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Semantic Analysis

The compilation process is driven by the syntactic structure of the program as
discovered by the parser

Semantic routines:

• interpret meaning of the program based on its syntactic structure

• two purposes:

– finish analysis by deriving context-sensitive information

– begin synthesis by generating the IR or target code

• associated with individual productions of a context free grammar or subtrees
of a syntax tree
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Context-sensitive analysis

What context-sensitive questions might the compiler ask?

1. Is x scalar, an array, or a function?

2. Is x declared before it is used?

3. Are any names declared but not used?

4. Which declaration of x does this reference?

5. Is an expression type-consistent?

6. Does the dimension of a reference match the declaration?

7. Where can x be stored? (heap, stack, . . .)

8. Does *p reference the result of a malloc()?

9. Is x defined before it is used?

10. Is an array reference in bounds?

11. Does function foo produce a constant value?

12. Can p be implemented as a memo-function?

These cannot be answered with a context-free grammar
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Context-sensitive analysis

Why is context-sensitive analysis hard?

• answers depend on values, not syntax

• questions and answers involve non-local information

• answers may involve computation

Several alternatives:

abstract syntax tree specify non-local computations
(attribute grammars) automatic evaluators

symbol tables central store for facts
express checking code

language design simplify language
avoid problems
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Symbol tables

For compile-time efficiency, compilers use a symbol table:

associates lexical names (symbols) with their attributes

What items should be entered?

• variable names

• defined constants

• procedure and function names

• literal constants and strings

• source text labels

• compiler-generated temporaries (we’ll get there)

Separate table for structure layouts (types) (field offsets and lengths)

A symbol table is a compile-time structure
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Symbol table information

What kind of information might the compiler need?

• textual name

• data type

• dimension information (for aggregates)

• declaring procedure

• lexical level of declaration

• storage class (base address)

• offset in storage

• if record, pointer to structure table

• if parameter, by-reference or by-value?

• can it be aliased? to what other names?

• number and type of arguments to functions
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Nested scopes: block-structured symbol tables

What information is needed?

• when asking about a name, want most recent declaration

• declaration may be from current scope or outer scope

• innermost scope overrides outer scope declarations

Key point: new declarations (usually) occur only in current scope

What operations do we need?

• void put (Symbol key, Object value) – bind key to value

• Object get(Symbol key) – return value bound to key

• void beginScope() – remember current state of table

• void endScope() – close current scope and restore table to state at most
recent open beginScope

May need to preserve list of locals for the debugger
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Attribute information

Attributes are internal representation of declarations

Symbol table associates names with attributes

Names may have different attributes depending on their meaning:

• variables: type, procedure level, frame offset

• types: type descriptor, data size/alignment

• constants: type, value

• procedures: formals (names/types), result type, block information (local
decls.), frame size
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Type expressions

Type expressions are a textual representation for types:

1. basic types: boolean, char, integer, real, etc.

2. type names

3. constructed types (constructors applied to type expressions):

(a) array(I,T ) denotes array of elements type T , index type I
e.g., array(1 . . .10, integer)

(b) T1×T2 denotes Cartesian product of type expressions T1 and T2

(c) records: fields have names
e.g., record((a× integer),(b× real))

(d) pointer(T ) denotes the type “pointer to object of type T ”

(e) D → R denotes type of function mapping domain D to range R
e.g., integer× integer → integer
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Type descriptors

Type descriptors are compile-time structures representing type expressions

e.g., char× char → pointer(integer)
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char

pointer

integer
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Type compatibility

Type checking needs to determine type equivalence

Two approaches:

Name equivalence: each type name is a distinct type

Structural equivalence: two types are equivalent iff. they have the same structure
(after substituting type expressions for type names)

• s ≡ t iff. s and t are the same basic types

• array(s1,s2)≡ array(t1, t2) iff. s1 ≡ t1 and s2 ≡ t2

• s1× s2 ≡ t1× t2 iff. s1 ≡ t1 and s2 ≡ t2

• pointer(s)≡ pointer(t) iff. s ≡ t

• s1 → s2 ≡ t1 → t2 iff. s1 ≡ t1 and s2 ≡ t2
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Type compatibility: example

Consider:

type link = ^cell;

var next : link;

last : link;

p : ^cell;

q, r : ^cell;

Under name equivalence:

• next and last have the same type

• p, q and r have the same type

• p and next have different type

Under structural equivalence all variables have the same type

Ada/Pascal/Modula-2/Tiger are somewhat confusing: they treat distinct type
definitions as distinct types, so

p has different type from q and r
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Type compatibility: Pascal-style name equivalence

Build compile-time structure called a type graph:

• each constructor or basic type creates a node

• each name creates a leaf (associated with the type’s descriptor)

next last

link = pointer

cell

pointer

p

pointer

q r

Type expressions are equivalent if they are represented by the same node in the
graph
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Type compatibility: recursive types

Consider:
type link = ^cell;

cell = (

info : integer;

next : link;

);

We may want to eliminate the names from the type graph

Eliminating name link from type graph for record:

record=cell

�

�

info integer

�

next pointer

cell
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Type compatibility: recursive types

Allowing cycles in the type graph eliminates cell:

record=cell

�

�

info integer

�

next pointer
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Java inheritance: field overloading

• Fields declared in a subclass can overload fields declared in superclasses

• Overloading is same name used in different contexts to refer to different
things, such as different fields

• Consider:

class A { int j; }

class B extends A { int j; }

A a = new A();// let’s call this object X

// X has one field, named j, declared in A

a.j = 1; // assigns 1 to the field j of X declared in A

a = new B(); // let’s call this object Y

// Y has two fields, both named j,

// one declared in A, the other in B

a.j = 2; // assigns 2 to the field j of Y declared in A

B b = a;

b.j = 3; // assigns 3 to the field j of Y declared in B
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Java inheritance: method overriding

• Methods declared in subclasses can override methods declared in
superclasses

• Overriding is same name used to name a different thing, regardless of
context, such as methods in subclasses with the same name

• Consider:

class A { int j; void set_j(int i) { this.j = i; }

class B extends A { int j; void set_j(int i) { this.j = i; }

A a = new A();// let’s call this object X

a.set_j(1); // assigns 1 to the field j of X declared in A

// i.e., invokes A set_j method

a = new B(); // let’s call this object Y

a.set_j(2); // assigns 2 to the field j of Y declared in B

// i.e., invokes B set_j method

B b = a;

b.set_j(3); // assigns 3 to the field j of Y declared in B

// i.e. invokes B set_j method
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Java method overloading

• Java also supports method overloading, which has nothing to do with
inheritance

• Consider:

class A {

int j;

boolean b;

void set(int i) { this.j = i; }

void set(boolean b) { this.j = b; }

}

• Don’t confuse method overloading with method overriding
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