
COMP3630/6360: Theory of Computation
Semester 1, 2022

The Australian National University

Decidability

1 / 37

This lecture covers Chapter 9 of HMU: Decidability and Undecidability

ó Preliminary Ideas

ó Example of a non-RE language

ó Recursive languages

ó Universal Language

ó Reductions of Problems

ó Rice’s Theorem

ó Post’s Correspondence Problem

ó Undecidable Problems about CFGs

Additional Reading: Chapter 9 of HMU.

Preliminary Ideas

Preliminary Ideas

3 / 37

Preliminary Ideas

Enumeration of (Binary) Strings

ó We can construct a bijective map φ
from the set of binary strings {0, 1}∗
to natural numbers N.

ó Enlist all strings ordered by length,
and for each length, order using lexi-
cographic ordering.

ó The set of finite binary strings is
countable/denumerable.

1

00

01

10

11

000

111

0000

1111

›

0

1

2

3

4

5

6

7

8

15

31

16

...

...
...

...

...
...

w �(w)

|
{z

}|
{z

}
|

{z
}|

{z
}

0

 1

 2

 7

 6

 5

 4

 3

32

 17

 16

4 / 37

Preliminary Ideas

A Code for Turing Machines

ó For simplicity, let’s assume that input alphabet to be binary.

ó WLOG, we can assume that TMs halt at the final state. Consequently, we only need
one final state (perhaps after collapsing all states into one).

ó Consider M = (Q, {0, 1},Γ, δ, q1,B,F).

ó Rename states {q1, . . . , qk} for some k ∈ N with q1: start state and qk : final
state.

ó Rename input alphabet using X1 = 0, X2 = 1, and blank B as X3.
ó Rename the rest of the tape symbols by X4, . . . ,X` for some ` ∈ N.
ó Rename L as D1 and R and D2.

ó Every transition δ(qi ,Xj) = (qk ,Xl ,Dm) can be represented as a tuple (i , j , k, l ,m).

ó Map each transition tuple (i , j , k, l ,m) to a unique binary string 0i10j10k10l10m.
NB: No string representing a transition tuple contains 11.

ó Order transition tuples lexicographically and concatenate all transitions using 11 to
indicate end of a transition. Let the resultant string be wM . For example, 3 transitions
can be combined as 0i110j110k110l110m1︸ ︷︷ ︸

1st transition

11 0i210j210k210l210m2︸ ︷︷ ︸
2nd transition

11 0i310j310k310l310m3︸ ︷︷ ︸
3rd transition

ó For each TM M, define the code 〈M〉 for TM M as wM .

5 / 37

Preliminary Ideas

The Set of Turing Machines

An Example: A TM that accepts strings with odd # of 1s

q2q1 q3

X1=X1; D2 X1=X1; D2

X2=X2; D2

X2=X2; D2

X3; X3; D1

(1; 1; 1; 1; 2) (1; 2; 2; 2; 2)
0100100100100101010101001

(2; 1; 2; 1; 2)

(2; 2; 1; 2; 2)
(2; 3; 3; 3; 1)

0010100101001

00100101001001

00100010001000101

1 2 3

4
5

< M >= 01010101021110102102102102111021010210102111

021021010210211102103103103101.

Remark 9.1.1

ó Each TM M corresponds to a unique natural number, i.e., φ(〈M〉); each natural
number corresponds to at most one TM.

ó There are multiple numbers that represent the ‘same’ TM.

ó The set of TMs/RE languages/CFLs/regular languages is countable.

6 / 37

Example of a non-RE language

Example of a non-RE language

7 / 37

Example of a non-RE language

Diagonalization Language Ld

ó Let Mi be the TM s.t. φ(< Mi >) = i . (If for an i , no such TM exists, we let Mi to
be the TM with 1 state, no transitions and no final state, i.e., it accepts no input).

ó Construct an infinite table of 0s and 1s with a 1 at the i th row and j th column if Mi

accepts wj := φ−1(j) (see Slide 3 for φ).

ó Define a language Ld = {wj : Mj does not accept wj , where j ∈ N}.

M1

M2

M3

M4

M5

M6

...

��1(1) ��1(2) ��1(3) ��1(4) ��1(5) ��1(6) ��1(7)

› 00 01 10 11 : : :

0 0 0 0 0 0 0

0

0 0 0

0 0

0 0 0 0

0 0 0 0

0 0

1

1

1

1

1

1

1 1 1

1 1 1

1

1 1

1 1

11

0 1

Ld = {›; 00; 10; : : :}

�

�

�

�

�

�

† Entries are for illustrative purposes only

0 31 6542

Text

0

5

4

3

2

1

8 / 37

Example of a non-RE language

Ld is not recursively enumerable language

ó Ld cannot be accepted by any TM.

ó For each i ∈ N, the string wi is exclusively in either Ld or L(Mi).

ó Hence Ld 6= L(Mi) for any i ∈ N.

M1

M2

M3

M4

M5

M6

...

��1(1) ��1(2) ��1(3) ��1(4) ��1(5) ��1(6) ��1(7)

› 00 01 10 11 : : :

0 0 0 0 0 0 0

0

0 0 0

0 0

0 0 0 0

0 0 0 0

0 0

1

1

1

1

1

1

1 1 1

1 1 1

1

1 1

1 1

11

0 1

Ld = {›; 00; 10; : : :}

�

�

�

�

�

�

† Entries are for illustrative purposes only

0 31 6542

Text

0

5

4

3

2

1

9 / 37

Recursive languages

Recursive languages

10 / 37

Recursive languages

Recursive Languages

ó A language L is recursive if it is accepted by a TM M that halts on all inputs

ó In such a case, the TM M is said to decide L.
ó Every recursive language is recursively enumerable (by definition).

Rec
ur

siv
eRegular

Con
tex

t-f
re

e

Rec
ur

siv
ely

Enu
mer

ab
le

(R
E)

Ld

⌃⇤

ó A (decision) problem that is equivalent to: “is a given w in a given recursive language
L?” is said to be decidable (for the TM that accepts/rejects L is effectively the
machine description of an algorithm for solving the problem).

11 / 37

Recursive languages

(Some Obvious) Properties of Recursive Languages

Theorem 9.3.1

If L is recursive, so is Lc .

Proof of Theorem 9.3.1

TM Mw Accept
Reject

Reject
Accept

TM M 0

ó Accepting states of M are non-accepting
states of M ′.

ó Add a new and only final state qf in M ′

such that

δM(q,X) undefined and q /∈ F

⇓
δM′(q,X) = (qf ,X ,R).

ó Recursive languages are closed under complementation.

12 / 37

Recursive languages

(Some Obvious) Properties of Recursive Languages

Theorem 9.3.2

If L and Lc are both recursively enumerable, then L (and Lc) are recursive.

Proof of Theorem 9.3.2

ó Let L = L(M) and Lc = L(M ′). Run M and M ′ in parallel using a 2-tape TM.

ó Both TMs cannot halt in final states, and both TMs cannot halt in non-final states.

ó Continue running both TMs until either halts in a final state.

ó Accept (or reject) if M (or M ′) halts in a final state, respectively.

Alternate Definition of Recursive Languages

L is recursive if both L and Lc are recursively enumerable.

13 / 37

The Universal Language and Turing Machine

The Universal Language and Turing Machine

14 / 37

The Universal Language and Turing Machine

The Universal Language and Turing Machine

Universal Language Lu

ó Lu := {〈M〉111w : TM M and w ∈ L(M)}. [See Slide 3]

Universal TM U (modelled as 5-tape TM)

1 U copies 〈M〉 to tape 2 and verifies it for
valid structure.

2 Copies w onto tape 3 (maps 0 7→ 01, 1 7→
001)

3 Initiates 4th tape with 01 (M starts in q1)

4 To simulate a move of M, U reads tapes 3
and 4 to identify M’s state and input as 0i

and 0j ; if state is accepting, M (and hence
U) accepts its inputs and halts. Else, U
scans tape 2 for 110i10j1 or BB0i10j1.

ó If found, using the transition, tapes 4
and 3 are updated, and tape 3’s head
moves to right or left.

ó If not, M halts, and so does U.

· · ·· · ·

· · ·· · ·

· · ·· · ·

· · ·

· · ·

· · ·

U’s Finite Control

1 11 0 1 B00001

00001 B B B

0 1 B B BB B BB

0 1 BB

BBBB B B B B B

U ’s input tape

M ’s Code

M ’s input

M ’s state

Scratch tape

0 1 0

1

2

3

5

4

Why is scratch tape needed?

15 / 37

The Universal Language and Turing Machine

Where does Lu Lie in the Hierarchy of Languages?

Theorem 9.4.1

Lu is recursively enumerable, but is not recursive.

Proof of Theorem 9.4.1

ó Lu is recursively enumerable because TM U accepts it.

ó Suppose it were recursive. Then, Lc
u is also recursive.

ó Let TM M ′ accepts w ∈ Lc
u and reject w ∈ Lu.

ó Construct a TM M ′′ such that it first takes its input w appends it with 111w . It then
moves to the beginning of the first w and simulates M ′.

ó M ′′ accepts w ⇐⇒ w111w ∈ Lc
u ⇐⇒ w111w /∈ Lu ⇐⇒ w ∈ Ld .

ó Then, L(M ′′) is the diagonal language Ld , which is impossible!

16 / 37

Recap

Recap

17 / 37

Recap

Recap

ó There exists a bijection φ : Σ∗ → N.

ó There exists an injective (1-1 map) < · >: Set of TMs → Σ∗.

ó RE languages are countable.

Rec
ur

siv
eRegular

Con
tex

t-f
re

e

Rec
ur

siv
ely

Enu
mer

ab
le

(R
E)

Ld

⌃⇤

Lu

ó The diagonalization Language Ld is not recursively enumerable.

ó Recursive languages are closed under complementation

ó The universal language Lu = {〈M〉111w : M accepts w} is RE, but not recursive.

18 / 37

Reductions of Problems

Reductions of Problems

19 / 37

Reductions of Problems

What is a Reduction?

ó A decision problem P is said to reduce to decision problem Q if every instance of P
can be transformed to some instance of Q and a yes (or no) answer to that instance
of Q yields a yes (or no) answer to original instance of P, respectively.

ó Here, transform implies the existence of a Turing machine that takes an instance of
P written on a tape and always halts with an instance of Q written on it.

ó Note that for deciding all instances of P, it is not necessary for all instances of Q to
be (re)solved.

Theorem 9.6.1

If a problem P reduces to a problem Q then:

(a) P is undecidable ⇒ Q is undecidable

(b) P is non-R.E. ⇒ Q is non-R.E.

20 / 37

Reductions of Problems

Problem Reduction

Proof of Theorem 9.6.1

(a) Suppose P is undecidable and Q is decidable. Let TM MQ decide Q.

ó Consider the TM MP that first operates as TM MP−2−Q that transforms P to Q, and
then operates as MQ .

Accept
Reject

MP

MP2Q MQwP
wQ

ó This is a TM that decides all instances of P, a contradiction.

(b) Suppose P is non-R.E. and Q is R.E. Then there must be a TM MQ that accepts
inputs when they correspond to instances of Q whose answer is yes.

ó Consider the TM MP that first operates as TM MP−2−Q , and then operates as MQ .

ó Note that MP might not halt, since MQ might not.

MP

MP2Q MQwP
wQ

Accept

ó This is a TM that accepts all instances of P whose answer is a yes, a contradiction.

21 / 37

Rice’s Theorem

Rice’s Theorem

22 / 37

Rice’s Theorem

Some More Abstract Languages

Language of TMs Accepting Empty and Non-empty Languages

ó Le = {〈M〉 : L(M) = ∅}.
ó Lne = {〈M〉 : L(M) 6= ∅}. (Note: Lne 6= Lc

e).

Theorem 9.7.1

Lne is R.E.

23 / 37

Rice’s Theorem

Lne is R.E.

Proof of Theorem 9.7.1

Tape 1 Tape 2

1

101 · · · 0

11

10

...

ID(1; 1)

...

ID(1; 2) † ID(2; 1)

ID(1; 3) † ID(2; 2) † ID(3; 1)

ID(1; k) † ID(2; k � 1) † ID(3; k � 2) † · · · † ID(k; 1)

3

2

1

k

Cycle

...

�

� If any ID contains an accepting
state, M 0 halts as M would have
on that input.

In cycle k , M 0 runs one move of
M for each ID, and adds the initial
ID of M when ��1(k) is on the
tape.

� ID(i,j) = the ID after j � 1 moves
whenM reads ��1(j) on its tape. · · ·· · ·

· · ·

· · ·· · ·

1

0 1 B B BB B BB

2

3

Cycle Count

Scratch Tape

1 BB BB

List of IDs of M

· · ·· · ·ID1 IDkB B† †

Finite Control of M 0

1 Input Tape for M 0

hMi BB

4

24 / 37

Rice’s Theorem

Lne is not recursive

Theorem 9.7.2

Lne is not recursive.

Proof of Theorem 9.7.2

ó For every TM M and string w , there is a TM Mw that ignores its input and runs M
on w : Mw erases its input tape, and paste w and runs as M.

x w AcceptM
MM;w

ó Mind-bending step: There is a TM M1 that takes 〈M〉111w and outputs 〈Mw 〉.
Note: M1 always halts (even if M does not halt when input is w !)

hMi111w M1 hMM;w i

ó M accepts w ⇐⇒ Mw accepts all inputs ⇐⇒ 〈Mw 〉 ∈ Lne

ó Suppose Lne is recursive. Then there is a TM M2 that accepts iff input 〈M〉 ∈ Lne .

ó Let TM M3 read 〈M〉111w and operate as M1 and then when M1 halts, operate as
M2. Then, M3 accepts/rejects 〈M〉111w iff M accepts/rejects w .

ó Lu is then recursive, which is a contradiction.

25 / 37

Rice’s Theorem

Rice’s Theorem

Given: alphabet Σ and let RE = {L ⊆ Σ∗ | L recursively enumerable}.
ó Recursively enumerable (RE) languages L corresponds to TM M if L = L(M)

ó A property of RE languages is subset P ⊆ RE of the set of RE languages over Σ.

ó A property P is trivial if P = ∅ or P = RE (and non-trivial otherwise).

ó a property P ⊆ RE is decidable if LP = {〈M〉 | L(M) ∈ P} is decidable.

ó identify TM M with RE language L(M)
ó identify M with its code 〈M〉.

Theorem 9.7.3

Every non-trivial property P of RE languages is undecidable, i.e., LP is not recursive.

26 / 37

Rice’s Theorem

Rice’s Theorem

Proof of Theorem 9.7.3

ó WLOG, we can assume that ∅ /∈ P. Else consider Pc .

ó Since P is non-trivial, there is a language L ∈ P and a TM ML that accepts L

ó Let MM,w be a TM that runs M on w and if M accepts w , then reads its input and
operates as ML.

x

w AcceptMMM;w

AcceptML

ó Mind-bending step: There is a TM M1 that takes 〈M〉111w and outputs 〈MM,w 〉.
Note: M1 always halts (even if M does not halt when input is w !)

hMi111w M1 hMM;w i

ó M accepts w ⇐⇒ L(MM,w) = L ∈ P
ó If P were decidable, then there is a ML M2 such that M2 accepts 〈M〉 iff L(M) ∈ P.

ó Then, we can devise a TM M3 such that it reads 〈M〉111w operates first as M1 and
then when M1 has halted, it operates as M2.

ó M3 accepts/rejects 〈M〉111w ⇐⇒ L(MM,w) ∈ / /∈ P ⇐⇒ M accepts/rejects w .

ó Then, Lu is recursive, a contradiction

27 / 37

Post’s Correspondence Problem

Post’s Correspondence Problem

28 / 37

Post’s Correspondence Problem

PCP: Definition

ó Suppose we are given two ordered lists of strings over Σ, say A = (u1, . . . , uk) and
B = (v1, . . . , vk).

ó We say (ui , vi) to be a corresponding pair

ó PCP Problem: Is there a sequence of integers i1, . . . , im such that
ui1 · · · uim = vi1 · · · vim?

ó m can be greater than k, the list length.
ó We can reuse pairs as many times as we like.

A PCP example

A

B

110 0011 0110

110110 00 110

ó A solution cannot start with i1 = 3.

ó A solution can start with i1 = 1, but then i2 = 1, and i3 = 1. . . . Consequently, i1
cannot equal 1.

ó A solution does exist: (i1, i2, i3) = (2, 3, 1).

ó (i1, i2, i3, i4, i5, i6) = (2, 3, 1, 2, 3, 1) is also solution.

29 / 37

Post’s Correspondence Problem

Modified PCP (MPCP): Definition

ó Suppose we are given two ordered lists of strings over Σ, say A = (u1, . . . , uk) and
B = (v1, . . . , vk).

ó MPCP Problem: Is there a sequence of integers i1, . . . , im such that
u1ui1 · · · uim = v1vi1 · · · vim

ó The previous example does not have a solution when viewed as an MPCP problem.

ó So MPCP is indeed a different problem to PCP, but...

Theorem 9.8.1

MPCP reduces to PCP

30 / 37

Post’s Correspondence Problem

Outline of Proof of Theorem 9.8.1

ó Given lists A = (u1, . . . , uk) and B = (v1, . . . , vk) for MPCP, suppose that symbols
�,4 are not in the strings.

ó Construct lists C = (w1, . . . ,wk+2) and D = (x1, . . . , xk+2) for PCP as follows.

ó For i = 1, . . . , k, If uk = s1 . . . s`, then wk+1 = s1 � s2 � · · · � s`�. [� succeeds
symbols]

ó For i = 1, . . . , k, If vk = s1 . . . s`, then xk+1 = �s1 � s2 � · · · � s`. [� precedes
symbols]

ó w1 = �w2 and x1 = x2. [Ensures any solution to PCP also starts with i1 = 1]
ó wk+2 = 4 and xk+2 = �4. [Balances the extra �]

A B

110

0011

0110

110110

00

110

⇧1 ⇧ 1 ⇧ 0⇧
1 ⇧ 1 ⇧ 0⇧
0 ⇧ 0 ⇧ 1 ⇧ 1⇧
0 ⇧ 1 ⇧ 1 ⇧ 0⇧
4

C

⇧1 ⇧ 1 ⇧ 0 ⇧ 1 ⇧ 1 ⇧ 0

⇧0 ⇧ 0

⇧4

D

⇧1 ⇧ 1 ⇧ 0 ⇧ 1 ⇧ 1 ⇧ 0

⇧1 ⇧ 1 ⇧ 0

wi1 · · ·wim = xi1 · · · xim (PCP)

m
u1ui2−1 · · · uim−1−1 = v1vi2−1 · · · vim−1−1 (MPCP)

31 / 37

Post’s Correspondence Problem

PCP is undecidable

Theorem 9.8.2

PCP is undecidable.

Outline of Proof of Theorem 9.8.2 (for one-sided TM)

ó The proof proceeds by constructing a MPCP for each TM M and input w

Rule A: Construct two lists A and B whose first entries are � and �q0w�
Rule I: Add corresponding pairs (X ,X) (all X ∈ Γ) and (�, �)
Rule B: Suppose q is not a final state. Then, append to the list the following entries

List A List B
qX Yp if δ(q,X) = (p,Y ,R)
ZqX pZY if δ(q,X) = (p,Y , L)
q� Yp� if δ(q,B) = (p,Y ,R)
Zq� pZY � if δ(q,B) = (p,Y , L)

Rule C: For q ∈ F , let (XqY , q), (Xq, q) and (qY ,Y) be corresponding pairs for
X ,Y ∈ Γ

Rule D: For q ∈ F (q � �, �) is a corresponding pair.

32 / 37

Post’s Correspondence Problem

PCP is undecidable

Outline of Proof of Theorem 9.8.2

ó Suppose there is a solution to the MPCP problem. The solution starts with the first
corresponding pair, and the string constructed from List B is already a ID of TM M
ahead of the string from List A.

ó As we select strings from List A (corresponding to Rule B) to match the last ID, the
string from List B adds to its string another valid ID.

ó The sequence of IDs constructed are valid sequences of IDs for M starting from q0w .

ó Suppose the last ID constructed in the string constructed from List B corresponds to
a final state, then we can gobble up one neighboring symbol at a time using Rule C.

ó Once we are done gobbling up all tape symbols, the string from List B is still one
final state symbol ahead of List A’s string.

ó We then use Rule D to match and complete.

⇧
⇧q0w⇧ ‘ID0

1⇧
q0w⇧ ‘ID0

1⇧
‘ID0

2⇧
· · ·
· · · ‘ID0

k⇧

IDk = s1s2qf s3s4s5

qf ⇧qf s5⇧s1qf s4s5⇧ ⇧
qf s5⇧ qf ⇧ ⇧s1qf s4s5⇧‘ID0

k⇧

| {z } | {z } | {z } | {z }
Rule A Rule B Rule C Rule D

z }| {
String from List B one ID ahead

z }| { | {z }

Final state
catch-upList A catch-up

33 / 37

Post’s Correspondence Problem

PCP is undecidable

Outline of Proof of Theorem 9.8.2

ó M accepts w ⇐⇒ a solution to the MPCP exists.

ó If MPCP were decidable, then Lu would be recursive, which it isn’t.

ó Hence, MPCP is undecidable. [Theorem 9.6.1]

ó Since MPCP is undecidable, PCP is also undecidable. [Theorem 9.6.1]

34 / 37

Ambiguity in CFGs

Ambiguity in CFGs

35 / 37

Ambiguity in CFGs

ó We’ll now revisit CFGs and prove that ambiguity in CFGs is undecidable.

Theorem 9.9.1

The problem if a grammar is ambiguous is undecidable

Outline of Proof of Theorem 9.8.2

ó We’ll reduce every instance of PCP problem to a CFG.

ó Given an PCP problem A = (w1, · · · ,wk) and B = (x1, . . . , xk), pick symbols
a1, . . . , ak that don’t appear in any string in list A or B.

ó Now define a grammar G with production rules

S −→ A|B
A −→ w1Aa1| · · · |wkAak |w1a1| · · · |wkak

B −→ x1Ba1| · · · |xkBak |x1a1| · · · |xkak

ó If there are two leftmost derivations of a string in L(G), one must use S −→ A and
other S −→ B

ó Every solution to the PCP leads to 2 leftmost derivations of some string in L(G) and
vice versa.

ó Since PCP is undecidable, the ambiguity of CFGs must be undecidable [Thm 9.6.1]

36 / 37

Ambiguity in CFGs

Some More Undecidable Problems Concerning CFGs

ó Given CFGs G1 and G2, is L(G1) ∩ L(G2) = ∅?

ó Given CFGs G1 and G2, is L(G1) ⊆ L(G2)?

ó Given CFGs G1 and G2, is L(G1) = L(G2)?

ó Given CFG G and regular language L, is L(G) = L?

ó Given CFG G and regular language L, is L ⊆ L(G)?

ó Given CFG G , is L(G) = Σ∗?

37 / 37

	Preliminary Ideas
	Example of a non-RE language
	Recursive languages
	The Universal Language and Turing Machine
	Recap
	Reductions of Problems
	Rice's Theorem
	Post's Correspondence Problem
	Ambiguity in CFGs

