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This lecture covers Chapter 9 of HMU: Decidability and Undecidability J

Preliminary Ideas

Example of a non-RE language
Recursive languages

Universal Language

Reductions of Problems

Rice's Theorem

Post’s Correspondence Problem
Undecidable Problems about CFGs
Additional Reading: Chapter 9 of HMU.
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Preliminary Ideas




Preliminary Ideas

Enumeration of (Binary) Strings

> We can construct a bijective map ¢
from the set of binary strings {0,1}"
to natural numbers N.

> Enlist all strings ordered by length,
and for each length, order using lexi-
cographic ordering.

> The set of finite binary strings is
countable/denumerable.

—_—— ————— ——

=
N

wl o |2

N o o |~

111

0000

1111

32

4/37



Preliminary Ideas

A Code for Turing Machines

>

>

v

v

v

v

v

For simplicity, let's assume that input alphabet to be binary.

WLOG, we can assume that TMs halt at the final state. Consequently, we only need
one final state (perhaps after collapsing all states into one).

Consider M = (Q,{0,1},T",6,q1, B, F).
> Rename states {q,..., g} for some k € N with gi: start state and gx: final
state.
> Rename input alphabet using X; = 0, X2 = 1, and blank B as Xs.
> Rename the rest of the tape symbols by Xi,..., X, for some ¢ € N.
> Rename L as D; and R and D-.

Every transition 6(qi, Xj) = (g, Xi, Dm) can be represented as a tuple (i,j, k, I, m).
Map each transition tuple (i, J, k, I, m) to a unique binary string 0'10/10%10'10™.
NB: No string representing a transition tuple contains 11.

Order transition tuples lexicographically and concatenate all transitions using 11 to

indicate end of a transjtior). Let the resultanfc string be wy. For example, 3 transitions

can be combined as 07101010"10™ 110210210%10210™ 110%10210*10"10™
1st transition 2nd transition 3rd transition

For each TM M, define the code (M) for TM M as wpy.
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Preliminary Ideas

The Set of Turing Machines

An Example: A TM that accepts strings with odd # of 1s

01010101001 01001001001001 0010100101001
(1,1,1,1,2) (1,2,2,2,2) (2,1,2,1,2)
Xl/Xz X2/ X2, Da Xl/Xl- D>
= O - O =S

3, X3, D1

X2/ X2, Dy (2,3,3,3,1)

(2,2,1,2,2) 00100010001000101

00100101001001

< M >= 010101010%111010%10%10%10%1110%1010°1010%111
0%10%1010%10°1110%10%10%10%101.

Remark 9.1.1

|

> Each TM M corresponds to a unique natural number, i.e., $({M)); each natural
number corresponds to at most one TM.

> There are multiple numbers that represent the ‘same’ TM.
> The set of TMs/RE languages/CFLs/regular languages is countable.
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Example of a non-RE language

Diagonalization Language Ly

> Let M; be the TM s.t. ¢(< M; >) = i. (If for an i, no such TM exists, we let M; to
be the TM with 1 state, no transitions and no final state, i.e., it accepts no input).

> Construct an infinite table of Os and 1s with a 1 at the i*" row and j* column if M;
accepts w; := ¢ 1(j) (see Slide 3 for ¢).

> Define a language Ly = {w; : M; does not accept w;, where j € N}.

v v v
€ 0 1 00 01 10 mn
$7H0) M) M) 4B 4@ ¢ ¢'(e)
M, ov 0 0 0 0 0 0
M, 1 1 0 0 0 1 1
M 0 1 1 ok 0 0 1
Ms 1 1 1 0v 0 1 1
M, 1 0 0 1 1 0 0
Mg 1 1 0 0 0 ov| 1
Ly= {e, 00, 10, .. .} 1 Entries are for illustrative purposes only
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Example of a non-RE language

Ly is not recursively enumerable language

> Lg cannot be accepted by any TM.
> For each i € N, the string w; is exclusively in either Ly or L(M;).
> Hence Lg # L(M;) for any i € N.

v v v
€ 0 1 00 01 10 i
$710)  $7M1)  ¢7M2) ¢7M8) 44 4N(E)  ¢7M(e)
Mq ov 0 0 0 0 0 0
M, 1 1 0 0 0 1 1
M 0 1 1 1ok 0 0 1
M, 1 1 1 0w 0 1 1
M, 1 0 0 1 1 0 0
Mg 1 1 0 0 0 ov| 1
Ly ={¢,00,10,...} 1 Entries are for illustrative purposes only
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Recursive languages




Recursive languages

Recursive Languages

> A language L is recursive if it is accepted by a TM M that halts on all inputs

> In such a case, the TM M is said to decide L.
> Every recursive language is recursively enumerable (by definition).

Regular

> A (decision) problem that is equivalent to: “is a given w in a given recursive language
L?" is said to be decidable (for the TM that accepts/rejects L is effectively the
machine description of an algorithm for solving the problem).
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Recursive languages

(Some Obvious) Properties of Recursive Languages

Theorem 9.3.1

If L is recursive, so is L€.

Proof of Theorem 9.3.1

> Accepting states of M are non-accepting
states of M.

> Add a new and only final state gr in M’

™ M’ such that
w—t{> TM M |—» ACCEPI——P Reject dm(qg, X) undefined and q ¢ F
Reject ——» Accept M

dmr (g, X) = (qr, X, R).

> Recursive languages are closed under complementation.
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Recursive languages

(Some Obvious) Properties of Recursive Languages

Theorem 9.3.2

If L and L€ are both recursively enumerable, then L (and L) are recursive.

.

Proof of Theorem 9.3.2
> Let L = L(M) and L° = L(M’). Run M and M’ in parallel using a 2-tape TM.

> Both TMs cannot halt in final states, and both TMs cannot halt in non-final states.

> Continue running both TMs until either halts in a final state.

> Accept (or reject) if M (or M’) halts in a final state, respectively.

M

Alternate Definition of Recursive Languages

L is recursive if both L and L are recursively enumerable.
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The Universal Language and Turing Machine

The Universal Language and Turing Machine

Universal Language L,

> L, :={(M)11lw: TM M and w € L(M)}.

[See Slide 3] J

Universal TM U (modelled as 5-tape TM)

1 U copies (M) to tape 2 and verifies it for
valid structure.

2 Copies w onto tape 3 (maps 0 — 01, 1 —
001)

3 Initiates 4th tape with 0' (M starts in q1)

4 To simulate a move of M, U reads tapes 3
and 4 to identify M’s state and input as 0’
and O/; if state is accepting, M (and hence
U) accepts its inputs and halts. Else, U
scans tape 2 for 110'10/1 or BBO'10/1.
> If found, using the transition, tapes 4
and 3 are updated, and tape 3's head
moves to right or left.
> If not, M halts, and so does U.

.4y’|s'1lrip§t|t§‘|)%|0|1lllll0|\1|3| "Msgje
eM’sinput( ( [1[ofo]o[o[B[B]B]
- [8[8]8]B[0]1]B[B[B] -

Scratch tape

o [5[8]]5]5]5]8]5]5]
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The Universal Language and Turing Machine

Where does L, Lie in the Hierarchy of Languages?

Theorem 9.4.1

L, is recursively enumerable, but is not recursive.

Proof of Theorem 9.4.1

> L, is recursively enumerable because TM U accepts it.

> Suppose it were recursive. Then, L is also recursive.
> Let TM M’ accepts w € LS and reject w € L,,.

> Construct a TM M" such that it first takes its input w appends it with 111w. It then
moves to the beginning of the first w and simulates M’.

> M" accepts w <= wlllw € L <= wlllw ¢ L, <= w € L.

> Then, L(M") is the diagonal language L4, which is impossible!

.
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Recap

Recap

> There exists a bijection ¢ : ¥* — N.
> There exists an injective (1-1 map) < - >: Set of TMs — X*.

> RE languages are countable.

Regular

> The diagonalization Language Ly is not recursively enumerable.
> Recursive languages are closed under complementation

> The universal language L, = {{M)111w : M accepts w} is RE, but not recursive.
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Reductions of Problems

What is a Reduction?

> A decision problem P is said to reduce to decision problem Q@ if every instance of P
can be transformed to some instance of Q and a yes (or no) answer to that instance
of Q yields a yes (or no) answer to original instance of P, respectively.

> Here, transform implies the existence of a Turing machine that takes an instance of
P written on a tape and always halts with an instance of @ written on it.

> Note that for deciding all instances of P, it is not necessary for all instances of Q to
be (re)solved.

Theorem 9.6.1

If a problem P reduces to a problem @ then:
(a) P is undecidable = Q is undecidable
(b) P is non-R.E. = Q is non-R.E.
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Reductions of Problems

Problem Reduction

Proof of Theorem 9.6.1

(a) Suppose P is undecidable and Q is decidable. Let TM Mg decide Q.

> Consider the TM Mp that first operates as TM Mp_5,_q that transforms P to Q, and
then operates as Mg.

Mp
wQ Accept
s Mp2q Reject
> This is a TM that decides all instances of P, a contradiction.

(b) Suppose P is non-R.E. and Q is R.E. Then there must be a TM Mg that accepts
inputs when they correspond to instances of @ whose answer is yes.

> Consider the TM Mp that first operates as TM Mp_,_q, and then operates as M.

> Note that Mp might not halt, since Mg might not.
Mp

wQ
wp Mpag Accept

> This is a TM that accepts all instances of P whose answer is a yes, a contradiction.
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Rice's Theorem

Some More Abstract Languages

Language of TMs Accepting Empty and Non-empty Languages

> Lo={(M): L(M) = 0}.
> Lpe = {(M) : L(M) # 0}. (Note: Lne # LS).

Theorem 9.7.1

L. is R.E.
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Rice's Theorem

Lne is R.E.

Proof of Theorem 9.7.1

€ nput Tape for V'

> In cycle k, M’ runs one move of
M for each ID, and adds the initial
ID of M when ¢~(k) is on the
tape.

% ID(i,j) = the ID after j — 1 moves || @ Cycle C
when M reads ¢~1(j) on its tape. oy

> If any ID contains an accepting 9 List of IDs of M

state, M’ halts as M would have |B| 1D1|T|" |T|1Dk |B|
on that input.
© scratch Tape
Cycle Tape 1 Tape 2 l ---|B|B|B|B|0|1|B|B|B|
1
2 [ 10| [Ip(2) tID@21)
3 [TD(1.3) 1 ID(2,2) 1 ID(3,1)|
k |101.--0] [ID(1 k)t ID(2,k—1) t ID(3,k—2) t---1ID(k,1)]
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Rice's Theorem

L,e is not recursive

Theorem 9.7.2

Lye is not recursive.

Proof of Theorem 9.7.2

> For every TM M and string w, there is a TM M, that ignores its input and runs M
on w: M, erases its input tape, and paste w and runs as M.

Mu,w
x W — Accept

> Mind-bending step: There is a TM M; that takes (M)111w and outputs (M. ).
Note: M; always halts (even if M does not halt when input is w!)

(M)111w (Mwt,w)

> M accepts w <= M, accepts all inputs <= (My) € Lpe

> Suppose L. is recursive. Then there is a TM M, that accepts iff input (M) € Lpe.

> Let TM M3 read (M)111w and operate as M; and then when M; halts, operate as
M,. Then, Mz accepts/rejects (M)111w iff M accepts/rejects w.

> L, is then recursive, which is a contradiction.
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Rice's Theorem

Rice's Theorem

Given: alphabet X and let RE = {L C X" | L recursively enumerable}.
> Recursively enumerable (RE) languages L corresponds to TM M if L = L(M)
> A property of RE languages is subset P C RE of the set of RE languages over X.
> A property P is trivial if P =0 or P = RE (and non-trivial otherwise).
> a property P C RE is decidable if Lp = {(M) | L(M) € P} is decidable.
> identify TM M with RE language L(M)
> identify M with its code (M).

Theorem 9.7.3

\ |

Every non-trivial property P of RE languages is undecidable, i.e., Lp is not recursive.
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Rice's Theorem

Rice's Theorem

Proof of Theorem 9.7.3

>
>
>

v

v VvV Vv

v Vv

WLOG, we can assume that () ¢ P. Else consider P°.
Since P is non-trivial, there is a language L € P and a TM M, that accepts L
Let Mm,» be a TM that runs M on w and if M accepts w, then reads its input and

operates as M;.
[ — [ g
x ‘ My Accept

Mind-bending step: There is a TM M; that takes (M)111w and outputs (Mu,w).
Note: M, always halts (even if M does not halt when input is w!)

(M)111w (Muiw)

M accepts w <= L(Myw)=LEP
If P were decidable, then there is a ML M, such that M> accepts (M) iff L(M) € P.

Then, we can devise a TM M3 such that it reads (M)111w operates first as M; and
then when M; has halted, it operates as M.

Ms accepts/rejects (M)11lw <= L(Mwm,w) € / ¢ P <= M accepts/rejects w.

Then, L, is recursive, a contradiction
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Post’s Correspondence Problem

PCP: Definition

> Suppose we are given two ordered lists of strings over X, say A = (u1,..., ux) and
B=(vi,...,w).

> We say (ui, v;) to be a corresponding pair

> PCP Problem: Is there a sequence of integers i, ..., im such that
Uy e Uiy = Vi e Vi ?

> m can be greater than k, the list length.
> We can reuse pairs as many times as we like.

A PCP example

A [ 110 0011 0110 ]

B [110110 00 110 ]

> A solution cannot start with ;4 = 3.

> A solution can start with ii = 1, but then i =1, and 3 = 1.... Consequently, i
cannot equal 1.

> A solution does exist: (i1, 2, i3) = (2,3,1).

> (i1, iy i3, iay i5, 16) = (2,3,1,2,3,1) is also solution.
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Post’s Correspondence Problem

Modified PCP (MPCP): Definition

> Suppose we are given two ordered lists of strings over 3, say A= (u1, ..., ux) and
B = (V1,...,Vk).

> MPCP Problem: Is there a sequence of integers i, ..., im such that
Uil - Uy = VIV - Vi,

> The previous example does not have a solution when viewed as an MPCP problem.
> So MPCP is indeed a different problem to PCP, but...

Theorem 9.8.1

MPCP reduces to PCP
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Post’s Correspondence Problem

Outline of Proof of Theorem 9.8.1

> Given lists A= (u1,...,ux) and B = (w1, ..., v) for MPCP, suppose that symbols
©,/\ are not in the strings.
> Construct lists C = (w, ..., wkt2) and D = (xa, ..., xk+2) for PCP as follows.
>Fori=1,...,k If uy =5s1...5, then wx41 = 510500 50. [0 succeeds
symbols]
>Fori=1,...,k If i =s1...50, then X411 =©51 05 ¢+ sp. [¢ precedes
symbols]
> w1 = ows and x1 = x». [Ensures any solution to PCP also starts with ii = 1]

> Wip2 = A and X412 = ©A. [Balances the extra ¢]
A C B D
110 0lolo00 110110 ¢0lolo0ololol
0011 lolo00 00 0lolo00lolo0
0110 0000lolo 110 0000
0ololo0o ©lolo0
A LAY

W,'1 e Wi =X,'1 s Xig (PCP)

Utlpy—1++* Ujp -1 = V1Vp—1--- Vi, ;-1 (MPCP)
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Post’s Correspondence Problem

PCP is undecidable

Theorem 9.8.2

PCP is undecidable. J

> The proof proceeds by constructing a MPCP for each TM M and input w
Rule A: Construct two lists A and B whose first entries are ¢ and ogowo
Rule I: Add corresponding pairs (X, X) (all X € T') and (¢, )
Rule B: Suppose g is not a final state. Then, append to the list the following entries

List A List B
gX Yp  ifo(q,X)=(p,Y,R)
ZgX  pZY ifé(q,X)=(p,Y,L)
qo Ypo  ifd(q,B) = (p, Y,R)
Zgo  pZYo ifé(q,B) = (p,Y,L)

Rule C: For g € F, let (XqY,q), (Xq,q) and (qY,Y) be corresponding pairs for
X,Yer

Rule D: For g € F (g ¢©,9) is a corresponding pair.
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Post’s Correspondence Problem

PCP is undecidable

Outline of Proof of Theorem 9.8.2

> Suppose there is a solution to the MPCP problem. The solution starts with the first
corresponding pair, and the string constructed from List B is already a ID of TM M

ahead of the string from List A.

> As we select strings from List A (corresponding to Rule B) to match the last ID, the

string from List B adds to its string another valid ID.

> The sequence of IDs constructed are valid sequences of IDs for M starting from gow.

> Suppose the last ID constructed in the string constructed from List B corresponds to
a final state, then we can gobble up one neighboring symbol at a time using Rule C.

> Once we are done gobbling up all tape symbols, the string from List B is still one

final state symbol ahead of List A's string.

> We then use Rule D to match and complete.

Final state
String from List B one ID ahead List A catch-up  catch-up
—_——
o qows | [TDo ‘ID}o 519754550 ||qrsso || gr o ©
oqowo| | ‘IDjo | 1D} - ‘ID} o |s1qrsasso qrsso || 9ro ©
Rule A RuleB | Rule C Rule D

IDk = 515:G£ 35455

4
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Post’s Correspondence Problem

PCP is undecidable

Outline of Proof of Theorem 9.8.2

> M accepts w <= a solution to the MPCP exists.

> If MPCP were decidable, then L, would be recursive, which it isn't.

> Hence, MPCP is undecidable. [Theorem 9.6.1]

> Since MPCP is undecidable, PCP is also undecidable. [Theorem 9.6.1]
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Ambiguity in CFGs

> We'll now revisit CFGs and prove that ambiguity in CFGs is undecidable.

Theorem 9.9.1

The problem if a grammar is ambiguous is undecidable

QOutline of Proof of Theorem 9.8.2

> We'll reduce every instance of PCP problem to a CFG.

> Given an PCP problem A = (w1, - ,wk) and B = (x1,...,x«), pick symbols
ai,...,ak that don’t appear in any string in list A or B.

> Now define a grammar G with production rules

S— AB
A— W1Aal| ©oo |WkAak‘W1a1‘ ooo |Wka/<
B — xiBai| - - - |[xkBak|x1a1| - - - |xkak

> If there are two leftmost derivations of a string in L(G), one must use S —> A and
other S — B

> Every solution to the PCP leads to 2 leftmost derivations of some string in L(G) and
vice versa.

> Since PCP is undecidable, the ambiguity of CFGs must be undecidable [Thm 9.6.1]
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Ambiguity in CFGs

Some More Undecidable Problems Concerning CFGs

> Given CFGs G and Gy, is L(G1) N L(G2) = 0?

> Given CFGs G: and Gy, is L(G1) C L(Gp)?

> Given CFGs G and Gy, is L(G1) = L(Gp)?

> Given CFG G and regular language L, is L(G) = L?

> Given CFG G and regular language L, is L C L(G)?

> Given CFG G, is L(G) = X*7
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