COMP3630/6360: Theory of Computation Semester 1, 2022 The Australian National University

Decidability

This lecture covers Chapter 9 of HMU: Decidability and Undecidability

- > Preliminary Ideas
- > Example of a non-RE language
- > Recursive languages
- > Universal Language
- > Reductions of Problems
- > Rice's Theorem
- > Post's Correspondence Problem
- > Undecidable Problems about CFGs

Additional Reading: Chapter 9 of HMU.

Preliminary Ideas

Enumeration of (Binary) Strings

- > We can construct a bijective map ϕ from the set of binary strings $\{0,1\}^*$ to natural numbers $\mathbb N$
- > Enlist all strings ordered by length, and for each length, order using lexicographic ordering.
- > The set of finite binary strings is countable/denumerable.

A Code for Turing Machines

- > For simplicity, let's assume that input alphabet to be binary.
- > WLOG, we can assume that TMs halt at the final state. Consequently, we only need one final state (perhaps after collapsing all states into one).
- > Consider $M = (Q, \{0, 1\}, \Gamma, \delta, q_1, B, F)$.
 - > Rename states $\{q_1, \ldots, q_k\}$ for some $k \in N$ with q_1 : start state and q_k : final state.
 - > Rename input alphabet using $X_1 = 0$, $X_2 = 1$, and blank B as X_3 .
 - > Rename the rest of the tape symbols by X_4, \ldots, X_ℓ for some $\ell \in \mathbb{N}$.
 - \rightarrow Rename L as D_1 and R and D_2 .
- > Every transition $\delta(q_i, X_j) = (q_k, X_l, D_m)$ can be represented as a tuple (i, j, k, l, m).
- > Map each transition tuple (i, j, k, l, m) to a **unique** binary string $0^i 10^j 10^k 10^l 10^m$. NB: No string representing a transition tuple contains 11.
- > Order transition tuples lexicographically and concatenate all transitions using 11 to indicate end of a transition. Let the resultant string be w_M . For example, 3 transitions can be combined as $0^{i_1}10^{i_1}10^{k_1}10^{i_1}10^{m_1}11 0^{i_2}10^{i_2}10^{k_2}10^{k_2}10^{m_2}11 0^{i_3}10^{i_3}10^{k_3}10^{k_3}10^{m_3}$

1st transition

2nd transition

3rd transition

> For each TM M, define the code $\langle M \rangle$ for TM M as w_M .

The Set of Turing Machines

Remark 9.1.1

- > Each TM M corresponds to a unique natural number, i.e., $\phi(\langle M \rangle)$; each natural number corresponds to at most one TM.
- > There are multiple numbers that represent the 'same' TM.
- > The set of TMs/RE languages/CFLs/regular languages is countable.

Example of a non-RE language

Example of a non-RE language

Diagonalization Language L_d

- > Let M_i be the TM s.t. $\phi(\langle M_i \rangle) = i$. (If for an i, no such TM exists, we let M_i to be the TM with 1 state, no transitions and no final state, i.e., it accepts no input).
- > Construct an infinite table of 0s and 1s with a 1 at the i^{th} row and j^{th} column if M_i accepts $w_j := \phi^{-1}(j)$ (see Slide 3 for ϕ).
- > Define a language $L_d = \{w_i : M_i \text{ does not accept } w_i, \text{ where } i \in \mathbb{N}\}.$

L_d is not recursively enumerable language

- $> L_d$ cannot be accepted by any TM.
- > For each $i ∈ \mathbb{N}$, the string w_i is exclusively in either L_d or $L(M_i)$.
- > Hence $L_d \neq L(M_i)$ for any $i \in \mathbb{N}$.

	~			✓		~	
	$\epsilon \ \phi^{-1}(0)$	$\phi^{-1}(1)$	$\phi^{-1}(2)$	$\phi^{-1}(3)$	$\phi^{-1}(4)$	$\phi^{-1}(5)$	$\phi^{-1}(6)$
M ₀	0 🗸	0	0	0	0	0	0
M ₁	1	1	0	0	0	1	1
M ₂	0	1	1	Text	0	0	1
M_3	1	1	1	0 🗸	0	1	1
M ₄	1	0	0	1	1	0	0
M ₅	1	1	0	0	0	0 🗸	1
i	1 = { 00 10 } † Entries are for illustrative purposes only						

Recursive languages

Recursive languages

Recursive Languages

- \rightarrow A language L is **recursive** if it is accepted by a TM M that halts on **all** inputs
 - > In such a case, the TM M is said to **decide** L.
 - > Every recursive language is recursively enumerable (by definition).

> A (decision) problem that is equivalent to: "is a given w in a given recursive language L?" is said to be **decidable** (for the TM that accepts/rejects L is effectively the machine description of an algorithm for solving the problem).

(Some Obvious) Properties of Recursive Languages

Theorem 9.3.1

If L is recursive, so is L^c .

Proof of Theorem 9.3.1

- > Accepting states of *M* are non-accepting states of *M'*
- > Add a new and only final state q_f in M' such that

$$\delta_M(q,X)$$
 undefined and $q \notin F$ \Downarrow $\delta_{M'}(q,X) = (q_f,X,R).$

> Recursive languages are closed under complementation.

(Some Obvious) Properties of Recursive Languages

Theorem 9.3.2

If L and L^c are both recursively enumerable, then L (and L^c) are recursive.

Proof of Theorem 9.3.2

- \rightarrow Let L=L(M) and $L^c=L(M')$. Run M and M' in parallel using a 2-tape TM.
- > Both TMs cannot halt in final states, and both TMs cannot halt in non-final states.
- > Continue running both TMs until either halts in a final state.
- \rightarrow Accept (or reject) if M (or M') halts in a final state, respectively.

Alternate Definition of Recursive Languages

L is recursive if both L and L^c are recursively enumerable.

The Universal Language and Turing Machine

The Universal Language and Turing Machine

The Universal Language and Turing Machine

Universal Language Lu

 $L_u := \{\langle M \rangle 111w : TM M \text{ and } w \in L(M)\}.$ [See Slide 3]

Universal TM U (modelled as 5-tape TM)

- 1 U copies $\langle M \rangle$ to tape 2 and verifies it for valid structure.
- 2 Copies w onto tape 3 (maps $0 \mapsto 01$, $1 \mapsto$ 001)
- 3 Initiates 4th tape with 0^1 (M starts in q_1) 4 To simulate a move of M, U reads tapes 3 and 4 to identify M's state and input as 0'
 - and 0'; if state is accepting, M (and hence U) accepts its inputs and halts. Else, Uscans tape 2 for $110^{i}10^{j}1$ or $BB0^{i}10^{j}1$.
 - > If found, using the transition, tapes 4 and 3 are updated, and tape 3's head moves to right or left.
 - > If not, M halts, and so does U.

M's Code

Where does L_u Lie in the Hierarchy of Languages?

Theorem 9.4.1

 L_u is recursively enumerable, but is not recursive.

Proof of Theorem 9.4.1

- $\rightarrow L_u$ is recursively enumerable because TM U accepts it.
- > Suppose it were recursive. Then, L_u^c is also recursive.
- > Let TM M' accepts $w \in L_u^c$ and reject $w \in L_u$.
- > Construct a TM M'' such that it first takes its input w appends it with 111w. It then moves to the beginning of the first w and simulates M'.
- M'' accepts $w \iff w111w \in L_u^c \iff w111w \notin L_u \iff w \in L_d$.
- \rightarrow Then, L(M'') is the diagonal language L_d , which is impossible!

Recap

Recap

Recap

- > There exists a bijection $\phi: \Sigma^* \to \mathbb{N}$.
- > There exists an injective (1-1 map) $<\cdot>$: Set of TMs $\to \Sigma^*$.
- > RE languages are countable.

- \rightarrow The diagonalization Language L_d is not recursively enumerable.
- > Recursive languages are closed under complementation
- > The universal language $L_u = \{\langle M \rangle 111w : M \text{ accepts } w\}$ is RE, but not recursive.

Reductions of Problems

What is a Reduction?

- > A decision problem *P* is said to reduce to decision problem *Q* if **every** instance of *P* can be <u>transformed</u> to **some** instance of *Q* and a yes (or no) answer to that instance of *Q* yields a yes (or no) answer to original instance of *P*, respectively.
- > Here, **transform** implies the existence of a Turing machine that takes an instance of *P* written on a tape and **always halts** with an instance of *Q* written on it.
- > Note that for deciding **all** instances of *P*, it is not necessary for all instances of *Q* to be (re)solved.

Theorem 9.6.1

If a problem P reduces to a problem Q then:

- (a) P is undecidable $\Rightarrow Q$ is undecidable
- (b) P is non-R.E. \Rightarrow Q is non-R.E.

Problem Reduction

Proof of Theorem 9.6.1

- (a) Suppose P is undecidable and Q is decidable. Let TM M_Q decide Q.
- > Consider the TM M_P that first operates as TM M_{P-2-Q} that transforms P to Q, and then operates as M_Q .

- > This is a TM that decides all instances of P, a contradiction.
- (b) Suppose P is non-R.E. and Q is R.E. Then there must be a TM M_Q that accepts inputs when they correspond to instances of Q whose answer is yes.
- \rightarrow Consider the TM M_P that first operates as TM M_{P-2-Q} , and then operates as M_Q .
- > Note that M_P might not halt, since M_Q might not.

 \gt This is a TM that accepts all instances of P whose answer is a yes, a contradiction.

Rice's Theorem

Some More Abstract Languages

Language of TMs Accepting Empty and Non-empty Languages

- $L_e = \{\langle M \rangle : L(M) = \emptyset\}.$
- \rightarrow $L_{ne} = \{\langle M \rangle : L(M) \neq \emptyset\}$. (Note: $L_{ne} \neq L_e^c$).

Theorem 9.7.1

L_{ne} is R.E.

L_{ne} is R.E.

- when M reads $\phi^{-1}(i)$ on its tape.
- > If any ID contains an accepting state. M' halts as M would have on that input.

 $B \mid B \mid B$

1 Input Tape for M'

2 Cycle Count

3 List of IDs of M

 $ID_1 \mid \dagger \mid$

В $\langle M \rangle$ В

Finite Control of M'

 $\dagger ID_k B$

L_{ne} is not recursive

Theorem 9.7.2

L_{ne} is not recursive.

Proof of Theorem 9.7.2

> For every TM M and string w, there is a TM M_w that ignores its input and runs M on w: M_w erases its input tape, and paste w and runs as M.

$$\times \stackrel{M_{M,w}}{\longrightarrow} Accept$$

> **Mind-bending step:** There is a TM M_1 that takes $\langle M \rangle 111w$ and outputs $\langle M_w \rangle$. Note: M_1 always halts (even if M does not halt when input is w!)

$$\langle M \rangle 111w \longrightarrow M_1 \longrightarrow \langle M_{M,w} \rangle$$

- \rightarrow M accepts $w \iff M_w$ accepts all inputs $\iff \langle M_w \rangle \in L_{ne}$
- > Suppose L_{ne} is recursive. Then there is a TM M_2 that accepts iff input $\langle M \rangle \in L_{ne}$.
- > Let TM M_3 read $\langle M \rangle 111w$ and operate as M_1 and then when M_1 halts, operate as M_2 . Then, M_3 accepts/rejects $\langle M \rangle 111w$ iff M accepts/rejects w.
- > L_u is then recursive, which is a contradiction.

Rice's Theorem

Given: alphabet Σ and let $RE = \{L \subseteq \Sigma^* \mid L \text{ recursively enumerable}\}.$

- > Recursively enumerable (RE) languages L corresponds to TM M if L = L(M)
- > A **property** of RE languages is subset $P \subseteq RE$ of the set of RE languages over Σ .
- \rightarrow A property P is **trivial** if $P = \emptyset$ or P = RE (and non-trivial otherwise).
- > a property P ⊆ RE is decidable if $L_P = \{\langle M \rangle \mid L(M) \in P\}$ is decidable.
 - \rightarrow identify TM M with RE language L(M)
 - \rightarrow identify M with its code $\langle M \rangle$.

Theorem 9.7.3

Every non-trivial property \mathcal{P} of RE languages is undecidable, i.e., L_P is not recursive.

Rice's Theorem

Proof of Theorem 9.7.3

- > WLOG, we can assume that $\emptyset \notin \mathcal{P}$. Else consider \mathcal{P}^c .
- → Since \mathcal{P} is non-trivial, there is a language $L \in \mathcal{P}$ and a TM M_L that accepts L
- > Let $M_{M,w}$ be a TM that runs M on w and if M accepts w, then reads its input and operates as M_L .

$$X \longrightarrow M_{M,w} \longrightarrow M$$
 Accept M_L Accept

> Mind-bending step: There is a TM M_1 that takes $\langle M \rangle 111w$ and outputs $\langle M_{M,w} \rangle$. Note: M_1 always halts (even if M does not halt when input is w!)

$$\langle M \rangle$$
111 $w \longrightarrow M_1 \longrightarrow \langle M_{M,w} \rangle$

- $\rightarrow M$ accepts $w \iff L(M_{M,w}) = L \in \mathcal{P}$
- ightarrow If $\mathcal P$ were decidable, then there is a ML M_2 such that M_2 accepts $\langle M \rangle$ iff $L(M) \in \mathcal P$.
- > Then, we can devise a TM M_3 such that it reads $\langle M \rangle 111w$ operates first as M_1 and then when M_1 has halted, it operates as M_2 .
- > M_3 accepts/rejects $\langle M \rangle 111w$ \iff $L(M_{M,w}) \in / \notin \mathcal{P} \iff M$ accepts/rejects w.
- \rightarrow Then, L_u is recursive, a contradiction

Post's Correspondence Problem

PCP: Definition

- > Suppose we are given two ordered lists of strings over Σ , say $A=(u_1,\ldots,u_k)$ and $B=(v_1,\ldots,v_k)$.
- > We say (u_i, v_i) to be a **corresponding pair**
- > PCP Problem: Is there a sequence of integers i_1,\ldots,i_m such that

$$u_{i_1}\cdots u_{i_m}=v_{i_1}\cdots v_{i_m}$$
?

- > m can be greater than k, the list length.
- > We can reuse pairs as many times as we like.

A PCP example

- > A solution cannot start with $i_1 = 3$.
- > A solution can start with $i_1=1$, but then $i_2=1$, and $i_3=1$ Consequently, i_1 cannot equal 1.
- > A solution does exist: $(i_1, i_2, i_3) = (2, 3, 1)$.
- $(i_1, i_2, i_3, i_4, i_5, i_6) = (2, 3, 1, 2, 3, 1)$ is also solution.

Modified PCP (MPCP): Definition

- > Suppose we are given two ordered lists of strings over Σ , say $A = (u_1, \dots, u_k)$ and $B = (v_1, \dots, v_k)$.
- > MPCP Problem: Is there a sequence of integers i_1, \ldots, i_m such that $u_1 u_{i_1} \cdots u_{i_m} = v_1 v_{i_1} \cdots v_{i_m}$
- > The previous example does not have a solution when viewed as an MPCP problem.
- > So MPCP is indeed a different problem to PCP, but...

Theorem 9.8.1

MPCP reduces to PCP

Outline of Proof of Theorem 9.8.1

- > Given lists $A = (u_1, \dots, u_k)$ and $B = (v_1, \dots, v_k)$ for MPCP, suppose that symbols \diamond , \triangle are not in the strings.
- > Construct lists $C = (w_1, \dots, w_{k+2})$ and $D = (x_1, \dots, x_{k+2})$ for PCP as follows.
 - \rightarrow For $i=1,\ldots,k$, If $u_k=s_1\ldots s_\ell$, then $w_{k+1}=s_1\diamond s_2\diamond\cdots\diamond s_\ell\diamond$. [\diamond succeeds symbols]
 - > For $i=1,\ldots,k$, If $v_k=s_1\ldots s_\ell$, then $x_{k+1}=\diamond s_1\diamond s_2\diamond\cdots\diamond s_\ell$. [\diamond precedes symbols]
 - $\rightarrow w_1 = \diamond w_2$ and $x_1 = x_2$. [Ensures any solution to PCP also starts with $i_1 = 1$]
 - $\rightarrow w_{k+2} = \triangle$ and $x_{k+2} = \diamond \triangle$. [Balances the extra \diamond]

PCP is undecidable

Theorem 9.8.2

PCP is undecidable

Outline of Proof of Theorem 9.8.2 (for one-sided TM)

> The proof proceeds by constructing a MPCP for each TM M and input w

Rule A: Construct two lists A and B whose first entries are \diamond and $\diamond q_0 w \diamond$

Rule I: Add corresponding pairs (X, X) (all $X \in \Gamma$) and (\diamond, \diamond)

Rule B: Suppose q is not a final state. Then, append to the list the following entries

List
$$A$$
 List B
 qX Yp if $\delta(q, X) = (p, Y, R)$
 ZqX pZY if $\delta(q, X) = (p, Y, L)$
 $q \diamond$ $Yp \diamond$ if $\delta(q, B) = (p, Y, R)$
 $Zq \diamond$ $pZY \diamond$ if $\delta(q, B) = (p, Y, L)$

Rule C: For $q \in F$, let (XqY,q), (Xq,q) and (qY,Y) be corresponding pairs for $X,Y \in \Gamma$

Rule D: For $q \in F$ $(q \diamond \diamond, \diamond)$ is a corresponding pair.

PCP is undecidable

Outline of Proof of Theorem 9.8.2

- > Suppose there is a solution to the MPCP problem. The solution starts with the first corresponding pair, and the string constructed from List B is already a ID of TM M ahead of the string from List A.
- > As we select strings from List A (corresponding to Rule B) to match the last ID, the string from List B adds to its string another valid ID.
- \rightarrow The sequence of IDs constructed are valid sequences of IDs for M starting from q_0w .
- > Suppose the last ID constructed in the string constructed from List B corresponds to a final state, then we can gobble up one neighboring symbol at a time using Rule C.
- > Once we are done gobbling up all tape symbols, the string from List *B* is still one final state symbol ahead of List *A*'s string.
- > We then use Rule D to match and complete.

PCP is undecidable

Outline of Proof of Theorem 9.8.2

- > M accepts $w \iff$ a solution to the MPCP exists.
- > If MPCP were decidable, then L_{μ} would be recursive, which it isn't.
- > Hence, MPCP is undecidable. [Theorem 9.6.1]
- > Since MPCP is undecidable, PCP is also undecidable. [Theorem 9.6.1]

Ambiguity in CFGs

Ambiguity in CFGs

> We'll now revisit CFGs and prove that ambiguity in CFGs is undecidable.

Theorem 9.9.1

The problem if a grammar is ambiguous is undecidable

Outline of Proof of Theorem 9.8.2

- > We'll reduce every instance of PCP problem to a CFG.
- > Given an PCP problem $A = (w_1, \dots, w_k)$ and $B = (x_1, \dots, x_k)$, pick symbols a_1, \dots, a_k that don't appear in any string in list A or B.
- > Now define a grammar G with production rules

$$S \longrightarrow A|B$$

$$A \longrightarrow w_1 A a_1 | \cdots | w_k A a_k | w_1 a_1 | \cdots | w_k a_k$$

$$B \longrightarrow x_1 B a_1 | \cdots | x_k B a_k | x_1 a_1 | \cdots | x_k a_k$$

- > If there are two leftmost derivations of a string in L(G), one must use $S \longrightarrow A$ and other $S \longrightarrow B$
- > Every solution to the PCP leads to 2 leftmost derivations of some string in L(G) and vice versa.
- > Since PCP is undecidable, the ambiguity of CFGs must be undecidable [Thm 9.6.1]

Some More Undecidable Problems Concerning CFGs

- > Given CFGs G_1 and G_2 , is $L(G_1) \cap L(G_2) = \emptyset$?
- > Given CFGs G_1 and G_2 , is $L(G_1) \subseteq L(G_2)$?
- > Given CFGs G_1 and G_2 , is $L(G_1) = L(G_2)$?
- > Given CFG G and regular language L, is L(G) = L?
- > Given CFG G and regular language L, is $L \subseteq L(G)$?
- \rightarrow Given CFG G, is $L(G) = \Sigma^*$?