
Semantic Analysis

Copyright ©2023 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and full citation on the first page. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or fee. Request permission to publish from
hosking@acm.org.

1



Semantic Analysis

The compilation process is driven by the syntactic structure of the program as
discovered by the parser

Semantic routines:

• interpret meaning of the program based on its syntactic structure

• two purposes:

– finish analysis by deriving context-sensitive information

– begin synthesis by generating the IR or target code

• associated with individual productions of a context free grammar or subtrees
of a syntax tree

2



Context-sensitive analysis

What context-sensitive questions might the compiler ask?

1. Is x scalar, an array, or a function?

2. Is x declared before it is used?

3. Are any names declared but not used?

4. Which declaration of x does this reference?

5. Is an expression type-consistent?

6. Does the dimension of a reference match the declaration?

7. Where can x be stored? (heap, stack, . . .)

8. Does *p reference the result of a malloc()?

9. Is x defined before it is used?

10. Is an array reference in bounds?

11. Does function foo produce a constant value?

12. Can p be implemented as a memo-function?

These cannot be answered with a context-free grammar
3



Context-sensitive analysis

Why is context-sensitive analysis hard?

• answers depend on values, not syntax

• questions and answers involve non-local information

• answers may involve computation

Several alternatives:

abstract syntax tree specify non-local computations
(attribute grammars) automatic evaluators

symbol tables central store for facts
express checking code

language design simplify language
avoid problems

4



Symbol tables

For compile-time efficiency, compilers use a symbol table:

associates lexical names (symbols) with their attributes

What items should be entered?

• variable names

• defined constants

• procedure and function names

• literal constants and strings

• source text labels

• compiler-generated temporaries (we’ll get there)

Separate table for structure layouts (types) (field offsets and lengths)

A symbol table is a compile-time structure
5



Symbol table information

What kind of information might the compiler need?

• textual name

• data type

• dimension information (for aggregates)

• declaring procedure

• lexical level of declaration

• storage class (base address)

• offset in storage

• if record, pointer to structure table

• if parameter, by-reference or by-value?

• can it be aliased? to what other names?

• number and type of arguments to functions

6



Nested scopes: block-structured symbol tables

What information is needed?

• when asking about a name, want most recent declaration

• declaration may be from current scope or outer scope

• innermost scope overrides outer scope declarations

Key point: new declarations (usually) occur only in current scope

What operations do we need?

• void put (Symbol key, Object value) – bind key to value

• Object get(Symbol key) – return value bound to key

• void beginScope() – remember current state of table

• void endScope() – close current scope and restore table to state at most
recent open beginScope

May need to preserve list of locals for the debugger
7



Attribute information

Attributes are internal representation of declarations

Symbol table associates names with attributes

Names may have different attributes depending on their meaning:

• variables: type, procedure level, frame offset

• types: type descriptor, data size/alignment

• constants: type, value

• procedures: formals (names/types), result type, block information (local
decls.), frame size

8



Type expressions

Type expressions are a textual representation for types:

1. basic types: boolean, char, integer, real, etc.

2. type names

3. constructed types (constructors applied to type expressions):

(a) array(I,T ) denotes array of elements type T , index type I
e.g., array(1 . . .10, integer)

(b) T1×T2 denotes Cartesian product of type expressions T1 and T2

(c) records: fields have names
e.g., record((a× integer),(b× real))

(d) pointer(T ) denotes the type “pointer to object of type T ”

(e) D → R denotes type of function mapping domain D to range R
e.g., integer× integer → integer

9



Type descriptors

Type descriptors are compile-time structures representing type expressions

e.g., char× char → pointer(integer)

!

�

char char

pointer

integer

or

!

�

char

pointer

integer

10



Type compatibility

Type checking needs to determine type equivalence

Two approaches:

Name equivalence: each type name is a distinct type

Structural equivalence: two types are equivalent iff. they have the same structure
(after substituting type expressions for type names)

• s ≡ t iff. s and t are the same basic types

• array(s1,s2)≡ array(t1, t2) iff. s1 ≡ t1 and s2 ≡ t2

• s1× s2 ≡ t1× t2 iff. s1 ≡ t1 and s2 ≡ t2

• pointer(s)≡ pointer(t) iff. s ≡ t

• s1 → s2 ≡ t1 → t2 iff. s1 ≡ t1 and s2 ≡ t2

11



Type compatibility: example

Consider:

type link = ^cell;

var next : link;

last : link;

p : ^cell;

q, r : ^cell;

Under name equivalence:

• next and last have the same type

• p, q and r have the same type

• p and next have different type

Under structural equivalence all variables have the same type

Ada/Pascal/Modula-2/Tiger are somewhat confusing: they treat distinct type
definitions as distinct types, so

p has different type from q and r

12



Type compatibility: Pascal-style name equivalence

Build compile-time structure called a type graph:

• each constructor or basic type creates a node

• each name creates a leaf (associated with the type’s descriptor)

next last

link = pointer

cell

pointer

p

pointer

q r

Type expressions are equivalent if they are represented by the same node in the
graph

13



Type compatibility: recursive types

Consider:
type link = ^cell;

cell = (

info : integer;

next : link;

);

We may want to eliminate the names from the type graph

Eliminating name link from type graph for record:

record=cell

�

�

info integer

�

next pointer

cell

14



Type compatibility: recursive types

Allowing cycles in the type graph eliminates cell:

record=cell

�

�

info integer

�

next pointer

15



Java inheritance: field overloading

• Fields declared in a subclass can overload fields declared in superclasses

• Overloading is same name used in different contexts to refer to different
things, such as different fields

• Consider:

class A { int j; }

class B extends A { int j; }

A a = new A();// let’s call this object X

// X has one field, named j, declared in A

a.j = 1; // assigns 1 to the field j of X declared in A

a = new B(); // let’s call this object Y

// Y has two fields, both named j,

// one declared in A, the other in B

a.j = 2; // assigns 2 to the field j of Y declared in A

B b = a;

b.j = 3; // assigns 3 to the field j of Y declared in B

16



Java inheritance: method overriding

• Methods declared in subclasses can override methods declared in
superclasses

• Overriding is same name used to name a different thing, regardless of
context, such as methods in subclasses with the same name

• Consider:

class A { int j; void set_j(int i) { this.j = i; }

class B extends A { int j; void set_j(int i) { this.j = i; }

A a = new A();// let’s call this object X

a.set_j(1); // assigns 1 to the field j of X declared in A

// i.e., invokes A set_j method

a = new B(); // let’s call this object Y

a.set_j(2); // assigns 2 to the field j of Y declared in B

// i.e., invokes B set_j method

B b = a;

b.set_j(3); // assigns 3 to the field j of Y declared in B

// i.e. invokes B set_j method

17



Java method overloading

• Java also supports method overloading, which has nothing to do with
inheritance

• Consider:

class A {

int j;

boolean b;

void set(int i) { this.j = i; }

void set(boolean b) { this.j = b; }

}

• Don’t confuse method overloading with method overriding

18


