COMP3630/6360: Theory of Computation

Semester 1, 2022
The Australian National University

Turing Machines

This lecture covers Chapter 8 of HMU: Turing Machines

> Turing Machine
> Extensions of Turing Machines
> Restrictions of Turing Machines

Additional Reading: Chapter 8 of HMU.

Turing Machine: Informal Definition

> An tape extending infinitely in both sides
>A reading head that can edit tape, move right or left.
>A finite control.
>A string is accepted if finite control reaches a final/accepting state

Turing Machine: Formal Definition

A Turing machine $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, B, F\right)$ comprises of:
$>Q$: finite set of states
> Σ : finite set of input symbols
$>\Gamma$: finite set of tape symbols such that $\Sigma \subseteq \Gamma$
$>\delta$: transition function. δ is a partial function over $Q \times \Gamma$, where the first component is viewed as the present state, and the second is viewed as the tape symbol read. If $\delta(\boldsymbol{q}, \boldsymbol{X})$ is defined, then

$>B \in \Gamma \backslash \Sigma$ is the blank symbol. All but a finite number of tape symbols are B s.
$>q_{0}$: the initial state of the TM.
> F : the set of final/accepting states fo the TM.
>Head always moves to the left or right. Being stationary is not an option.
> The Turing Machine is deterministic.

Describing TMs

> Turing machines can be defined by describing δ using a transition table.
> They can also be defined using transition diagrams (with labels appropriately altered)

$$
X / Y D
$$

$$
\text { If } \delta(q, X)=\left(q^{\prime}, Y, D\right)
$$

A TM that accepts any binary string that does not contain 111

Instantaneous Descriptions of TMs

>An instantaneous description (or configuration) of a TM is a complete description of the system that enables one to determine the trajectory of the TM as it operates.
> The instantaneous description or configuration or ID of a TM contains 3 parts: (a) The (finite, non-trivial) portion of tape to the left of the reading head; (b) the state that the TM is presently in; and (c) the (finite, non-trivial) portion of the tape to the right of the reading head.

‘Moves’ of a TM

> Just as in the case of a PDA, we use \vdash_{M} to indicate a single move of a TM M, and $\stackrel{*}{\stackrel{H}{M}^{*}}$ to indicate zero or a finite number of moves of a TM.

Present ID

$$
\begin{gathered}
X_{1} \cdots X_{i-1} q X_{i} \cdots X_{\ell} \\
(1<i<\ell)
\end{gathered}
$$

$$
X_{1} \cdots X_{\ell} B^{i-1} q
$$

$$
q B^{i} X_{1} \ldots X_{\ell}
$$

$$
\begin{aligned}
& \delta\left(q, X_{i}\right)=\left(q^{\prime}, Y, R\right) \quad X_{1} \cdots X_{i-1} Y q^{\prime} X_{i+1} \cdots X_{\ell} \\
& \delta\left(q, X_{i}\right)=\left(q^{\prime}, Y, L\right) \quad X_{1} \cdots X_{i-2} q^{\prime} X_{i-1} Y X_{i+1} \cdots X_{\ell} \\
& \delta(q, B)=\left(q^{\prime}, Y, R\right) \quad X_{1} \cdots X_{\ell} B^{i-1} Y q^{\prime} \\
& \delta(q, B)=\left(q^{\prime}, Y, L\right) \quad \begin{cases}X_{1} \cdots X_{\ell-1} q^{\prime} X_{\ell} Y & i=1 \\
X_{1} \cdots X_{\ell} B^{i-2} q^{\prime} B Y & i>1\end{cases} \\
& \delta(q, B)=\left(q^{\prime}, Y, R\right) \quad\left\{\begin{array}{l}
Y q^{\prime} X_{2} \cdots X_{\ell} \quad i=0 \\
Y q^{\prime} B^{i-1} X_{1} \cdots X_{\ell} \quad i>0
\end{array}\right. \\
& \delta(q, B)=\left(q^{\prime}, Y, L\right) \quad\left\{\begin{array}{l}
q^{\prime} B Y X_{2} \cdots X_{\ell} \quad i=0 \\
q^{\prime} B Y B^{i-1} X_{1} \cdots X_{\ell} \quad i>0
\end{array}\right.
\end{aligned}
$$

Next ID

Language accepted by a TM
>A string w is in the language accepted by a TM M iff $q_{0} w \stackrel{*}{\vdash_{M}} \alpha p \beta$ for some $p \in F$.
>Another notion of acceptance that is common is to require a TM to halt (i.e., no further transitions are possible).
> It is always possible to design a TM such that the TM halts when it reaches a final state without changing the language the TM accepts.
> However, we cannot require (all) TMs to halt for all inputs.
> A language L is recursively enumerable if it is accepted by some TM.
>A language L is recursive if it is accepted by a TM that always halts on its input.

Extensions of TMs

Multiple-Track TMs

Multiple-track TM

> There are k tracks, each having symbols written on them.
> The machine can only read symbols from each tape corresponding to one location, i.e., all symbols in a column at any one time.
> A k-track TM with tape alphabet Γ has the same langauge-acceptance power as a TM with tape alphabet Γ^{k}.

...

Multi-tape TMs

Multiple-tape TM

> There are k tapes, each having symbols written on them.
> The machine can each tape independently, i.e., the symbols read from each tape need not correspond to the same location
> After a read of each tapes, each reading head can move independently to the right, left, or stay stationary.

Multi-tape TMs

Theorem 7.1.1

Every language that is accepted by a multi-tape TM is also recursively enumerable (i.e., accepted by some 'standard' TM).

Proof of Theorem 7.1.1

> Let L be accepted by a k-tape TM M. We'll devise a $2 k$-track TM M^{\prime} that accepts L.
> Every even tape of M^{\prime} has the same alphabet as that of the k-tape TM. The $2 i^{\text {th }}$ track of M^{\prime} contains exactly the same contents as the $i^{\text {th }}$ tape of M.
> Every odd track has an alphabet $\{B, \dagger$,$\} , and contains a single \dagger$. The $2 i-1^{\text {th }}$ track of M^{\prime} contains \dagger at the location where the $i^{\text {th }}$ reading head of M is located.

Multi-tape TMs

Proof of Theorem 7.1.1

> The state of M^{\prime} has 3 components: (a) the state of M; (b) the number of $\dagger s$ to its strict left; and (c) a vector of length k with each component taking value in $\Gamma \cup\{?\}$.
> Each move of M takes multiple moves of M^{\prime}, and is a sweep of the tape from the location of the leftmost \dagger to that of the rightmost \dagger and back performing the changes to tracks that M would do to its corresponding tapes.
>At the beginning of the sweep, the head of M^{\prime} is at a location where the leftmost \dagger is and the state of M^{\prime} is $(q, 0,[?, \cdots, ?])$. The head moves to the right uncovering \dagger s and the corresponding track symbols (are stored in the third component of the state).
> The right sweep ends when the second component is k.

State: $\left(q_{0}, 0,[0,1,1]\right)$

State: q_{0}

Multi-tape TMs

Proof of Theorem 7.1.1

> At this stage, M^{\prime} knows the input symbols M will have read, and knows what actions to take.
> It then sweeps left making appropriate changes to the tracks (just like M does to its tape) each time a \dagger is encountered. M^{\prime} also moves the \dagger s accordingly.
> The left sweep ends when the second component is zero. At this time, M^{\prime} would have completed moving the $\dagger \mathrm{s}$ and the track contents; they'll now match those of M.
> M^{\prime} then moves the state to $\left(q^{\prime}, 0,[?, \cdots, ?]\right)$ and start the next sweep if q^{\prime} is not a final state.
> Note that M^{\prime} mimics M and hence the languages accepted are identical.

Multi-tape TMs

> The running time of a TM M with input w is the number of moves M makes before it halts. (If it does not, the running time is ∞).
> The time complexity $T_{M}:\{0,1, \ldots\} \rightarrow\{0,1, \ldots\}$ of a TM M is defined as follows:
$>T_{M}(n):=$ maximum running time of M for an input w of length n symbols.

Theorem 7.1.2

The time taken for M^{\prime} in Theorem 7.1.2 to process n moves of M is $O\left(n^{2}\right)$.

Outline of Proof of Theorem 7.1.2

> After n moves of M, any two heads of M can be at most $2 n$ locations apart.
> Each sweep then requires $4 n$ moves of M^{\prime}.
> Each track update requires a finite number of moves. Totally, to update the tracks, $\Theta(k)$ time steps are needed.

Non-deterministic TMs

Non-deterministic TM: $\delta(q, X)$ is a set of triples representing possible moves.

Theorem 7.1.3

For every non-deterministic TM M, there is a TM N such that $L(M)=L(N)$.

Outline of Proof of Theorem 7.1.3

Tape 1

Outline of Proof of Theorem 7.1.3

> We can devise a 2-tape TM M that simulates N.
>M first replaces the content of the first tape by \ddagger followed by the ID that N is initially in, which is then followed by a special symbol \dagger, which serves as ID separator. (M uses the second tape as scratch tape to enable this operation).
> If the ID corresponds to a final state, N halts (as would M).
> If not, M then identifies all possible choices for the next IDs for N and enters each one of them followed by \dagger at the right end of it's first tape. (Again, M uses the second tape as scratch tape to enable this operation)
> M then searches for \dagger to the right of \ddagger, changes the \dagger to a \ddagger (to signify that it is processing the succeeding ID), and processes that ID in the similar way.
> M halts at an ID iff M would at that ID.

Restrictions of TMs

Theorem 7.2.1

Every recursively enumerable language is also accepted by a TM with semi-infinite tape.

Outline of Proof of Theorem 7.2.1

> Given a TM M that accepts a language L, construct a two-track TM M^{\prime} as follows.
> The first and second tracks of M^{\prime} are the R and L semi-infinite parts of the tape of M.
> First, write a special symbol, say \dagger at the leftmost part of the second track; this indicates to M^{\prime} that a left move is not to be attempted at this location.
>At any time, M^{\prime} keeps track of whether M is to the right or left of its start location.
> If M is to the strict right of its start location, M^{\prime} mimics M on the first track. If M is to the strict left of its start location, M^{\prime} mimics M on second track, but with the head directions reversed. M^{\prime} detects the start by the \dagger symbol.
> It can be formally shown that M^{\prime} accepts a string iff M accepts it.

Multi-stack Machines

A multistack machne is a PDA with several independent stacks (i.e., one can be popping a symbol, while the other is writing a symbol).

Theorem 7.2.2

Every recursively enumerable language is accepted by a two-stack PDA
Outline of Proof of Theorem 7.2.2

$>\dagger$ indicates the end of the stack content (to prevent PDA from halting)
> If TM moves right changing tape symbol X to Y and state from q to q^{\prime}, PDA moves from state q to q^{\prime} popping X from left stack and pushing Y to the right stack.

Counter Machines

>A counter machine is a multi-stack machine whose stack alphabet contains two symbols: Z_{0} (stack end marker) and X
$>Z_{0}$ is initially in the stack.
$>Z_{0}$ may be replaced by $X^{i} Z_{0}$ for some $i \geq 0$
$>X$ may be replaced by X^{i} for some $i \geq 0$.
>A counter machine effectively stores a non-negative number.

Counter Machines

Theorem 7.2.3

Every recursively enumerable language is accepted by a three-counter machine

Outline of Proof of Theorem 7.2.3

> We know a two-stack PDA can simulate any TM.
> We'll show that a 3-counter machine can simulate any (two stack) PDA.
$>$ WLOG, let the stack alphabet of $\Gamma=\{0,1, \ldots, r-1\}$.
>Suppose the first stack contains Y_{1} (top) $, \ldots, Y_{k}$. Then the first counter stores $Y_{1}+r Y_{2}+\cdots+r^{k-1} Y_{k}$. Similarly for the second stack.
> The third counter is used to change the two stack contents.
> Popping the top symbol a stack (say A) = finding quotient when $Y_{1}+r Y_{2}+\cdots+r^{k-1} Y_{k}$ is divided by r.
> pop r X's from stack A, and push a single X on the third stack. Repeat until all $X \mathrm{~s}$ are exhausted on the stack where popping is performed.
> Now empty stack A and copy the third stack contents onto stack A.
> Change Y_{1} to some Y_{1}^{\prime} requires adding or subtracting, which is done by popping or pushing the corresponding number of $X \mathrm{~s}$.

Counter Machines

Outline of Proof of Theorem 7.2.3

> pushing a symbol Z onto a stack (say A) $=$ compute $r C+Z$ where C is the number presently stored in the stack A.
$>$ pop one X from stack A, and push $r X$ s on the third stack.
> Finally push Z Xs onto the third stack. Now empty stack A and copy the third stack contents onto stack A.
> Since the above three are the only operations needed to simulate a TM on a two-stack PDA, we can stimulate a 2-stack PDA and hence a TM using a 3-counter machine.

Theorem 7.2.4

Every recursively enumerable language is accepted by a two-counter machine

Outline of Proof of Theorem 7.2.4

> The key idea: simulate three counters using one, and use the other for manipulations.
> The first counter stores $2^{i} 3^{j} 5^{k}$ where i, j, k are the contents of the 3 -counter machine.
> Updates to the stack involve: (a) divide by 2,3 , or 5 ; (b) multiply by 2,3 , or 5 ; or (c) identify if i or j or k is zero (check divisibility).
> Each operation can be easily seen to be done with a spare counter.

