
Introduction to Compilers

Copyright ©2023 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or fee. Request
permission to publish from hosking@cs.purdue.edu.

CS352 Introduction 1

Compilers

What is a compiler?

• a program that translates an executable program in one language into an
executable program in another language

• we expect the program produced by the compiler to be better, in some way,
than the original

What is an interpreter?

• a program that reads an executable program and produces the results of
running that program

• usually, this involves executing the source program in some fashion

This course deals mainly with compilers

Many of the same issues arise in interpreters

CS352 Introduction 2

Motivation

Why study compiler construction?

Why build compilers?

Why attend class?

CS352 Introduction 3

Interest

Compiler construction is a microcosm of computer science

artificial intelligence
greedy algorithms, learning algorithms

algorithms
graph algorithms, union-find, dynamic programming

theory
DFAs for scanning, parser generators, lattice theory

systems
allocation and naming, locality, synchronization

architecture
pipeline management, hierarchy management, instruction set use

Inside a compiler, all these things come together
CS352 Introduction 4

Isn’t it a solved problem?

Machines are constantly changing

Changes in architecture ⇒ changes in compilers

• new features pose new problems

• changing costs lead to different concerns

• old solutions need re-engineering

Changes in compilers should prompt changes in architecture

• New languages and features

CS352 Introduction 5

Intrinsic Merit

Compiler construction is challenging and fun

• interesting problems

• primary responsibility for performance (blame)

• new architectures ⇒ new challenges

• real results

• extremely complex interactions

Compilers have an impact on how computers are used

Some of the most interesting problems in computing
CS352 Introduction 6

Experience

You have used several compilers

What qualities are important in a compiler?

1. Correct code

2. Output runs fast

3. Compiler runs fast

4. Compile time proportional to program size

5. Support for separate compilation

6. Good diagnostics for syntax errors

7. Works well with the debugger

8. Good diagnostics for flow anomalies

9. Cross language calls

10. Consistent, predictable optimization

CS352 Introduction 7

Each of these shapes your expectations about this course

Abstract view

errors

compilercode code
source machine

Implications:

• recognize legal (and illegal) programs

• generate correct code

• manage storage of all variables and code

• agreement on format for object (or assembly) code

Big step up from assembler — higher level notations
CS352 Introduction 8

Traditional two pass compiler

code
source

code
machinefront

end
back
end

IR

errors

Implications:

• intermediate representation (IR)

• front end maps legal code into IR

• back end maps IR onto target machine

• simplify retargeting

• allows multiple front ends

• multiple passes ⇒ better code

CS352 Introduction 9

A fallacy

back
end

front
end

FORTRAN
code

front
end

front
end

front
end

back
end

back
end

code

code

code

C++

CLU

Smalltalk

target1

target2

target3

Can we build n×m compilers with n+m components?

• must encode all the knowledge in each front end

• must represent all the features in one IR

• must handle all the features in each back end

Limited success with low-level IRs
CS352 Introduction 10

Front end

code
source tokens

errors

scanner parser IR

Responsibilities:

• recognize legal procedure

• report errors

• produce IR

• preliminary storage map

• shape the code for the back end

Much of front end construction can be automated
CS352 Introduction 11

Front end

code
source tokens

errors

scanner parser IR

Scanner:
• maps characters into tokens – the basic unit of syntax
x = x + y;

becomes
<id, x> = <id, x> + <id, y> ;

• character string value for a token is a lexeme

• typical tokens: number, id, +, -, *, /, do, end
• eliminates white space (tabs, blanks, comments)
• a key issue is speed

⇒ use specialized recognizer (as opposed to lex)
CS352 Introduction 12

Front end

code
source tokens

errors

scanner parser IR

Parser:

• recognize context-free syntax

• guide context-sensitive analysis

• construct IR(s)

• produce meaningful error messages

• attempt error correction

Parser generators mechanize much of the work
CS352 Introduction 13

Front end

Context-free syntax is specified with a grammar

<sheep noise> ::= baa

| baa <sheep noise>

The noises sheep make under normal circumstances

This format is called Backus-Naur form (BNF)

Formally, a grammar G = (S,N,T,P) where

S is the start symbol
N is a set of non-terminal symbols
T is a set of terminal symbols
P is a set of productions or rewrite rules

(P : N → N ∪T)

CS352 Introduction 14

Front end

Context free syntax can be put to better use

1 <goal> ::= <expr>
2 <expr> ::= <expr> <op> <term>
3 | <term>
4 <term> ::= number

5 | id

6 <op> ::= +

7 | -

Simple expressions with addition and subtraction over tokens id and number

S = <goal>
T = number, id, +, -
N = <goal>, <expr>, <term>, <op>
P = 1, 2, 3, 4, 5, 6, 7

CS352 Introduction 15

Front end

Given a grammar, valid sentences can be derived by repeated substitution.

Prod’n. Result
<goal>

1 <expr>
2 <expr> <op> <term>
5 <expr> <op> y

7 <expr> - y

2 <expr> <op> <term> - y

4 <expr> <op> 2 - y

6 <expr> + 2 - y

3 <term> + 2 - y

5 x + 2 - y

To recognize a valid sentence in some CFG, we reverse this process and build
up a parse
CS352 Introduction 16

Front end

A parse can be represented by a parse, or syntax, tree

2><num:

<id:x>

<id: >y

goal

op

termopexpr

expr term

expr

term

-

+

Obviously, this contains a lot of unnecessary information
CS352 Introduction 17

Front end

So, compilers often use an abstract syntax tree

<id:x> 2><num:

<id: >y+

-

This is much more concise

Abstract syntax trees (ASTs) are often used as an IR between front end and
back end

CS352 Introduction 18

Back end

errors

IR allocation
register

selection
instruction machine

code

Responsibilities

• translate IR into target machine code

• choose instructions for each IR operation

• decide what to keep in registers at each point

• ensure conformance with system interfaces

CS352 Introduction 19

Automation has been less successful here

Back end

errors

IR allocation
register machine

code
instruction
selection

Instruction selection:

• produce compact, fast code

• use available addressing modes

• pattern matching problem

– ad hoc techniques
– tree pattern matching
– string pattern matching
– dynamic programming

CS352 Introduction 20

Back end

errors

IR
machine

code
instruction
selection

register
allocation

Register Allocation:

• have value in a register when used
• limited resources
• changes instruction choices
• can move loads and stores
• optimal allocation is difficult

Modern allocators often use an analogy to graph coloring
CS352 Introduction 21

Traditional three pass compiler

IR

errors

IR
middlefront back

end end end
source
code code

machine

Code Improvement

• analyzes and changes IR

• goal is to reduce runtime

• must preserve values

CS352 Introduction 22

Optimizer (middle end)

opt nopt1 ... IR

errors

IR IR
IR

Modern optimizers are usually built as a set of passes

Typical passes

• constant propagation and folding

• code motion

• reduction of operator strength

• common subexpression elimination

• redundant store elimination

• dead code elimination
CS352 Introduction 23

The project compiler

Parse TranslateLex
Canon-Semantic

Analysis calize

Instruction

Selection

Frame

Layout

Parsing

Actions

S
o

u
rc

e
 P

ro
g

ra
m

T
o

k
e

n
s

Pass 10

R
e

d
u

c
ti
o

n
s

A
b

s
tr

a
c
t

S
y
n

ta
x

T
ra

n
s
la

te

IR
 T

re
e

s

IR
 T

re
e

s

Frame

Tables

Environ-

ments

A
s
s
e

m

Control

Flow

Analysis

Data

Flow

Analysis

Register

Allocation

Code

Emission Assembler

M
a

c
h

in
e

 L
a

n
g

u
a

g
e

A
s
s
e

m

F
lo

w
 G

ra
p

h

In
te

rf
e

re
n

c
e

 G
ra

p
h

R
e

g
is

te
r

A
s
s
ig

n
m

e
n

t

A
s
s
e

m
b

ly
 L

a
n

g
u

a
g

e

R
e

lo
c
a

ta
b

le
 O

b
je

c
t

C
o

d
e

Pass 1 Pass 4

Pass 5 Pass 8 Pass 9

Linker

Pass 2

Pass 3

Pass 6 Pass 7

CS352 Introduction 24

The project compiler phases
Lex Break source file into individual words, or tokens
Parse Analyse the phrase structure of program
Parsing Actions Build a piece of abstract syntax tree for each phrase
Semantic Analysis Determine what each phrase means, relate uses of variables to their defini-

tions, check types of expressions, request translation of each phrase
Frame Layout Place variables, function parameters, etc., into activation records (stack

frames) in a machine-dependent way
Translate Produce intermediate representation trees (IR trees), a notation that is not

tied to any particular source language or target machine
Canonicalize Hoist side effects out of expressions, and clean up conditional branches, for

convenience of later phases
Instruction
Selection

Group IR-tree nodes into clumps that correspond to actions of target-machine
instructions

Control Flow
Analysis

Analyse sequence of instructions into control flow graph showing all possible
flows of control program might follow when it runs

Data Flow
Analysis

Gather information about flow of data through variables of program; e.g.,
liveness analysis calculates places where each variable holds a still-needed
(live) value

Register Allocation Choose registers for variables and temporary values; variables not simulta-
neously live can share same register

Code Emission Replace temporary names in each machine instruction with registers
CS352 Introduction 25

A straight-line programming language
Stm → Stm ; Stm CompoundStm
Stm → id := Exp AssignStm
Stm → print (ExpList) PrintStm
Exp → id IdExp
Exp → num NumExp
Exp → Exp Binop Exp OpExp
Exp → (Stm , Exp) EseqExp
ExpList → Exp , ExpList PairExpList
ExpList → Exp LastExpList
Binop → + Plus
Binop → − Minus
Binop → × Times
Binop → / Div

An example straight-line program:

a := 5+3; b := (print(a,a−1),10×a); print(b)

CS352 Introduction 26

prints:

8 7

80

Tree representation

a := 5+3; b := (print(a,a−1),10×a); print(b)

AssignStm

CompoundStm

a OpExp

PlusNumExp

5

NumExp

3

AssignStm

b EseqExp

PrintStm

PairExpList

IdExp

a

LastExpList

OpExp

MinusIdExp NumExp

a 1

OpExp

NumExp Times IdExp

a10

PrintStm

LastExpList

IdExp

b

CompoundStm

This is a convenient internal representation for a compiler to use.

CS352 Introduction 27

Java classes for trees

abstract class Stm {}
class CompoundStm extends Stm

Stm stm1, stm2;
CompoundStm(Stm s1, Stm s2)
{ stm1=s1; stm2=s2; }

}
class AssignStm extends Stm
{

String id; Exp exp;
AssignStm(String i, Exp e)
{ id=i; exp=e; }

}
class PrintStm extends Stm {

ExpList exps;
PrintStm(ExpList e)
{ exps=e; }

}

CS352 Introduction 28

Java classes for trees (continued)

abstract class Exp {}
class IdExp extends Exp {

String id;
IdExp(String i) {id=i;}

}
class NumExp extends Exp {

int num;
NumExp(int n) {num=n;}

}
class OpExp extends Exp {

Exp left, right; int oper;
final static int

Plus=1,Minus=2,Times=3,Div=4;
OpExp(Exp l, int o, Exp r)
{ left=l; oper=o; right=r; }

}

class EseqExp extends Exp {
Stm stm; Exp exp;
EseqExp(Stm s, Exp e)
{ stm=s; exp=e; }

}
abstract class ExpList {}
class PairExpList extends ExpList {

Exp head; ExpList tail;
public PairExpList(Exp h, ExpList t)
{ head=h; tail=t; }

}
class LastExpList extends ExpList {

Exp head;
public LastExpList(Exp h)
{ head=h; }

}

CS352 Introduction 29

