ó It then sweeps left making appropriate changes to the tracks (just like M does to its
tape) each time a † is encountered. M ′ also moves the †s accordingly.

ó The left sweep ends when the second component is zero. At this time, M ′ would
have completed moving the †s and the track contents; they’ll now match those of M.

ó M ′ then moves the state to (q′, 0, [?, · · · , ?]) and start the next sweep if q′ is not a
final state.

ó Note that M ′ mimics M and hence the languages accepted are identical.
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Extensions of TMs

Multi-tape TMs

ó The running time of a TM M with input w is the number of moves M makes before
it halts. (If it does not, the running time is ∞).

ó The time complexity TM : {0, 1, . . .} → {0, 1, . . .} of a TM M is defined as follows:

ó TM(n) := maximum running time of M for an input w of length n symbols.

Theorem 7.1.2

The time taken for M ′ in Theorem 7.1.2 to process n moves of M is O(n2).

Outline of Proof of Theorem 7.1.2

ó After n moves of M, any two heads of M can
be at most 2n locations apart.

ó Each sweep then requires 4n moves of M ′.

ó Each track update requires a finite number of
moves. Totally, to update the tracks, Θ(k)
time steps are needed.

! ! !

!
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Extensions of TMs

Non-deterministic TMs

Non-deterministic TM: δ(q,X ) is a set of triples representing possible moves.

Theorem 7.1.3

For every non-deterministic TM M, there is a TM N such that L(M) = L(N).

Outline of Proof of Theorem 7.1.3

ID1

ID2;1 ID2;2 ID2;k

ID3;1 ID3;2 ID3;3 ID3;4 ID3;‘

· · ·

· · ·

ID1

ID3;1 ID3;2

ID3;3 ID3;4

‡ †

ID1 ID2;1 ID2;2‡ † † · · ·† † ID2;k †

ID1 ID2;1 ID2;2‡ † · · ·† † ID2;k † † †

ID3;1 ID3;2ID1 ID2;1 ID2;2‡ · · ·† † ID2;k † † † † †

‡

‡ ‡

Tape 1

(If M does not halt at ID1)

(If M does not halt at ID1 and ID2;1)

(If M does not halt at ID1, ID2;1 and ID2;2)

(N does Breadth-First exploration of IDs of M)

16 / 23



Extensions of TMs

Outline of Proof of Theorem 7.1.3

ó We can devise a 2-tape TM M that simulates N.

ó M first replaces the content of the first tape by ‡ followed by the ID that N is initially
in, which is then followed by a special symbol †, which serves as ID separator. (M
uses the second tape as scratch tape to enable this operation).

ó If the ID corresponds to a final state, N halts (as would M).

ó If not, M then identifies all possible choices for the next IDs for N and enters each
one of them followed by † at the right end of it’s first tape. (Again, M uses the
second tape as scratch tape to enable this operation)

ó M then searches for † to the right of ‡, changes the † to a ‡ (to signify that it is
processing the succeeding ID), and processes that ID in the similar way.

ó M halts at an ID iff M would at that ID.
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Restrictions of TMs

Restrictions of TMs
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Restrictions of TMs

TM Semi-infinite Tape

Theorem 7.2.1

Every recursively enumerable language is also accepted by a TM with semi-infinite tape.

Outline of Proof of Theorem 7.2.1

ó Given a TM M that accepts a language L, construct a two-track TM M ′ as follows.

ó The first and second tracks of M ′ are the R and L semi-infinite parts of the tape of M.

ó First, write a special symbol, say † at the leftmost part of the second track; this
indicates to M ′ that a left move is not to be attempted at this location.

ó At any time, M ′ keeps track of whether M is to the right or left of its start location.

ó If M is to the strict right of its start location, M ′ mimics M on the first track. If M is
to the strict left of its start location, M ′ mimics M on second track, but with the
head directions reversed. M ′ detects the start by the † symbol.

ó It can be formally shown that M ′ accepts a string iff M accepts it.

0 1�1 2�2

BB ab b ab b

† BB

�1 �2

0 1 2

· · ·· · ·
· · ·· · ·

· · ·

· · ·

· · ·

M 0
M L$ RL$ RL$ R

R $ L

19 / 23



Restrictions of TMs

Multi-stack Machines

A multistack machne is a PDA with several independent stacks (i.e., one can be popping
a symbol, while the other is writing a symbol).

Theorem 7.2.2

Every recursively enumerable language is accepted by a two-stack PDA

Outline of Proof of Theorem 7.2.2

ab

S S

B B

TM

Finite Control Finite Control

ab

PDA

aa

SFinite Control

ab

PDA

a

†

a

a

b
1 2

Finite Control

ab

PDA

a

3
†
a

a

b †

R semi-infinite portion of TM’s tape

Strict L semi-infinite portion of TM’s tape

ó † indicates the end of the stack content (to prevent PDA from halting)

ó If TM moves right changing tape symbol X to Y and state from q to q′, PDA moves
from state q to q′ popping X from left stack and pushing Y to the right stack.
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Restrictions of TMs

Counter Machines

ó A counter machine is a multi-stack machine whose stack alphabet contains two
symbols: Z0 (stack end marker) and X

ó Z0 is initially in the stack.

ó Z0 may be replaced by X iZ0 for some i ≥ 0

ó X may be replaced by X i for some i ≥ 0.

ó A counter machine effectively stores a non-negative number.

Finite Control

X
Z0

X

X

X

Z0

X

X

X

X
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Restrictions of TMs

Counter Machines

Theorem 7.2.3

Every recursively enumerable language is accepted by a three-counter machine

Outline of Proof of Theorem 7.2.3

ó We know a two-stack PDA can simulate any TM.

ó We’ll show that a 3-counter machine can simulate any (two stack) PDA.

ó WLOG, let the stack alphabet of Γ = {0, 1, . . . , r − 1}.
ó Suppose the first stack contains Y1(top), . . . ,Yk . Then the first counter stores
Y1 + rY2 + · · ·+ r k−1Yk . Similarly for the second stack.

ó The third counter is used to change the two stack contents.

ó Popping the top symbol a stack (say A) = finding quotient when
Y1 + rY2 + · · ·+ r k−1Yk is divided by r .

ó pop r X’s from stack A, and push a single X on the third stack. Repeat until all
X s are exhausted on the stack where popping is performed.

ó Now empty stack A and copy the third stack contents onto stack A.

ó Change Y1 to some Y ′1 requires adding or subtracting, which is done by popping or
pushing the corresponding number of X s.
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Restrictions of TMs

Counter Machines

Outline of Proof of Theorem 7.2.3

ó pushing a symbol Z onto a stack (say A) = compute rC + Z where C is the number
presently stored in the stack A.

ó pop one X from stack A, and push r X s on the third stack.
ó Finally push Z X s onto the third stack. Now empty stack A and copy the third

stack contents onto stack A.

ó Since the above three are the only operations needed to simulate a TM on a two-stack
PDA, we can stimulate a 2-stack PDA and hence a TM using a 3-counter machine.

Theorem 7.2.4

Every recursively enumerable language is accepted by a two-counter machine

Outline of Proof of Theorem 7.2.4

ó The key idea: simulate three counters using one, and use the other for manipulations.

ó The first counter stores 2i3j5k where i , j , k are the contents of the 3-counter machine.

ó Updates to the stack involve: (a) divide by 2,3, or 5; (b) multiply by 2,3, or 5; or (c)
identify if i or j or k is zero (check divisibility).

ó Each operation can be easily seen to be done with a spare counter.
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