COMP3630/6360: Theory of Computation
Semester 1, 2022
The Australian National University

Decidability

This lecture covers Chapter 9 of HMU: Decidability and Undecidability
>Preliminary Ideas
> Example of a non-RE language
> Recursive languages
> Universal Language
> Reductions of Problems
> Rice's Theorem
> Post's Correspondence Problem
> Undecidable Problems about CFGs
Additional Reading: Chapter 9 of HMU.

Preliminary Ideas

Enumeration of (Binary) Strings

$>$ We can construct a bijective map ϕ from the set of binary strings $\{0,1\}^{*}$ to natural numbers \mathbb{N}.
> Enlist all strings ordered by length, and for each length, order using lexicographic ordering.
> The set of finite binary strings is countable/denumerable.

A Code for Turing Machines

>For simplicity, let's assume that input alphabet to be binary.
>WLOG, we can assume that TMs halt at the final state. Consequently, we only need one final state (perhaps after collapsing all states into one).
> Consider $M=\left(Q,\{0,1\}, \Gamma, \delta, q_{1}, B, F\right)$.
> Rename states $\left\{q_{1}, \ldots, q_{k}\right\}$ for some $k \in N$ with q_{1} : start state and q_{k} : final state.
> Rename input alphabet using $X_{1}=0, X_{2}=1$, and blank B as X_{3}.
$>$ Rename the rest of the tape symbols by X_{4}, \ldots, X_{ℓ} for some $\ell \in \mathbb{N}$.
$>$ Rename L as D_{1} and R and D_{2}.
$>$ Every transition $\delta\left(q_{i}, X_{j}\right)=\left(q_{k}, X_{l}, D_{m}\right)$ can be represented as a tuple (i, j, k, l, m).
$>$ Map each transition tuple (i, j, k, I, m) to a unique binary string $0^{i} 10^{j} 10^{k} 10^{\prime} 10^{m}$. NB: No string representing a transition tuple contains 11.
> Order transition tuples lexicographically and concatenate all transitions using 11 to indicate end of a transition. Let the resultant string be w_{M}. For example, 3 transitions can be combined as $\underbrace{0^{i_{1}} 10^{j_{1}} 10^{k_{1}} 10^{I_{1}} 10^{m_{1}}}_{\text {1st transition }} 11 \underbrace{0^{i_{2}} 10^{j_{2}} 10^{k_{2}} 10^{I_{2}} 10^{m_{2}}}_{\text {2nd transition }} 11 \underbrace{0^{i_{3}} 10^{i_{3}} 10^{k_{3}} 10^{\beta_{3}} 10^{m_{3}}}_{\text {3rd transition }}$
> For each TM M, define the code $\langle M\rangle$ for TM M as w_{M}.

The Set of Turing Machines

An Example: A TM that accepts strings with odd \# of 1s

Remark 9.1.1
> Each TM M corresponds to a unique natural number, i.e., $\phi(\langle M\rangle)$; each natural number corresponds to at most one TM.
> There are multiple numbers that represent the 'same' TM.
> The set of TMs/RE languages/CFLs/regular languages is countable.

Example of a non-RE language

Diagonalization Language L_{d}

> Let M_{i} be the $T M$ s.t. $\phi\left(<M_{i}>\right)=i$. (If for an i, no such TM exists, we let M_{i} to be the TM with 1 state, no transitions and no final state, i.e., it accepts no input).
>Construct an infinite table of 0 s and 1 s with a 1 at the $i^{\text {th }}$ row and $j^{\text {th }}$ column if M_{i} accepts $w_{j}:=\phi^{-1}(j)$ (see Slide 3 for ϕ).
$>$ Define a language $L_{d}=\left\{w_{j}: M_{j}\right.$ does not accept w_{j}, where $\left.j \in \mathbb{N}\right\}$.

L_{d} is not recursively enumerable language
$>L_{d}$ cannot be accepted by any TM.
$>$ For each $i \in \mathbb{N}$, the string w_{i} is exclusively in either L_{d} or $L\left(M_{i}\right)$.
$>$ Hence $L_{d} \neq L\left(M_{i}\right)$ for any $i \in \mathbb{N}$.

Recursive languages

Recursive Languages

>A language L is recursive if it is accepted by a TM M that halts on all inputs
> In such a case, the TM M is said to decide L.
> Every recursive language is recursively enumerable (by definition).

>A (decision) problem that is equivalent to: "is a given w in a given recursive language L ?" is said to be decidable (for the TM that accepts/rejects L is effectively the machine description of an algorithm for solving the problem).

(Some Obvious) Properties of Recursive Languages

Theorem 9.3.1

If L is recursive, so is L^{c}.

Proof of Theorem 9.3.1

> Accepting states of M are non-accepting states of M^{\prime}.
> Add a new and only final state q_{f} in M^{\prime}
 such that

$$
\begin{gathered}
\delta_{M}(q, X) \text { undefined and } q \notin F \\
\Downarrow \\
\delta_{M^{\prime}}(q, X)=\left(q_{f}, X, R\right) .
\end{gathered}
$$

>Recursive languages are closed under complementation.

(Some Obvious) Properties of Recursive Languages

Theorem 9.3.2

If L and L^{c} are both recursively enumerable, then L (and L^{c}) are recursive.

Proof of Theorem 9.3.2

> Let $L=L(M)$ and $L^{c}=L\left(M^{\prime}\right)$. Run M and M^{\prime} in parallel using a 2-tape TM.
> Both TMs cannot halt in final states, and both TMs cannot halt in non-final states.
> Continue running both TMs until either halts in a final state.
> Accept (or reject) if M (or M^{\prime}) halts in a final state, respectively.

Alternate Definition of Recursive Languages

L is recursive if both L and L^{c} are recursively enumerable.

The Universal Language and Turing Machine

The Universal Language and Turing Machine

Universal Language L_{u}

$\rangle L_{u}:=\{\langle M\rangle 111 w:$ TM M and $w \in L(M)\}$. [See Slide 3]

Universal TM U (modelled as 5-tape TM)

$1 U$ copies $\langle M\rangle$ to tape 2 and verifies it for valid structure.

2 Copies w onto tape 3 (maps $0 \mapsto 01,1 \mapsto$ 001)

3 Initiates 4th tape with 0^{1} (M starts in q_{1})
4 To simulate a move of M, U reads tapes 3 and 4 to identify M 's state and input as 0^{i} and 0^{j}; if state is accepting, M (and hence U) accepts its inputs and halts. Else, U scans tape 2 for $110^{i} 10^{j} 1$ or $B B 0^{i} 10^{j} 1$.
> If found, using the transition, tapes 4 and 3 are updated, and tape 3 's head moves to right or left.
> If not, M halts, and so does U.

Where does L_{u} Lie in the Hierarchy of Languages?

Theorem 9.4.1

L_{u} is recursively enumerable, but is not recursive.

Proof of Theorem 9.4.1

$>L_{u}$ is recursively enumerable because TM U accepts it.
> Suppose it were recursive. Then, L_{u}^{c} is also recursive.
> Let $\mathrm{TM} M^{\prime}$ accepts $w \in L_{u}^{c}$ and reject $w \in L_{u}$.
>Construct a TM $M^{\prime \prime}$ such that it first takes its input w appends it with $111 w$. It then moves to the beginning of the first w and simulates M^{\prime}.
$>M^{\prime \prime}$ accepts $w \Longleftrightarrow w 111 w \in L_{u}^{c} \Longleftrightarrow w 111 w \notin L_{u} \Longleftrightarrow w \in L_{d}$.
> Then, $L\left(M^{\prime \prime}\right)$ is the diagonal language L_{d}, which is impossible!

Recap

Recap

$>$ There exists a bijection $\phi: \Sigma^{*} \rightarrow \mathbb{N}$.
$>$ There exists an injective (1-1 map) $<\cdot>$: Set of TMs $\rightarrow \Sigma^{*}$.
> RE languages are countable.

> The diagonalization Language L_{d} is not recursively enumerable.
>Recursive languages are closed under complementation
> The universal language $L_{u}=\{\langle M\rangle 111 w: M$ accepts $w\}$ is RE, but not recursive.

Reductions of Problems

What is a Reduction?

> A decision problem P is said to reduce to decision problem Q if every instance of P can be transformed to some instance of Q and a yes (or no) answer to that instance of Q yields a yes (or no) answer to original instance of P, respectively.
> Here, transform implies the existence of a Turing machine that takes an instance of P written on a tape and always halts with an instance of Q written on it.
> Note that for deciding all instances of P, it is not necessary for all instances of Q to be (re)solved.

Theorem 9.6.1

If a problem P reduces to a problem Q then:
(a) P is undecidable $\Rightarrow Q$ is undecidable
(b) P is non-R.E. $\Rightarrow Q$ is non-R.E.

Problem Reduction

Proof of Theorem 9.6.1

(a) Suppose P is undecidable and Q is decidable. Let $T M M_{Q}$ decide Q.
> Consider the TM M_{P} that first operates as TM M_{P-2-Q} that transforms P to Q, and then operates as M_{Q}.

> This is a TM that decides all instances of P, a contradiction.
(b) Suppose P is non-R.E. and Q is R.E. Then there must be a TM M_{Q} that accepts inputs when they correspond to instances of Q whose answer is yes.
> Consider the TM M_{P} that first operates as TM M_{P-2-Q}, and then operates as M_{Q}.
> Note that M_{P} might not halt, since M_{Q} might not.

> This is a TM that accepts all instances of P whose answer is a yes, a contradiction.

Rice's Theorem

Some More Abstract Languages

```
Language of TMs Accepting Empty and Non-empty Languages
    \(>L_{e}=\{\langle M\rangle: L(M)=\emptyset\}\).
    \(>L_{n e}=\{\langle M\rangle: L(M) \neq \emptyset\}\). (Note: \(\left.L_{n e} \neq L_{e}^{c}\right)\).
```


Theorem 9.7.1

$L_{n e}$ is R.E.

$L_{n e}$ is R.E.

Proof of Theorem 9.7.1

$>$ In cycle k, M^{\prime} runs one move of M for each ID, and adds the initial ID of M when $\phi^{-1}(k)$ is on the tape.
$>\mathrm{ID}(\mathrm{i}, \mathrm{j})=$ the ID after $j-1$ moves when M reads $\phi^{-1}(j)$ on its tape.
> If any ID contains an accepting state, M^{\prime} halts as M would have on that input.
(1) Input Tape for M^{\prime}

(2) Cycle Count

(4) Scratch Tape

Cycle	Tape 1	Tape 2	B	B	B	B	0		1	B	B		
1	1	$I D(1,1)$											
2	10	$I D(1,2)$											
3	11	$I D(1,3)$	D	$(3,1)$									
	:												
k	$101 \cdots 0$	$I D(1, k)$) \dagger	ID	(3	, k						ID	$(k, 1)$

$L_{n e}$ is not recursive

Theorem 9.7.2

$L_{n e}$ is not recursive.

Proof of Theorem 9.7.2

> For every TM M and string w, there is a TM M_{w} that ignores its input and runs M on w : M_{w} erases its input tape, and paste w and runs as M.

> Mind-bending step: There is a TM M_{1} that takes $\langle M\rangle 111 w$ and outputs $\left\langle M_{w}\right\rangle$.
Note: M_{1} always halts (even if M does not halt when input is $w!$)

$$
\langle M\rangle 111 w \longrightarrow M_{1} \longrightarrow\left\langle M_{M, w}\right\rangle
$$

> M accepts $w \Longleftrightarrow M_{w}$ accepts all inputs $\Longleftrightarrow\left\langle M_{w}\right\rangle \in L_{n e}$
> Suppose $L_{n e}$ is recursive. Then there is a TM M_{2} that accepts iff input $\langle M\rangle \in L_{n e}$.
> Let TM M_{3} read $\langle M\rangle 111 w$ and operate as M_{1} and then when M_{1} halts, operate as M_{2}. Then, M_{3} accepts/rejects $\langle M\rangle 111 w$ iff M accepts/rejects w.
$>L_{u}$ is then recursive, which is a contradiction.

Rice's Theorem

Given: alphabet Σ and let $R E=\left\{L \subseteq \Sigma^{*} \mid L\right.$ recursively enumerable $\}$.
> Recursively enumerable (RE) languages L corresponds to TM M if $L=L(M)$
>A property of RE languages is subset $P \subseteq R E$ of the set of RE languages over Σ.
>A property P is trivial if $P=\emptyset$ or $P=R E$ (and non-trivial otherwise).
> a property $\mathcal{P} \subseteq R E$ is decidable if $L_{\mathcal{P}}=\{\langle M\rangle \mid L(M) \in \mathcal{P}\}$ is decidable. > identify TM M with RE language $L(M)$ > identify M with its code $\langle M\rangle$.

Theorem 9.7.3

Every non-trivial property \mathcal{P} of $R E$ languages is undecidable, i.e., L_{P} is not recursive.

Rice's Theorem

Proof of Theorem 9.7.3

>WLOG, we can assume that $\emptyset \notin \mathcal{P}$. Else consider \mathcal{P}^{c}.
> Since \mathcal{P} is non-trivial, there is a language $L \in \mathcal{P}$ and a $\mathrm{TM} M_{L}$ that accepts L
> Let $M_{M, w}$ be a TM that runs M on w and if M accepts w, then reads its input and operates as M_{L}.

$>$ Mind-bending step: There is a TM M_{1} that takes $\langle M\rangle 111 w$ and outputs $\left\langle M_{M, w}\right\rangle$. Note: M_{1} always halts (even if M does not halt when input is $w!$)

> M accepts $w \Longleftrightarrow L\left(M_{M, w}\right)=L \in \mathcal{P}$
> If \mathcal{P} were decidable, then there is a $M L M_{2}$ such that M_{2} accepts $\langle M\rangle$ iff $L(M) \in \mathcal{P}$.
> Then, we can devise a TM M_{3} such that it reads $\langle M\rangle 111 w$ operates first as M_{1} and then when M_{1} has halted, it operates as M_{2}.
$>M_{3}$ accepts $/$ rejects $\langle M\rangle 111 w \Longleftrightarrow L\left(M_{M, w}\right) \in / \notin \mathcal{P} \Longleftrightarrow M$ accepts/rejects w.
$>$ Then, L_{u} is recursive, a contradiction

Post's Correspondence Problem

PCP: Definition

> Suppose we are given two ordered lists of strings over Σ, say $A=\left(u_{1}, \ldots, u_{k}\right)$ and $B=\left(v_{1}, \ldots, v_{k}\right)$.
$>$ We say $\left(u_{i}, v_{i}\right)$ to be a corresponding pair
>PCP Problem: Is there a sequence of integers i_{1}, \ldots, i_{m} such that $u_{i_{1}} \cdots u_{i_{m}}=v_{i_{1}} \cdots v_{i_{m}}$?
$>m$ can be greater than k, the list length.
$>$ We can reuse pairs as many times as we like.

A PCP example

	110	0011	0110
B	110110	00	110

>A solution cannot start with $i_{1}=3$.
$>$ A solution can start with $i_{1}=1$, but then $i_{2}=1$, and $i_{3}=1 \ldots$. Consequently, i_{1} cannot equal 1.
>A solution does exist: $\left(i_{1}, i_{2}, i_{3}\right)=(2,3,1)$.
$>\left(i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}\right)=(2,3,1,2,3,1)$ is also solution.

Modified PCP (MPCP): Definition

> Suppose we are given two ordered lists of strings over Σ, say $A=\left(u_{1}, \ldots, u_{k}\right)$ and $B=\left(v_{1}, \ldots, v_{k}\right)$.
> MPCP Problem: Is there a sequence of integers i_{1}, \ldots, i_{m} such that $u_{1} u_{i_{1}} \cdots u_{i_{m}}=v_{1} v_{i_{1}} \cdots v_{i_{m}}$
> The previous example does not have a solution when viewed as an MPCP problem.
> So MPCP is indeed a different problem to PCP, but...

Theorem 9.8.1

MPCP reduces to $P C P$

Outline of Proof of Theorem 9.8.1

> Given lists $A=\left(u_{1}, \ldots, u_{k}\right)$ and $B=\left(v_{1}, \ldots, v_{k}\right)$ for MPCP, suppose that symbols \diamond, \triangle are not in the strings.
> Construct lists $C=\left(w_{1}, \ldots, w_{k+2}\right)$ and $D=\left(x_{1}, \ldots, x_{k+2}\right)$ for PCP as follows.
$>$ For $i=1, \ldots, k$, If $u_{k}=s_{1} \ldots s_{\ell}$, then $w_{k+1}=s_{1} \diamond s_{2} \diamond \cdots \diamond s_{\ell} \diamond$. [\diamond succeeds symbols]
$>$ For $i=1, \ldots, k$, If $v_{k}=s_{1} \ldots s_{\ell}$, then $x_{k+1}=\diamond s_{1} \diamond s_{2} \diamond \cdots \diamond s_{\ell}$. [\diamond precedes symbols]
$>w_{1}=\diamond w_{2}$ and $x_{1}=x_{2}$. [Ensures any solution to PCP also starts with $i_{1}=1$]
$>w_{k+2}=\triangle$ and $x_{k+2}=\diamond \triangle$. [Balances the extra \diamond]

PCP is undecidable

Theorem 9.8.2

PCP is undecidable.

Outline of Proof of Theorem 9.8.2 (for one-sided TM)

> The proof proceeds by constructing a MPCP for each TM M and input w
Rule A: Construct two lists A and B whose first entries are \diamond and $\diamond q_{0} w \diamond$
Rule I: Add corresponding pairs (X, X) (all $X \in \Gamma$) and (\diamond, \diamond)
Rule B: Suppose q is not a final state. Then, append to the list the following entries

List A	List B	
$q X$	$Y p$	if $\delta(q, X)=(p, Y, R)$
$Z q X$	$p Z Y$	if $\delta(q, X)=(p, Y, L)$
$q \diamond$	$Y p \diamond$	if $\delta(q, B)=(p, Y, R)$
$Z q \diamond$	$p Z Y \diamond$	if $\delta(q, B)=(p, Y, L)$

Rule C: For $q \in F$, let $(X q Y, q),(X q, q)$ and $(q Y, Y)$ be corresponding pairs for $X, Y \in \Gamma$
Rule D: For $q \in F(q \diamond \diamond, \diamond)$ is a corresponding pair.

PCP is undecidable

Outline of Proof of Theorem 9.8.2

> Suppose there is a solution to the MPCP problem. The solution starts with the first corresponding pair, and the string constructed from List B is already a ID of TM M ahead of the string from List A.
> As we select strings from List A (corresponding to Rule B) to match the last ID, the string from List B adds to its string another valid ID.
> The sequence of IDs constructed are valid sequences of IDs for M starting from $q_{0} w$.
> Suppose the last ID constructed in the string constructed from List B corresponds to a final state, then we can gobble up one neighboring symbol at a time using Rule C.
> Once we are done gobbling up all tape symbols, the string from List B is still one final state symbol ahead of List A 's string.
$>$ We then use Rule D to match and complete.

PCP is undecidable

Outline of Proof of Theorem 9.8.2

> M accepts $w \Longleftrightarrow$ a solution to the MPCP exists.
> If MPCP were decidable, then L_{u} would be recursive, which it isn't.
> Hence, MPCP is undecidable. [Theorem 9.6.1]
> Since MPCP is undecidable, PCP is also undecidable. [Theorem 9.6.1]

Ambiguity in CFGs

> We'll now revisit CFGs and prove that ambiguity in CFGs is undecidable.

Theorem 9.9.1

The problem if a grammar is ambiguous is undecidable

Outline of Proof of Theorem 9.8.2

> We'll reduce every instance of PCP problem to a CFG.
> Given an PCP problem $A=\left(w_{1}, \cdots, w_{k}\right)$ and $B=\left(x_{1}, \ldots, x_{k}\right)$, pick symbols a_{1}, \ldots, a_{k} that don't appear in any string in list A or B.
> Now define a grammar G with production rules

$$
\begin{aligned}
& S \longrightarrow A \mid B \\
& A \longrightarrow w_{1} A a_{1}|\cdots| w_{k} A a_{k}\left|w_{1} a_{1}\right| \cdots \mid w_{k} a_{k} \\
& B \longrightarrow x_{1} B a_{1}|\cdots| x_{k} B a_{k}\left|x_{1} a_{1}\right| \cdots \mid x_{k} a_{k}
\end{aligned}
$$

> If there are two leftmost derivations of a string in $L(G)$, one must use $S \longrightarrow A$ and other $S \longrightarrow B$
> Every solution to the PCP leads to 2 leftmost derivations of some string in $L(G)$ and vice versa.
> Since PCP is undecidable, the ambiguity of CFGs must be undecidable [Thm 9.6.1]

Some More Undecidable Problems Concerning CFGs

> Given CFGs G_{1} and G_{2}, is $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$?
> Given CFGs G_{1} and G_{2}, is $L\left(G_{1}\right) \subseteq L\left(G_{2}\right)$?
> Given CFGs G_{1} and G_{2}, is $L\left(G_{1}\right)=L\left(G_{2}\right)$?
> Given CFG G and regular language L, is $L(G)=L$?
> Given CFG G and regular language L, is $L \subseteq L(G)$?
> Given CFG G, is $L(G)=\Sigma^{*}$?

