
Syntactic Analysis: Parsing

Copyright ©2023by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and full citation on the first page. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or fee. Request permission to publish from
hosking@acm.org.

1

The role of the parser

code
source tokens

errors

scanner parser IR

Parser

• performs context-free syntax analysis
• guides context-sensitive analysis
• constructs an intermediate representation
• produces meaningful error messages
• attempts error correction

For the next few weeks, we will look at parser construction

2

Syntax analysis

Context-free syntax is specified with a context-free grammar.

Formally, a CFG G is a 4-tuple (Vt,Vn,S,P), where:

Vt is the set of terminal symbols in the grammar.
For our purposes, Vt is the set of tokens returned by the scanner.

Vn, the nonterminals, is a set of syntactic variables that denote sets of (sub)strings
occurring in the language.
These are used to impose a structure on the grammar.

S is a distinguished nonterminal (S ∈Vn) denoting the entire set of strings in L(G).
This is sometimes called a goal symbol.

P is a finite set of productions specifying how terminals and non-terminals can be
combined to form strings in the language.
Each production must have a single non-terminal on its left hand side.

The set V =Vt ∪Vn is called the vocabulary of G

3

Notation and terminology

• a,b,c, . . . ∈Vt

• A,B,C, . . . ∈Vn

• U,V,W, . . . ∈V

• α,β,γ, . . . ∈V ∗

• u,v,w, . . . ∈V ∗t

If A→ γ then αAβ⇒ αγβ is a single-step derivation using A→ γ

Similarly,⇒∗ and⇒+ denote derivations of ≥ 0 and ≥ 1 steps

If S⇒∗ β then β is said to be a sentential form of G

L(G) = {w ∈V ∗t | S⇒+ w}, w ∈ L(G) is called a sentence of G

Note, L(G) = {β ∈V ∗ | S⇒∗ β}∩V ∗t
4

Syntax analysis

Grammars are often written in Backus-Naur form (BNF).

Example:

1 ⟨goal⟩ ::= ⟨expr⟩
2 ⟨expr⟩ ::= ⟨expr⟩⟨op⟩⟨expr⟩
3 | num

4 | id

5 ⟨op⟩ ::= +
6 | −
7 | ∗
8 | /

This describes simple expressions over numbers and identifiers.

In a BNF for a grammar, we represent

1. non-terminals with angle brackets or capital letters
2. terminals with typewriter font or underline
3. productions as in the example

5

Scanning vs. parsing
Where do we draw the line?

term ::= [a−zA−z]([a−zA−z] | [0−9])∗

| 0 | [1−9][0−9]∗
op ::= + | − | ∗ | /
expr ::= (term op)∗term

Regular expressions are used to classify:

• identifiers, numbers, keywords

• REs are more concise and simpler for tokens than a grammar

• more efficient scanners can be built from REs (DFAs) than grammars

Context-free grammars are used to count:

• brackets: (), begin. . . end, if. . . then. . . else
• imparting structure: expressions

Syntactic analysis is complicated enough: grammar for C has around 200
productions. Factoring out lexical analysis as a separate phase makes compiler
more manageable.

6

Derivations

We can view the productions of a CFG as rewriting rules.

Using our example CFG:

⟨goal⟩ ⇒ ⟨expr⟩
⇒ ⟨expr⟩⟨op⟩⟨expr⟩
⇒ ⟨id,x⟩⟨op⟩⟨expr⟩
⇒ ⟨id,x⟩+ ⟨expr⟩
⇒ ⟨id,x⟩+ ⟨expr⟩⟨op⟩⟨expr⟩
⇒ ⟨id,x⟩+ ⟨num,2⟩⟨op⟩⟨expr⟩
⇒ ⟨id,x⟩+ ⟨num,2⟩ ∗ ⟨expr⟩
⇒ ⟨id,x⟩+ ⟨num,2⟩ ∗ ⟨id,y⟩

We have derived the sentence x + 2 ∗ y.
We denote this ⟨goal⟩⇒∗ id + num ∗ id.

Such a sequence of rewrites is a derivation or a parse.

The process of discovering a derivation is called parsing.
7

Derivations

At each step, we chose a non-terminal to replace.

This choice can lead to different derivations.

Two are of particular interest:

leftmost derivation
the leftmost non-terminal is replaced at each step

rightmost derivation
the rightmost non-terminal is replaced at each step

The previous example was a leftmost derivation.
8

Rightmost derivation

For the string x + 2 ∗ y:

⟨goal⟩ ⇒ ⟨expr⟩
⇒ ⟨expr⟩⟨op⟩⟨expr⟩
⇒ ⟨expr⟩⟨op⟩⟨id,y⟩
⇒ ⟨expr⟩ ∗ ⟨id,y⟩
⇒ ⟨expr⟩⟨op⟩⟨expr⟩ ∗ ⟨id,y⟩
⇒ ⟨expr⟩⟨op⟩⟨num,2⟩ ∗ ⟨id,y⟩
⇒ ⟨expr⟩+ ⟨num,2⟩ ∗ ⟨id,y⟩
⇒ ⟨id,x⟩+ ⟨num,2⟩ ∗ ⟨id,y⟩

Again, ⟨goal⟩⇒∗ id + num ∗ id.

9

Precedence

goal

expr

expr op expr

expr op expr * <id,y>

<num,2>+<id,x>

Treewalk evaluation computes (x + 2) ∗ y
— the “wrong” answer!

Should be x + (2 ∗ y)
10

Precedence

These two derivations point out a problem with the grammar.

It has no notion of precedence, or implied order of evaluation.

To add precedence takes additional machinery:

1 ⟨goal⟩ ::= ⟨expr⟩
2 ⟨expr⟩ ::= ⟨expr⟩+ ⟨term⟩
3 | ⟨expr⟩−⟨term⟩
4 | ⟨term⟩
5 ⟨term⟩ ::= ⟨term⟩ ∗ ⟨factor⟩
6 | ⟨term⟩/⟨factor⟩
7 | ⟨factor⟩
8 ⟨factor⟩ ::= num

9 | id

This grammar enforces a precedence on the derivation:

• terms must be derived from expressions
• forces the “correct” tree

11

Precedence

Now, for the string x + 2 ∗ y:

⟨goal⟩ ⇒ ⟨expr⟩
⇒ ⟨expr⟩+ ⟨term⟩
⇒ ⟨expr⟩+ ⟨term⟩ ∗ ⟨factor⟩
⇒ ⟨expr⟩+ ⟨term⟩ ∗ ⟨id,y⟩
⇒ ⟨expr⟩+ ⟨factor⟩ ∗ ⟨id,y⟩
⇒ ⟨expr⟩+ ⟨num,2⟩ ∗ ⟨id,y⟩
⇒ ⟨term⟩+ ⟨num,2⟩ ∗ ⟨id,y⟩
⇒ ⟨factor⟩+ ⟨num,2⟩ ∗ ⟨id,y⟩
⇒ ⟨id,x⟩+ ⟨num,2⟩ ∗ ⟨id,y⟩

Again, ⟨goal⟩⇒∗ id + num ∗ id, but this time, we build the desired tree.

12

Precedence

expr

expr

+

term

factor

<id,x>

goal

term

*term

<num,2>

factor

factor

<id,y>

Treewalk evaluation computes x + (2 ∗ y)

13

Ambiguity

If a grammar has more than one derivation for a single sentential form, then it is
ambiguous

Example:
⟨stmt⟩ ::= if ⟨expr⟩then ⟨stmt⟩

| if ⟨expr⟩then ⟨stmt⟩else ⟨stmt⟩
| other stmts

Consider deriving the sentential form:

if E1 then if E2 then S1 else S2

It has two derivations.

This ambiguity is purely grammatical.

It is a context-free ambiguity.

14

Ambiguity

May be able to eliminate ambiguities by rearranging the grammar:
⟨stmt⟩ ::= ⟨matched⟩

| ⟨unmatched⟩
⟨matched⟩ ::= if ⟨expr⟩ then ⟨matched⟩ else ⟨matched⟩

| other stmts

⟨unmatched⟩ ::= if ⟨expr⟩ then ⟨stmt⟩
| if ⟨expr⟩ then ⟨matched⟩ else ⟨unmatched⟩

This generates the same language as the ambiguous grammar, but applies the
common sense rule:

match each else with the closest unmatched then

This is most likely the language designer’s intent.
15

Ambiguity

Ambiguity is often due to confusion in the context-free specification.

Context-sensitive confusions can arise from overloading.

Example:

a = f(17)

In many Algol-like languages, f could be a function or subscripted variable.

Disambiguating this statement requires context:

• need values of declarations
• not context-free
• really an issue of type

Rather than complicate parsing, we will handle this separately.
16

Parsing: the big picture

parser

generator

code

parser

tokens

IR

grammar

Our goal is a flexible parser generator system
17

Top-down versus bottom-up

Top-down parsers

• start at the root of derivation tree and fill in

• picks a production and tries to match the input

• may require backtracking

• some grammars are backtrack-free (predictive)

Bottom-up parsers

• start at the leaves and fill in

• start in a state valid for legal first tokens

• as input is consumed, change state to encode possibilities
(recognize valid prefixes)

• use a stack to store both state and sentential forms

18

Top-down parsing

A top-down parser starts with the root of the parse tree, labelled with the start or
goal symbol of the grammar.

To build a parse, it repeats the following steps until the fringe of the parse tree
matches the input string

1. At a node labelled A, select a production A→ α and construct the appropriate
child for each symbol of α

2. When a terminal is added to the fringe that doesn’t match the input string,
backtrack

3. Find the next node to be expanded (must have a label in Vn)

The key is selecting the right production in step 1

⇒ should be guided by input string

19

Simple expression grammar

Recall our grammar for simple expressions:

1 ⟨goal⟩ ::= ⟨expr⟩
2 ⟨expr⟩ ::= ⟨expr⟩ + ⟨term⟩
3 | ⟨expr⟩ −⟨term⟩
4 | ⟨term⟩
5 ⟨term⟩ ::= ⟨term⟩ ∗ ⟨factor⟩
6 | ⟨term⟩ /⟨factor⟩
7 | ⟨factor⟩
8 ⟨factor⟩ ::= num

9 | id

Consider the input string x − 2 ∗ y

20

Example
Prod’n Sentential form Input

– ⟨goal⟩ ↑x − 2 ∗ y
1 ⟨expr⟩ ↑x − 2 ∗ y

2 ⟨expr⟩ + ⟨term⟩ ↑x − 2 ∗ y
4 ⟨term⟩ + ⟨term⟩ ↑x − 2 ∗ y
7 ⟨factor⟩ + ⟨term⟩ ↑x − 2 ∗ y
9 id + ⟨term⟩ ↑x − 2 ∗ y
– id + ⟨term⟩ x ↑ − 2 ∗ y

– ⟨expr⟩ ↑x − 2 ∗ y
3 ⟨expr⟩ − ⟨term⟩ ↑x − 2 ∗ y
4 ⟨term⟩ − ⟨term⟩ ↑x − 2 ∗ y
7 ⟨factor⟩ − ⟨term⟩ ↑x − 2 ∗ y
9 id − ⟨term⟩ ↑x − 2 ∗ y
– id − ⟨term⟩ x ↑ − 2 ∗ y

– id − ⟨term⟩ x − ↑2 ∗ y
7 id − ⟨factor⟩ x − ↑2 ∗ y
8 id − num x − ↑2 ∗ y
– id − num x − 2 ↑ ∗ y

– id − ⟨term⟩ x − ↑2 ∗ y
5 id − ⟨term⟩ ∗ ⟨factor⟩ x − ↑2 ∗ y
7 id − ⟨factor⟩ ∗ ⟨factor⟩ x − ↑2 ∗ y
8 id − num ∗ ⟨factor⟩ x − ↑2 ∗ y
– id − num ∗ ⟨factor⟩ x − 2 ↑ ∗ y
– id − num ∗ ⟨factor⟩ x − 2 ∗ ↑y
9 id − num ∗ id x − 2 ∗ ↑y
– id − num ∗ id x − 2 ∗ y ↑

21

Example

Another possible parse for x − 2 ∗ y

Prod’n Sentential form Input
– ⟨goal⟩ ↑x − 2 ∗ y

1 ⟨expr⟩ ↑x − 2 ∗ y

2 ⟨expr⟩ + ⟨term⟩ ↑x − 2 ∗ y

2 ⟨expr⟩ + ⟨term⟩ + ⟨term⟩ ↑x − 2 ∗ y

2 ⟨expr⟩ + ⟨term⟩ + · · · ↑x − 2 ∗ y

2 ⟨expr⟩ + ⟨term⟩ + · · · ↑x − 2 ∗ y

2 · · · ↑x − 2 ∗ y

If the parser makes the wrong choices, expansion doesn’t terminate.
This isn’t a good property for a parser to have.

(Parsers should terminate!)
22

Left-recursion

Top-down parsers cannot handle left-recursion in a grammar

Formally, a grammar is left-recursive if

∃A ∈Vn such that A⇒+ Aα for some string α

Our simple expression grammar is left-recursive
23

Eliminating left-recursion

To remove left-recursion, we can transform the grammar

Consider the grammar fragment:

⟨foo⟩ ::= ⟨foo⟩α
| β

where α and β do not start with ⟨foo⟩

We can rewrite this as:
⟨foo⟩ ::= β⟨bar⟩
⟨bar⟩ ::= α⟨bar⟩

| ε

where ⟨bar⟩ is a new non-terminal

This fragment contains no left-recursion
24

Example
Our expression grammar contains two cases of left-recursion

⟨expr⟩ ::= ⟨expr⟩+ ⟨term⟩
| ⟨expr⟩−⟨term⟩
| ⟨term⟩

⟨term⟩ ::= ⟨term⟩ ∗ ⟨factor⟩
| ⟨term⟩/⟨factor⟩
| ⟨factor⟩

Applying the transformation gives

⟨expr⟩ ::= ⟨term⟩⟨expr′⟩
⟨expr′⟩ ::= +⟨term⟩⟨expr′⟩

| ε

| −⟨term⟩⟨expr′⟩
⟨term⟩ ::= ⟨factor⟩⟨term′⟩
⟨term′⟩ ::= ∗⟨factor⟩⟨term′⟩

| ε

| /⟨factor⟩⟨term′⟩
With this grammar, a top-down parser will
• terminate
• backtrack on some inputs

25

Example

This cleaner grammar defines the same language

1 ⟨goal⟩ ::= ⟨expr⟩
2 ⟨expr⟩ ::= ⟨term⟩ + ⟨expr⟩
3 | ⟨term⟩−⟨expr⟩
4 | ⟨term⟩
5 ⟨term⟩ ::= ⟨factor⟩ ∗ ⟨term⟩
6 | ⟨factor⟩/⟨term⟩
7 | ⟨factor⟩
8 ⟨factor⟩ ::= num

9 | id

It is

• right-recursive
• free of ε-productions

Unfortunately, it generates different associativity
Same syntax, different meaning

26

Example

Our long-suffering expression grammar:

1 ⟨goal⟩ ::= ⟨expr⟩
2 ⟨expr⟩ ::= ⟨term⟩⟨expr′⟩
3 ⟨expr′⟩ ::= +⟨term⟩⟨expr′⟩
4 | −⟨term⟩⟨expr′⟩
5 | ε

6 ⟨term⟩ ::= ⟨factor⟩⟨term′⟩
7 ⟨term′⟩ ::= ∗⟨factor⟩⟨term′⟩
8 | /⟨factor⟩⟨term′⟩
9 | ε

10 ⟨factor⟩ ::= num

11 | id

Recall, we factored out left-recursion
27

How much lookahead is needed?

We saw that top-down parsers may need to backtrack when they select the wrong
production

Do we need arbitrary lookahead to parse CFGs?

• in general, yes

• use the Earley or Cocke-Younger, Kasami algorithms

Fortunately

• large subclasses of CFGs can be parsed with limited lookahead

• most programming language constructs can be expressed in a grammar that
falls in these subclasses

Among the interesting subclasses are:

LL(1): left to right scan, left-most derivation, 1-token lookahead; and
LR(1): left to right scan, right-most derivation, 1-token lookahead

28

Predictive parsing

Basic idea:

For any two productions A→ α | β, we would like a distinct way of
choosing the correct production to expand.

For some RHS α ∈ G, define FIRST(α) as the set of tokens that appear first in
some string derived from α.
That is, for some w ∈V ∗t , w ∈ FIRST(α) iff. α⇒∗ wγ.

Key property:
Whenever two productions A→ α and A→ β both appear in the grammar, we
would like

FIRST(α)∩ FIRST(β) = φ

This would allow the parser to make a correct choice with a lookahead of only one
symbol!

The example grammar has this property!

29

Left factoring

What if a grammar does not have this property?

Sometimes, we can transform a grammar to have this property.

For each non-terminal A find the longest prefix
α common to two or more of its alternatives.

if α ̸= ε then replace all of the A productions
A→ αβ1 | αβ2 | · · · | αβn

with
A→ αA′

A′→ β1 | β2 | · · · | βn

where A′ is a new non-terminal.

Repeat until no two alternatives for a single
non-terminal have a common prefix.

30

Example

Consider a right-recursive version of the expression grammar:

1 ⟨goal⟩ ::= ⟨expr⟩
2 ⟨expr⟩ ::= ⟨term⟩+ ⟨expr⟩
3 | ⟨term⟩−⟨expr⟩
4 | ⟨term⟩
5 ⟨term⟩ ::= ⟨factor⟩ ∗ ⟨term⟩
6 | ⟨factor⟩/⟨term⟩
7 | ⟨factor⟩
8 ⟨factor⟩ ::= num

9 | id

To choose between productions 2, 3, & 4, the parser must see past the num or id
and look at the +, −, ∗, or /.

FIRST(2)∩ FIRST(3)∩ FIRST(4) ̸= φ

This grammar fails the test.

Note: This grammar is right-associative.

31

Example

There are two nonterminals that must be left-factored:

⟨expr⟩ ::= ⟨term⟩+ ⟨expr⟩
| ⟨term⟩−⟨expr⟩
| ⟨term⟩

⟨term⟩ ::= ⟨factor⟩ ∗ ⟨term⟩
| ⟨factor⟩/⟨term⟩
| ⟨factor⟩

Applying the transformation gives us:

⟨expr⟩ ::= ⟨term⟩⟨expr′⟩
⟨expr′⟩ ::= +⟨expr⟩

| −⟨expr⟩
| ε

⟨term⟩ ::= ⟨factor⟩⟨term′⟩
⟨term′⟩ ::= ∗⟨term⟩

| /⟨term⟩
| ε

32

Example

Substituting back into the grammar yields

1 ⟨goal⟩ ::= ⟨expr⟩
2 ⟨expr⟩ ::= ⟨term⟩⟨expr′⟩
3 ⟨expr′⟩ ::= +⟨expr⟩
4 | −⟨expr⟩
5 | ε

6 ⟨term⟩ ::= ⟨factor⟩⟨term′⟩
7 ⟨term′⟩ ::= ∗⟨term⟩
8 | /⟨term⟩
9 | ε

10 ⟨factor⟩ ::= num

11 | id

Now, selection requires only a single token lookahead.

Note: This grammar is still right-associative.

33

Example

Sentential form Input
– ⟨goal⟩ ↑x − 2 ∗ y
1 ⟨expr⟩ ↑x − 2 ∗ y
2 ⟨term⟩⟨expr′⟩ ↑x − 2 ∗ y
6 ⟨factor⟩⟨term′⟩⟨expr′⟩ ↑x − 2 ∗ y

11 id⟨term′⟩⟨expr′⟩ ↑x − 2 ∗ y
– id⟨term′⟩⟨expr′⟩ x ↑- 2 ∗ y

9 idε ⟨expr′⟩ x ↑- 2
4 id− ⟨expr⟩ x ↑- 2 ∗ y
– id− ⟨expr⟩ x − ↑2 ∗ y

2 id− ⟨term⟩⟨expr′⟩ x − ↑2 ∗ y
6 id− ⟨factor⟩⟨term′⟩⟨expr′⟩ x − ↑2 ∗ y

10 id− num⟨term′⟩⟨expr′⟩ x − ↑2 ∗ y
– id− num⟨term′⟩⟨expr′⟩ x − 2 ↑* y

7 id− num∗ ⟨term⟩⟨expr′⟩ x − 2 ↑* y
– id− num∗ ⟨term⟩⟨expr′⟩ x − 2 ∗ ↑y
6 id− num∗ ⟨factor⟩⟨term′⟩⟨expr′⟩ x − 2 ∗ ↑y

11 id− num∗ id⟨term′⟩⟨expr′⟩ x − 2 ∗ ↑y
– id− num∗ id⟨term′⟩⟨expr′⟩ x − 2 ∗ y↑
9 id− num∗ id⟨expr′⟩ x − 2 ∗ y↑
5 id− num∗ id x − 2 ∗ y↑

The next symbol determined each choice correctly.

34

Back to left-recursion elimination

Given a left-factored CFG, to eliminate left-recursion:

if ∃ A→ Aα then replace all of the A productions
A→ Aα | β | . . . | γ

with
A→ NA′

N→ β | . . . | γ
A′→ αA′ | ε

where N and A′ are new productions.

Repeat until there are no left-recursive productions.

35

Generality

Question:

By left factoring and eliminating left-recursion, can we transform an
arbitrary context-free grammar to a form where it can be predictively
parsed with a single token lookahead?

Answer:

Given a context-free grammar that doesn’t meet our conditions, it is
undecidable whether an equivalent grammar exists that does meet our
conditions.

Many context-free languages do not have such a grammar:

{an0bn | n≥ 1}
⋃
{an1b2n | n≥ 1}

Must look past an arbitrary number of a’s to discover the 0 or the 1 and so
determine the derivation.

36

Recursive descent parsing

Now, we can produce a simple recursive descent parser from the
(right-associative) grammar.

goal:

token ← next token();

if (expr() = ERROR | token ̸= EOF) then

return ERROR;

expr:

if (term() = ERROR) then

return ERROR;

else return expr prime();

expr prime:

if (token = PLUS) then

token ← next token();

return expr();

else if (token = MINUS) then

token ← next token();

return expr();

else return OK;

37

Recursive descent parsing

term:

if (factor() = ERROR) then

return ERROR;

else return term prime();

term prime:

if (token = MULT) then

token ← next token();

return term();

else if (token = DIV) then

token ← next token();

return term();

else return OK;

factor:

if (token = NUM) then

token ← next token();

return OK;

else if (token = ID) then

token ← next token();

return OK;

else return ERROR;

38

Building the tree

One of the key jobs of the parser is to build an intermediate representation of the
source code.

To build an abstract syntax tree, we can simply insert code at the appropriate
points:

• factor() can stack nodes id, num

• term prime() can stack nodes ∗, /

• term() can pop 3, build and push subtree

• expr prime() can stack nodes +, −

• expr() can pop 3, build and push subtree

• goal() can pop and return tree

39

Non-recursive predictive parsing

Observation:

Our recursive descent parser encodes state information in its run-time
stack, or call stack.

Using recursive procedure calls to implement a stack abstraction may not be
particularly efficient.

This suggests other implementation methods:

• explicit stack, hand-coded parser

• stack-based, table-driven parser

40

Non-recursive predictive parsing

Now, a predictive parser looks like:

scanner
table-driven

parser
IR

parsing

tables

stack

source

code

tokens

Rather than writing code, we build tables.

Building tables can be automated!
41

Table-driven parsers

A parser generator system often looks like:

scanner
table-driven

parser
IR

parsing

tables

stack

source

code

tokens

parser

generator
grammar

This is true for both top-down (LL) and bottom-up (LR) parsers

42

Non-recursive predictive parsing

Input: a string w and a parsing table M for G

tos ← 0

Stack[tos] ← EOF

Stack[++tos] ← Start Symbol
token ← next token()

repeat

X ← Stack[tos]

if X is a terminal or EOF then

if X = token then

pop X

token ← next token()

else error()

else /* X is a non-terminal */

if M[X,token] = X → Y1Y2 · · ·Yk then

pop X

push Yk,Yk−1, · · · ,Y1
else error()

until X = EOF

43

Non-recursive predictive parsing

What we need now is a parsing table M.

Our expression grammar:

1 ⟨goal⟩ ::= ⟨expr⟩
2 ⟨expr⟩ ::= ⟨term⟩⟨expr′⟩
3 ⟨expr′⟩ ::= +⟨expr⟩
4 | −⟨expr⟩
5 | ε

6 ⟨term⟩ ::= ⟨factor⟩⟨term′⟩
7 ⟨term′⟩ ::= ∗⟨term⟩
8 | /⟨term⟩
9 | ε

10 ⟨factor⟩ ::= num

11 | id

Its parse table:
id num + − ∗ / $†

⟨goal⟩ 1 1 – – – – –
⟨expr⟩ 2 2 – – – – –
⟨expr′⟩ – – 3 4 – – 5
⟨term⟩ 6 6 – – – – –
⟨term′⟩ – – 9 9 7 8 9
⟨factor⟩ 11 10 – – – – –

† we use $ to represent EOF

44

FIRST

For a string of grammar symbols α, define FIRST(α) as:

• the set of terminal symbols that begin strings derived from α:
{a ∈Vt | α⇒∗ aβ}

• If α⇒∗ ε then ε ∈ FIRST(α)

FIRST(α) contains the set of tokens valid in the initial position in α

To build FIRST(X):

1. If X ∈Vt then FIRST(X) is {X}
2. If X → ε then add ε to FIRST(X)

3. If X → Y1Y2 · · ·Yk:

(a) Put FIRST(Y1)−{ε} in FIRST(X)

(b) ∀i : 1 < i≤ k, if ε ∈ FIRST(Y1)∩·· ·∩ FIRST(Yi−1)

(i.e., Y1 · · ·Yi−1⇒∗ ε)
then put FIRST(Yi)−{ε} in FIRST(X)

(c) If ε ∈ FIRST(Y1)∩·· ·∩ FIRST(Yk) then put ε in FIRST(X)

Repeat until no more additions can be made.
45

FOLLOW

For a non-terminal A, define FOLLOW(A) as

the set of terminals that can appear immediately to the right of A in some
sentential form

Thus, a non-terminal’s FOLLOW set specifies the tokens that can legally appear
after it.

A terminal symbol has no FOLLOW set.

To build FOLLOW(A):

1. Put $ in FOLLOW(⟨goal⟩)
2. If A→ αBβ:

(a) Put FIRST(β)−{ε} in FOLLOW(B)

(b) If β = ε (i.e., A→ αB) or ε ∈ FIRST(β) (i.e., β⇒∗ ε) then put FOLLOW(A) in
FOLLOW(B)

Repeat until no more additions can be made

46

LL(1) grammars

Previous definition

A grammar G is LL(1) iff. for all non-terminals A, each distinct pair of
productions A→ β and A→ γ satisfy the condition FIRST(β)

⋂
FIRST(γ) = φ.

What if A⇒∗ ε?

Revised definition

A grammar G is LL(1) iff. for each set of productions A→ α1 | α2 | · · · | αn:

1. FIRST(α1),FIRST(α2), . . . ,FIRST(αn) are all pairwise disjoint
2. If αi⇒∗ ε then FIRST(α j)

⋂
FOLLOW(A) = φ,∀1≤ j ≤ n, i ̸= j.

If G is ε-free, condition 1 is sufficient.

47

LL(1) grammars

Provable facts about LL(1) grammars:

1. No left-recursive grammar is LL(1)

2. No ambiguous grammar is LL(1)

3. Some languages have no LL(1) grammar

4. A ε–free grammar where each alternative expansion for A begins with a
distinct terminal is a simple LL(1) grammar.

Example

• S→ aS | a is not LL(1) because FIRST(aS) = FIRST(a) = {a}
• S→ aS′

S′→ aS′ | ε
accepts the same language and is LL(1)

48

LL(1) parse table construction

Input: Grammar G

Output: Parsing table M

Method:

1. ∀ productions A→ α:

(a) ∀a ∈ FIRST(α), add A→ α to M[A,a]

(b) If ε ∈ FIRST(α):

i. ∀b ∈ FOLLOW(A), add A→ α to M[A,b]

ii. If $ ∈ FOLLOW(A) then add A→ α to M[A,$]

2. Set each undefined entry of M to error

If ∃M[A,a] with multiple entries then grammar is not LL(1).

Note: recall a,b ∈Vt, so a,b ̸= ε

49

Example

Our long-suffering expression grammar:

S→ E T → FT ′

E→ T E ′ T ′→∗T | /T | ε
E ′→+E | −E | ε F → id | num

FIRST FOLLOW

S {num,id} {$}
E {num,id} {$}
E ′ {ε,+,−} {$}
T {num,id} {+,−,$}
T ′ {ε,∗,/} {+,−,$}
F {num,id} {+,−,∗,/,$}
id {id} −
num {num} −
∗ {∗} −
/ {/} −
+ {+} −
− {−} −

id num + − ∗ / $
S S→ E S→ E − − − − −
E E→ T E ′ E→ T E ′ − − − − −
E ′ − − E ′→+E E ′→−E − − E ′→ ε

T T → FT ′ T → FT ′ − − − − −
T ′ − − T ′→ ε T ′→ ε T ′→∗T T ′→ /T T ′→ ε

F F → id F → num − − − − −

50

Building the tree

Again, we insert code at the right points:
tos ← 0
Stack[tos] ← EOF
Stack[++tos] ← root node
Stack[++tos] ← Start Symbol
token ← next token()
repeat

X ← Stack[tos]
if X is a terminal or EOF then

if X = token then
pop X
token ← next token()
pop and fill in node

else error()
else /* X is a non-terminal */

if M[X,token] = X → Y1Y2 · · ·Yk then
pop X
pop node for X
build node for each child and
make it a child of node for X
push nk,Yk,nk−1,Yk−1, · · · ,n1,Y1

else error()
until X = EOF

51

A grammar that is not LL(1)

⟨stmt⟩ ::= if ⟨expr⟩ then ⟨stmt⟩
| if ⟨expr⟩ then ⟨stmt⟩ else ⟨stmt⟩
| . . .

Left-factored:
⟨stmt⟩ ::= if ⟨expr⟩ then ⟨stmt⟩ ⟨stmt′⟩ | . . .
⟨stmt′⟩ ::= else ⟨stmt⟩ | ε

Now, FIRST(⟨stmt′⟩) = {ε,else}
Also, FOLLOW(⟨stmt′⟩) = {else,$}
But, FIRST(⟨stmt′⟩)

⋂
FOLLOW(⟨stmt′⟩) = {else} ̸= φ

On seeing else, conflict between choosing

⟨stmt′⟩ ::= else ⟨stmt⟩ and ⟨stmt′⟩ ::= ε

⇒ grammar is not LL(1)!

The fix:

Put priority on ⟨stmt′⟩ ::= else ⟨stmt⟩ to associate else with closest
previous then.

52

Error recovery

Key notion:

• For each non-terminal, construct a set of terminals on which the parser can
synchronize

• When an error occurs looking for A, scan until an element of SYNCH(A) is
found

Building SYNCH:

1. a ∈ FOLLOW(A)⇒ a ∈ SYNCH(A)

2. place keywords that start statements in SYNCH(A)

3. add symbols in FIRST(A) to SYNCH(A)

If we can’t match a terminal on top of stack:

1. pop the terminal

2. print a message saying the terminal was inserted

3. continue the parse

(i.e., SYNCH(a) =Vt−{a})
53

Some definitions

Recall

For a grammar G, with start symbol S, any string α such that S⇒∗ α is called a
sentential form

• If α ∈V ∗t , then α is called a sentence in L(G)

• Otherwise it is just a sentential form (not a sentence in L(G))

A left-sentential form is a sentential form that occurs in the leftmost derivation of
some sentence.

A right-sentential form is a sentential form that occurs in the rightmost derivation
of some sentence.

54

Bottom-up parsing

Goal:

Given an input string w and a grammar G, construct a parse tree by
starting at the leaves and working to the root.

The parser repeatedly matches a right-sentential form from the language against
the tree’s upper frontier.

At each match, it applies a reduction to build on the frontier:

• each reduction matches an upper frontier of the partially built tree to the RHS
of some production

• each reduction adds a node on top of the frontier

The final result is a rightmost derivation, in reverse.
55

Example

Consider the grammar

1 S → aABe
2 A → Abc
3 | b

4 B → d

and the input string abbcde

Prod’n. Sentential Form
3 a b bcde

2 a Abc de

4 aA d e

1 aABe
– S

The trick appears to be scanning the input and finding valid sentential forms.

56

Handles

What are we trying to find?

A substring α of the tree’s upper frontier that

matches some production A→ α where reducing α to A is one step in the
reverse of a rightmost derivation

We call such a string a handle.

Formally:

a handle of a right-sentential form γ is a production A→ β and a position
in γ where β may be found and replaced by A to produce the previous
right-sentential form in a rightmost derivation of γ.

i.e., if S⇒∗rm αAw⇒rm αβw then A→ β in the position following α is a handle of αβw

Because γ is a right-sentential form, the substring to the right of a handle contains
only terminal symbols.

57

Handles

S

α

A

wβ
The handle A→ β in the parse tree for αβw

58

Handles

Theorem:

If G is unambiguous then every right-sentential form has a unique handle.

Proof: (by definition)

1. G is unambiguous⇒ rightmost derivation is unique

2. ⇒ a unique production A→ β applied to take γi−1 to γi

3. ⇒ a unique position k at which A→ β is applied

4. ⇒ a unique handle A→ β

59

Example

The left-recursive expression grammar (original form)

1 ⟨goal⟩ ::= ⟨expr⟩
2 ⟨expr⟩ ::= ⟨expr⟩+ ⟨term⟩
3 | ⟨expr⟩−⟨term⟩
4 | ⟨term⟩
5 ⟨term⟩ ::= ⟨term⟩ ∗ ⟨factor⟩
6 | ⟨term⟩/⟨factor⟩
7 | ⟨factor⟩
8 ⟨factor⟩ ::= num

9 | id

Prod’n. Sentential Form
– ⟨goal⟩
1 ⟨expr⟩
3 ⟨expr⟩ − ⟨term⟩
5 ⟨expr⟩ − ⟨term⟩ ∗ ⟨factor⟩
9 ⟨expr⟩ − ⟨term⟩ ∗ id
7 ⟨expr⟩ − ⟨factor⟩ ∗ id
8 ⟨expr⟩ − num ∗ id
4 ⟨term⟩ − num ∗ id
7 ⟨factor⟩ − num ∗ id
9 id − num ∗ id

60

Handle-pruning

The process to construct a bottom-up parse is called handle-pruning.

To construct a rightmost derivation

S = γ0⇒ γ1⇒ γ2⇒ ··· ⇒ γn−1⇒ γn = w

we set i to n and apply the following simple algorithm

for i = n downto 1

1. find the handle Ai→ βi in γi

2. replace βi with Ai to generate γi−1

This takes 2n steps, where n is the length of the derivation

61

Stack implementation

One scheme to implement a handle-pruning, bottom-up parser is called a
shift-reduce parser.

Shift-reduce parsers use a stack and an input buffer

1. initialize stack with $

2. Repeat until the top of the stack is the goal symbol and the input token is $

a) find the handle
if we don’t have a handle on top of the stack, shift an input symbol onto the
stack

b) prune the handle
if we have a handle A→ β on the stack, reduce

i) pop | β | symbols off the stack

ii) push A onto the stack

62

Example: back to x − 2 ∗ y

1 ⟨goal⟩ ::= ⟨expr⟩
2 ⟨expr⟩ ::= ⟨expr⟩+ ⟨term⟩
3 | ⟨expr⟩−⟨term⟩
4 | ⟨term⟩
5 ⟨term⟩ ::= ⟨term⟩ ∗ ⟨factor⟩
6 | ⟨term⟩/⟨factor⟩
7 | ⟨factor⟩
8 ⟨factor⟩ ::= num

9 | id

Stack Input Action
$ id − num ∗ id shift
$id − num ∗ id reduce 9
$⟨factor⟩ − num ∗ id reduce 7
$⟨term⟩ − num ∗ id reduce 4
$⟨expr⟩ − num ∗ id shift
$⟨expr⟩ − num ∗ id shift
$⟨expr⟩ − num ∗ id reduce 8
$⟨expr⟩ − ⟨factor⟩ ∗ id reduce 7
$⟨expr⟩ − ⟨term⟩ ∗ id shift
$⟨expr⟩ − ⟨term⟩ ∗ id shift
$⟨expr⟩ − ⟨term⟩ ∗ id reduce 9
$⟨expr⟩ − ⟨term⟩ ∗ ⟨factor⟩ reduce 5
$⟨expr⟩ − ⟨term⟩ reduce 3
$⟨expr⟩ reduce 1
$⟨goal⟩ accept

1. Shift until top of stack is the right end of a handle

2. Find the left end of the handle and reduce

5 shifts + 9 reduces + 1 accept
63

Shift-reduce parsing

Shift-reduce parsers are simple to understand

A shift-reduce parser has just four canonical actions:

1. shift — next input symbol is shifted onto the top of the stack

2. reduce — right end of handle is on top of stack;
locate left end of handle within the stack;
pop handle off stack and push appropriate non-terminal LHS

3. accept — terminate parsing and signal success

4. error — call an error recovery routine

Key insight: recognize handles with a DFA:

• DFA transitions shift states instead of symbols

• accepting states trigger reductions

64

LR parsing

The skeleton parser:

push s0
token ← next token()

repeat forever
s ← top of stack

if action[s,token] = "shift si" then
push si
token ← next token()

else if action[s,token] = "reduce A→ β"
then
pop | β | states
s′← top of stack
push goto[s′,A]

else if action[s, token] = "accept" then
return

else error()

This takes k shifts, l reduces, and 1 accept, where k is the length of the input
string and l is the length of the reverse rightmost derivation

65

Example tables

state ACTION GOTO
id + ∗ $ ⟨expr⟩ ⟨term⟩ ⟨factor⟩

0 s4 – – – 1 2 3
1 – – – acc – – –
2 – s5 – r3 – – –
3 – r5 s6 r5 – – –
4 – r6 r6 r6 – – –
5 s4 – – – 7 2 3
6 s4 – – – – 8 3
7 – – – r2 – – –
8 – r4 – r4 – – –

The Grammar
1 ⟨goal⟩ ::= ⟨expr⟩
2 ⟨expr⟩ ::= ⟨term⟩+ ⟨expr⟩
3 | ⟨term⟩
4 ⟨term⟩ ::= ⟨factor⟩ ∗ ⟨term⟩
5 | ⟨factor⟩
6 ⟨factor⟩ ::= id

Note: This is a simple little right-recursive grammar; not the same as in previous lectures.

66

Example using the tables

Stack Input Action
$ 0 id∗ id+ id$ s4
$ 0 4 ∗ id+ id$ r6
$ 0 3 ∗ id+ id$ s6
$ 0 3 6 id+ id$ s4
$ 0 3 6 4 + id$ r6
$ 0 3 6 3 + id$ r5
$ 0 3 6 8 + id$ r4
$ 0 2 + id$ s5
$ 0 2 5 id$ s4
$ 0 2 5 4 $ r6
$ 0 2 5 3 $ r5
$ 0 2 5 2 $ r3
$ 0 2 5 7 $ r2
$ 0 1 $ acc

67

LR(k) grammars

Informally, we say that a grammar G is LR(k) if, given a rightmost derivation

S = γ0⇒ γ1⇒ γ2⇒ ··· ⇒ γn = w,

we can, for each right-sentential form in the derivation,

1. isolate the handle of each right-sentential form, and

2. determine the production by which to reduce

by scanning γi from left to right, going at most k symbols beyond the right end of
the handle of γi.

68

LR(k) grammars

Formally, a grammar G is LR(k) iff.:

1. S⇒∗rm αAw⇒rm αβw, and

2. S⇒∗rm γBx⇒rm αβy, and

3. FIRSTk(w) = FIRSTk(y)

⇒ αAy = γBx

i.e., Assume sentential forms αβw and αβy, with common prefix αβ and common
k-symbol lookahead FIRSTk(y) = FIRSTk(w), such that αβw reduces to αAw and
αβy reduces to γBx.

But, the common prefix means αβy also reduces to αAy, for the same result.

Thus αAy = γBx.
69

Why study LR grammars?

LR(1) grammars are often used to construct parsers.

We call these parsers LR(1) parsers.

• virtually all context-free programming language constructs can be expressed
in an LR(1) form

• LR grammars are the most general grammars parsable by a deterministic,
bottom-up parser

• efficient parsers can be implemented for LR(1) grammars

• LR parsers detect an error as soon as possible in a left-to-right scan of the
input

• LR grammars describe a proper superset of the languages recognized by
predictive (i.e., LL) parsers

LL(k): recognize use of a production A→ β seeing first k symbols derived
from β

LR(k): recognize the handle β after seeing everything derived from β plus k
lookahead symbols

70

LR parsing

Three common algorithms to build tables for an “LR” parser:

1. SLR(1)
• smallest class of grammars
• smallest tables (number of states)
• simple, fast construction

2. LR(1)
• full set of LR(1) grammars
• largest tables (number of states)
• slow, large construction

3. LALR(1)
• intermediate sized set of grammars
• same number of states as SLR(1)
• canonical construction is slow and large
• better construction techniques exist

An LR(1) parser for either Algol or Pascal has several thousand states, while an
SLR(1) or LALR(1) parser for the same language may have several hundred
states.

71

LR(k) items

The table construction algorithms use sets of LR(k) items or configurations to
represent the possible states in a parse.

An LR(k) item is a pair [α,β], where

α is a production from G with a • at some position in the RHS, marking how
much of the RHS of a production has already been seen

β is a lookahead string containing k symbols (terminals or $)

Two cases of interest are k = 0 and k = 1:

LR(0) items play a key role in the SLR(1) table construction algorithm.
LR(1) items play a key role in the LR(1) and LALR(1) table construction

algorithms.

72

Example

The • indicates how much of an item we have seen at a given state in the parse:

[A→•XY Z] indicates that the parser is looking for a string that can be derived
from XY Z

[A→ XY •Z] indicates that the parser has seen a string derived from XY and is
looking for one derivable from Z

LR(0) items: (no lookahead)

A→ XY Z generates 4 LR(0) items:

1. [A→•XY Z]
2. [A→ X •Y Z]
3. [A→ XY •Z]
4. [A→ XY Z•]

73

The characteristic finite state machine (CFSM)

The CFSM for a grammar is a DFA which recognizes viable prefixes of
right-sentential forms:

A viable prefix is any prefix that does not extend beyond the handle.

It accepts when a handle has been discovered and needs to be reduced.

To construct the CFSM we need two functions:

• closure0(I) to build its states

• goto0(I,X) to determine its transitions

74

closure0

Given an item [A→ α•Bβ], its closure contains the item and any other items that
can generate legal substrings to follow α.

Thus, if the parser has viable prefix α on its stack, the input should reduce to Bβ

(or γ for some other item [B→•γ] in the closure).

function closure0(I)
repeat

if [A→ α•Bβ] ∈ I
add [B→•γ] to I

until no more items can be added to I
return I

75

goto0

Let I be a set of LR(0) items and X be a grammar symbol.

Then, GOTO(I,X) is the closure of the set of all items

[A→ αX •β] such that [A→ α•Xβ] ∈ I

If I is the set of valid items for some viable prefix γ, then GOTO(I,X) is the set of
valid items for the viable prefix γX .

GOTO(I,X) represents state after recognizing X in state I.

function goto0(I,X)
let J be the set of items [A→ αX •β]

such that [A→ α•Xβ] ∈ I
return closure0(J)

76

Building the LR(0) item sets

We start the construction with the item [S′→•S$], where

S′ is the start symbol of the augmented grammar G′

S is the start symbol of G
$ represents EOF

To compute the collection of sets of LR(0) items

function items(G′)
s0← closure0({[S′→•S$]})
S ←{s0}
repeat

for each set of items s ∈ S
for each grammar symbol X

if goto0(s,X) ̸= φ and goto0(s,X) ̸∈ S
add goto0(s,X) to S

until no more item sets can be added to S
return S

77

LR(0) example

1 S → E$
2 E → E +T
3 | T
4 T → id

5 | (E)

The corresponding CFSM:

0 5 6

1

2

3

4

7

8

9

T

T

EE

T

(

(

)$

id

id id

+ +

(

I0 : S→•E$
E→•E +T
E→•T
T →•id
T →•(E)

I1 : S→ E •$
E→ E •+T

I2 : S→ E$•
I3 : E→ E +•T

T →•id
T →•(E)

I4 : E→ E +T•
I5 : T → id•
I6 : T → (•E)

E→•E +T
E→•T
T →•id
T →•(E)

I7 : T → (E•)
E→ E •+T

I8 : T → (E)•
I9 : E→ T•

78

Constructing the LR(0) parsing table

1. construct the collection of sets of LR(0) items for G′

2. state i of the CFSM is constructed from Ii

(a) [A→ α•aβ] ∈ Ii and goto0(Ii,a) = I j
⇒ ACTION[i,a]← “shift j”

(b) [A→ α•] ∈ Ii,A ̸= S′

⇒ ACTION[i,a]← “reduce A→ α”, ∀a
(c) [S′→ S$•] ∈ Ii
⇒ ACTION[i,a]← “accept”, ∀a

3. goto0(Ii,A) = I j
⇒ GOTO[i,A]← j

4. set undefined entries in ACTION and GOTO to “error”

5. initial state of parser s0 is closure0([S′→•S$])

79

LR(0) example

0 5 6

1

2

3

4

7

8

9

T

T

EE

T

(

(

)$

id

id id

+ +

(

state ACTION GOTO
id () + $ S E T

0 s5 s6 – – – – 1 9
1 – – – s3 s2 – – –
2 acc acc acc acc acc – – –
3 s5 s6 – – – – – 4
4 r2 r2 r2 r2 r2 – – –
5 r4 r4 r4 r4 r4 – – –
6 s5 s6 – – – – 7 9
7 – – s8 s3 – – – –
8 r5 r5 r5 r5 r5 – – –
9 r3 r3 r3 r3 r3 – – –

80

Conflicts in the ACTION table

If the LR(0) parsing table contains any multiply-defined ACTION entries then G is
not LR(0)

Two conflicts arise:

shift-reduce: both shift and reduce possible in same item set

reduce-reduce: more than one distinct reduce action possible in same item set

Conflicts can be resolved through lookahead in ACTION. Consider:

• A→ ε | aα

⇒ shift-reduce conflict

• a:=b+c*d

requires lookahead to avoid shift-reduce conflict after shifting c

(need to see * to give precedence over +)

81

SLR(1): simple lookahead LR

Add lookaheads after building LR(0) item sets

Constructing the SLR(1) parsing table:

1. construct the collection of sets of LR(0) items for G′

2. state i of the CFSM is constructed from Ii
(a) [A→ α•aβ] ∈ Ii and goto0(Ii,a) = I j
⇒ ACTION[i,a]← “shift j”, ∀a ̸= $

(b) [A→ α•] ∈ Ii,A ̸= S′
⇒ ACTION[i,a]← “reduce A→ α”, ∀a ∈ FOLLOW(A)

(c) [S′→ S•$] ∈ Ii
⇒ ACTION[i,$]← “accept”

3. goto0(Ii,A) = I j
⇒ GOTO[i,A]← j

4. set undefined entries in ACTION and GOTO to “error”

5. initial state of parser s0 is closure0([S′→•S$])

82

From previous example

1 S → E$
2 E → E +T
3 | T
4 T → id

5 | (E)

0 5 6

1

2

3

4

7

8

9

T

T

EE

T

(

(

)$

id

id id

+ +

(

FOLLOW(E) = FOLLOW(T) = {$,+,)}
state ACTION GOTO

id () + $ S E T
0 s5 s6 – – – – 1 9
1 – – – s3 acc – – –
2 – – – – – – – –
3 s5 s6 – – – – – 4
4 – – r2 r2 r2 – – –
5 – – r4 r4 r4 – – –
6 s5 s6 – – – – 7 9
7 – – s8 s3 – – – –
8 – – r5 r5 r5 – – –
9 – – r3 r3 r3 – – –

83

Example: A grammar that is not LR(0)

1 S → E$
2 E → E +T
3 | T
4 T → T ∗F
5 | F
6 F → id

7 | (E)

FOLLOW

E {+,),$}
T {+,∗,),$}
F {+,∗,),$}

I0 : S→•E$
E→•E +T
E→•T
T →•T ∗F
T →•F
F →•id
F →•(E)

I1 : S→ E •$
E→ E •+T

I2 : S→ E$•
I3 : E→ E +•T

T →•T ∗F
T →•F
F →•id
F →•(E)

I4 : T → F•
I5 : F → id•

I6 : F → (•E)
E→•E +T
E→•T
T →•T ∗F
T →•F
F →•id
F →•(E)

I7 : E→ T•
T → T •∗F

I8 : T → T ∗•F
F →•id
F →•(E)

I9 : T → T ∗F•
I10 : F → (E)•
I11 : E→ E +T•

T → T •∗F
I12 : F → (E•)

E→ E •+T

84

Example: But it is SLR(1)

state ACTION GOTO
+ ∗ id () $ S E T F

0 – – s5 s6 – – – 1 7 4
1 s3 – – – – acc – – – –
2 – – – – – – – – – –
3 – – s5 s6 – – – – 11 4
4 r5 r5 – – r5 r5 – – – –
5 r6 r6 – – r6 r6 – – – –
6 – – s5 s6 – – – 12 7 4
7 r3 s8 – – r3 r3 – – – –
8 – – s5 s6 – – – – – 9
9 r4 r4 – – r4 r4 – – – –
10 r7 r7 – – r7 r7 – – – –
11 r2 s8 – – r2 r2 – – – –
12 s3 – – – s10 – – – – –

85

Example: A grammar that is not SLR(1)

Consider:
S → L = R
| R

L → ∗R
| id

R → L

Its LR(0) item sets:
I0 : S′→•S$

S→•L = R
S→•R
L→•∗R
L→•id
R→•L

I1 : S′→ S•$
I2 : S→ L•= R

R→ L•
I3 : S→ R•
I4 : L→ id•

I5 : L→∗•R
R→•L
L→•∗R
L→•id

I6 : S→ L = •R
R→•L
L→•∗R
L→•id

I7 : L→∗R•
I8 : R→ L•
I9 : S→ L = R•

Now consider I2: = ∈ FOLLOW(R) (S⇒ L = R⇒∗R = R)

86

LR(1) items

Recall: An LR(k) item is a pair [α,β], where

α is a production from G with a • at some position in the RHS, marking how
much of the RHS of a production has been seen

β is a lookahead string containing k symbols (terminals or $)

What about LR(1) items?

• All the lookahead strings are constrained to have length 1

• Look something like [A→ X •Y Z,a]

87

LR(1) items

What’s the point of the lookahead symbols?

• carry along to choose correct reduction when there is a choice

• lookaheads are bookkeeping, unless item has • at right end:

– in [A→ X •Y Z,a], a has no direct use

– in [A→ XY Z•,a], a is useful

• allows use of grammars that are not uniquely invertible†

The point: For [A→ α•,a] and [B→ α•,b], we can decide between reducing to A
or B by looking at limited right context

†No two productions have the same RHS

88

closure1(I)

Given an item [A→ α•Bβ,a], its closure contains the item and any other items that
can generate legal substrings to follow α.

Thus, if the parser has viable prefix α on its stack, the input should reduce to Bβ

(or γ for some other item [B→•γ,b] in the closure).

function closure1(I)
repeat

if [A→ α•Bβ,a] ∈ I
add [B→•γ,b] to I, where b ∈ first(βa)

until no more items can be added to I
return I

89

goto1(I)

Let I be a set of LR(1) items and X be a grammar symbol.

Then, GOTO(I,X) is the closure of the set of all items

[A→ αX •β,a] such that [A→ α•Xβ,a] ∈ I

If I is the set of valid items for some viable prefix γ, then GOTO(I,X) is the set of
valid items for the viable prefix γX .

goto(I,X) represents state after recognizing X in state I.

function goto1(I,X)
let J be the set of items [A→ αX •β,a]

such that [A→ α•Xβ,a] ∈ I
return closure1(J)

90

Building the LR(1) item sets for grammar G

We start the construction with the item [S′→•S,$], where

S′ is the start symbol of the augmented grammar G′

S is the start symbol of G
$ represents EOF

To compute the collection of sets of LR(1) items

function items(G′)
s0← closure1({[S′→•S,$]})
S ←{s0}
repeat

for each set of items s ∈ S
for each grammar symbol X

if goto1(s,X) ̸= φ and goto1(s,X) ̸∈ S
add goto1(s,X) to S

until no more item sets can be added to S
return S

91

Constructing the LR(1) parsing table

Build lookahead into the DFA to begin with

1. construct the collection of sets of LR(1) items for G′

2. state i of the LR(1) machine is constructed from Ii
(a) [A→ α•aβ,b] ∈ Ii and goto1(Ii,a) = I j
⇒ ACTION[i,a]← “shift j”

(b) [A→ α•,a] ∈ Ii,A ̸= S′
⇒ ACTION[i,a]← “reduce A→ α”

(c) [S′→ S•,$] ∈ Ii
⇒ ACTION[i,$]← “accept”

3. goto1(Ii,A) = I j
⇒ GOTO[i,A]← j

4. set undefined entries in ACTION and GOTO to “error”

5. initial state of parser s0 is closure1([S′→•S,$])

92

Back to previous example (̸∈ SLR(1))

S → L = R
| R

L → ∗R
| id

R → L

I0 : S′→•S, $
S→•L = R, $
S→•R, $
L→•∗R, =
L→•id, =
R→•L, $
L→•∗R, $
L→•id, $

I1 : S′→ S•, $
I2 : S→ L•= R, $

R→ L•, $
I3 : S→ R•, $
I4 : L→∗•R, = $

R→•L, = $
L→•∗R, = $
L→•id, = $

I5 : L→ id•, = $
I6 : S→ L = •R, $

R→•L, $
L→•∗R, $
L→•id, $

I7 : L→∗R•, = $
I8 : R→ L•, = $
I9 : S→ L = R•, $
I10 : R→ L•, $
I11 : L→∗•R, $

R→•L, $
L→•∗R, $
L→•id, $

I12 : L→ id•, $
I13 : L→∗R•, $

I2 no longer has shift-reduce conflict: reduce on $, shift on =

93

Example: back to SLR(1) expression grammar

In general, LR(1) has many more states than LR(0)/SLR(1):

1 S → E
2 E → E +T
3 | T

4 T → T ∗F
5 | F
6 F → id

7 | (E)

LR(1) item sets:
I0 :

S→•E, $
E→•E +T,+$
E→•T, +$
T →•T ∗F, ∗+$
T →•F, ∗+$
F →•id, ∗+$
F →•(E), ∗+$

I′0 :shifting (
F → (•E), ∗+$
E→•E +T,+)
E→•T, +)
T →•T ∗F, ∗+)
T →•F, ∗+)
F →•id, ∗+)
F →•(E), ∗+)

I′′0 :shifting (
F → (•E), ∗+)
E→•E +T,+)
E→•T, +)
T →•T ∗F, ∗+)
T →•F, ∗+)
F →•id, ∗+)
F →•(E), ∗+)

94

Another example

Consider:
0 S′ → S
1 S → CC
2 C → cC
3 | d

state ACTION GOTO
c d $ S C

0 s3 s4 – 1 2
1 – – acc – –
2 s6 s7 – – 5
3 s3 s4 – – 8
4 r3 r3 – – –
5 – – r1 – –
6 s6 s7 – – 9
7 – – r3 – –
8 r2 r2 – – –
9 – – r2 – –

LR(1) item sets:
I0 : S′→•S, $

S→•CC, $
C→•cC, cd
C→•d, cd

I1 : S′→ S•, $
I2 : S→C •C, $

C→•cC, $
C→•d, $

I3 : C→ c•C, cd
C→•cC, cd
C→•d, cd

I4 : C→ d•, cd
I5 : S→CC•, $
I6 : C→ c•C, $

C→•cC, $
C→•d, $

I7 : C→ d•, $
I8 : C→ cC•, cd
I9 : C→ cC•, $

95

LALR(1) parsing

Define the core of a set of LR(1) items to be the set of LR(0) items derived by
ignoring the lookahead symbols.

Thus, the two sets

• {[A→ α•β,a], [A→ α•β,b]}, and

• {[A→ α•β,c], [A→ α•β,d]}

have the same core.

Key idea:

If two sets of LR(1) items, Ii and I j, have the same core, we can merge
the states that represent them in the ACTION and GOTO tables.

96

LALR(1) table construction

To construct LALR(1) parsing tables, we can insert a single step into the LR(1)
algorithm

(1.5) For each core present among the set of LR(1) items, find all sets having that
core and replace these sets by their union.

The goto function must be updated to reflect the replacement sets.

The resulting algorithm has large space requirements.
97

LALR(1) table construction

The revised (and renumbered) algorithm

1. construct the collection of sets of LR(1) items for G′

2. for each core present among the set of LR(1) items, find all sets having that
core and replace these sets by their union (update the goto function
incrementally)

3. state i of the LALR(1) machine is constructed from Ii.

(a) [A→ α•aβ,b] ∈ Ii and goto1(Ii,a) = I j
⇒ ACTION[i,a]← “shift j”

(b) [A→ α•,a] ∈ Ii,A ̸= S′

⇒ ACTION[i,a]← “reduce A→ α”

(c) [S′→ S•,$] ∈ Ii ⇒ ACTION[i,$]← “accept”

4. goto1(Ii,A) = I j ⇒ GOTO[i,A]← j

5. set undefined entries in ACTION and GOTO to “error”

6. initial state of parser s0 is closure1([S′→•S,$])

98

Example

Reconsider:

0 S′ → S
1 S → CC
2 C → cC
3 | d

Merged states:
I36 : C→ c•C, cd$

C→•cC, cd$
C→•d, cd$

I47 : C→ d•, cd$
I89 : C→ cC•, cd$

I0 : S′→•S, $
S→•CC, $
C→•cC, cd
C→•d, cd

I1 : S′→ S•, $
I2 : S→C •C, $

C→•cC, $
C→•d, $

I3 : C→ c•C, cd
C→•cC, cd
C→•d, cd

I4 : C→ d•, cd
I5 : S→CC•, $

I6 : C→ c•C, $
C→•cC, $
C→•d, $

I7 : C→ d•, $
I8 : C→ cC•, cd
I9 : C→ cC•, $

state ACTION GOTO
c d $ S C

0 s36 s47 – 1 2
1 – – acc – –
2 s36 s47 – – 5
36 s36 s47 – – 8
47 r3 r3 r3 – –
5 – – r1 – –
89 r2 r2 r2 – –

99

More efficient LALR(1) construction

Observe that we can:

• represent Ii by its basis or kernel:
items that are either [S′→•S,$]
or do not have • at the left of the RHS

• compute shift, reduce and goto actions for state derived from Ii directly from
its kernel

This leads to a method that avoids building the complete canonical collection of
sets of LR(1) items

100

The role of precedence

Precedence and associativity can be used to resolve shift/reduce conflicts in
ambiguous grammars.

• lookahead with higher precedence⇒ shift

• same precedence, left associative⇒ reduce

Advantages:

• more concise, albeit ambiguous, grammars

• shallower parse trees⇒ fewer reductions

Classic application: expression grammars

101

The role of precedence

With precedence and associativity, we can use:

E → E ∗E
| E/E
| E +E
| E−E
| (E)
| -E
| id

| num

This eliminates useless reductions (single productions)

102

Error recovery in shift-reduce parsers

The problem

• encounter an invalid token

• bad pieces of tree hanging from stack

• incorrect entries in symbol table

We want to parse the rest of the file

Restarting the parser

• find a restartable state on the stack
• move to a consistent place in the input
• print an informative message to stderr (line number)

103

Error recovery in yacc/bison/Java CUP

The error mechanism

• designated token error

• valid in any production

• error shows syncronization points

When an error is discovered

• pops the stack until error is legal

• skips input tokens until it successfully shifts 3

• error productions can have actions

This mechanism is fairly general

See §Error Recovery of the on-line CUP manual

104

Example

Using error

stmt list : stmt

| stmt list ; stmt

can be augmented with error

stmt list : stmt

| error

| stmt list ; stmt

This should

• throw out the erroneous statement
• synchronize at “;” or “end”
• invoke yyerror("syntax error")

Other “natural” places for errors

• all the “lists”: FieldList, CaseList
• missing parentheses or brackets (yychar)
• extra operator or missing operator

105

Left versus right recursion

Right Recursion:

• needed for termination in predictive parsers

• requires more stack space

• right associative operators

Left Recursion:

• works fine in bottom-up parsers

• limits required stack space

• left associative operators

Rule of thumb:

• right recursion for top-down parsers

• left recursion for bottom-up parsers

106

Parsing review

Recursive descent

A hand coded recursive descent parser directly encodes a grammar (typically
an LL(1) grammar) into a series of mutually recursive procedures. It has most
of the linguistic limitations of LL(1).

LL(k)

An LL(k) parser must be able to recognize the use of a production after
seeing only the first k symbols of its right hand side.

LR(k)

An LR(k) parser must be able to recognize the occurrence of the right hand
side of a production after having seen all that is derived from that right hand
side with k symbols of lookahead.

107

Complexity of parsing: grammar hierarchy

LL(1)

LL(k)

LL(0)

Knuth’s algorithm: O(n)

LR(k)

LR(1)

LALR(1)

SLR(1)

LR(0)

ambiguous

α−>β

type-0:

type-1: context-sensitive

αΑβ−>αδβ

Linear-bounded automaton: PSPACE complete

type-2: context-free

Α−>α

Earley’s algorithm: O(n³)

type-3: regular

A->wX

DFA: O(n)

O(n²)

unambiguous

Note: this is a hierarchy of grammars not languages
108

Language vs. grammar

For example, every regular language has a grammar that is LL(1), but not all
regular grammars are LL(1). Consider:

S → ab
S → ac

Without left-factoring, this grammar is not LL(1).

109

