
Translation: From ASTs to IR Trees

Copyright ©2023 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and full citation on the first page. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or fee. Request permission to publish from
hosking@acm.org.

1

IR trees: Expressions

i

CONST
Integer constant i

n

NAME
Symbolic constant n [a code label]

t

TEMP
Temporary t [one of any number of “registers”]

e1 e2

BINOP
Application of binary operator:

ADD, SUB, MUL, DIV [arithmetic]
AND, OR, XOR [bitwise logical]
SLL, SRL [logical shifts]
SRA [arithmetic right-shift]

to integer operands e1 (evaluated first) and e2 (evaluated second)

e

MEM
Contents of a word of memory starting at address e

f [e1, . . . ,en]

CALL
Procedure call; expression f is evaluated before arguments e1, . . . ,en

s e

ESEQ
Expression sequence; evaluate s for side-effects, then e for result

2

IR trees: Statements

t

TEMP e

MOVE

Evaluate e into temporary t

e1

MEM e2

MOVE

Evaluate e1 yielding address a, e2 into word at a

e

EXP
Evaluate e and discard result

e [l1, . . . , ln]

JUMP
Transfer control to address e; l1, . . . , ln are all possible values for e

e1 e2 t f

CJUMP
Evaluate e1 then e2, yielding a and b, respectively; compare a with b using rela-
tional operators:

BEQ, BNE [signed and unsigned integers]
BLT, BGT, BLE, BGE [signed]

jump to t if true, f if false

s1 s2

SEQ
Statement s1 followed by s2

n

LABEL
Define constant value of name n as current code address; NAME(n) can be
used as target of jumps, calls, etc.

3

Kinds of expressions

Expression kinds indicate “how expression might be used”

Ex(exp) expressions that compute a value

Nx(stm) statements: expressions that compute no value

Cx conditionals (jump to true and false destinations)

RelCx.op(left, right) eq, ne, gt, lt, ge, le

IfThenElseExp expression or statement, depending on use

Conversion operators allow use of one form in context of another:

unEx convert to tree expression that computes value of inner tree

unNx convert to tree statement that computes inner tree but returns no value

unCx(t, f) convert to statement that evaluates inner tree and branches to true

destination if non-zero, false destination otherwise

4

Translating Java

Local variables: Allocate as a temporary t

t

TEMP
Ex(TEMP t)

Array elements: Array expression is reference to array in heap.

For expressions e and i, translate e[i] as:

Ex(MEM(ADD(e.unEx(), ×(i.unEx(), CONST(w)))))

where w is the target machine’s word size: all values are at most word-sized

(scalar) in Java

Array bounds check: array index i <e.size; runtime will put size in word

preceding array base

Object fields: Object expression is reference to object in heap.

For expression e and field f , translate e.f as:

Ex(MEM(ADD(e.unEx(), CONST(o))))

where o is the byte offset of the field f in the object

Null pointer check: object expression must be non-null (i.e., non-zero)

5

Translating MiniJava

String literals: Allocate statically:

.word 11

label: .ascii "hello world"

Translate as reference to label:

Ex(NAME(label))

Object creation: Allocate object in heap.

For class T , translate new T () as:

Ex(CALL(NAME(”new”), CONST(fields), NAME(label for T ’s vtable)))

Array creation: Allocate array in heap.

For type T , array expression e, translate newT [e] as:

Ex(ESEQ(MOVE(TEMP(s), e.unEx()),

CALL(NAME(”new”), MUL(TEMP(s), CONST(w)), TEMP(s))))

where s is a fresh temporary, and w is the target machine’s word size.

6

Control structures

Basic blocks:

• a sequence of straight-line code

• if one instruction executes then they all execute

• a maximal sequence of instructions without branches

• a label starts a new basic block

Overview of control structure translation:

• control flow links up the basic blocks

• ideas are simple

• implementation requires bookkeeping

• some care is needed for good code

7

while loops

while (c) s:

1. evaluate c

2. if false jump to next statement after loop

3. evaluate loop body s

4. evaluate c

5. if true jump back to loop body

e.g.,

if not(c) jump done

body :

s

if c jump body

done:

Nx(SEQ(SEQ(c.unCx(b, x), SEQ(LABEL(b), s.unNx())),

SEQ(c.unCx(b, x), LABEL(x))))

8

for loops

for (i, c, u) s

1. evaluate initialization statement i

2. evaluate c

3. if false jump to next statement after loop

4. evaluate loop body s

5. evaluate update statement u

6. evaluate c

7. if true jump to loop body

Nx(SEQ(i.unNx(),

SEQ(SEQ(c.unCx(b, x), SEQ(LABEL(b), SEQ(s.unNx(), u.unNx()))),

SEQ(c.unCx(b, x), LABEL(x)))))

For break statements:
• when translating a loop push the done label on some stack
• break simply jumps to label on top of stack
• when done translating loop and its body, pop the label

9

Method calls

e0.m(e1, . . . ,en):

Ex(CALL(MEM(MEM(e0.unEx(), −w), m.index × w), e1.unEx(),

. . . en.unEx()))

Null pointer check: expression e0 must be non-null (i.e., non-zero)

10

Comparisons

Translate a op b as:

RelCx.op(a.unEx(), b.unEx())

When used as a conditional unCx(t, f) yields:

CJUMP(a.unEx(), b.unEx(), t, f)

where t and f are labels.

When used as a value unEx() yields:

ESEQ(SEQ(MOVE(TEMP(r), CONST(1)),

SEQ(unCx(t, f),

SEQ(LABEL(f),

SEQ(MOVE(TEMP(r), CONST(0)), LABEL(t))))),

TEMP(r))

11

Conditionals

Translate short-circuiting Boolean operators (&&, ||, !) as if they were conditionals

e.g., x < 5 && a > b is treated as (x < 5) ? (a > b) : 0

We translate e1 ? e2 : e3 into IfThenElseExp(e1, e2, e3)

When used as a value IfThenElseExp.unEx() yields:

ESEQ(SEQ(SEQ(e1.unCx(t, f),

SEQ(SEQ(LABEL(t),

SEQ(MOVE(TEMP(r), e2.unEx()),

JUMP(j))),

SEQ(LABEL(f),

SEQ(MOVE(TEMP(r), e3.unEx()),

JUMP(j))))),

LABEL(j)),

TEMP(r))

As a conditional IfThenElseExp.unCx(t, f) yields:

SEQ(e1.unCx(tt, ff), SEQ(SEQ(LABEL(tt), e2.unCx(t, f)),

SEQ(LABEL(ff), e3.unCx(t, f))))

12

Conditionals: Example

Applying unCx(t, f) to (x < 5) ? (a > b) : 0:

SEQ(BLT(x.unEx(), CONST(5), tt, ff),

SEQ(SEQ(LABEL(tt, BGT(a.unEx(), b.unEx(), t, f)),

SEQ(LABEL(ff , JUMP(f))))

or more optimally:

SEQ(BLT(x.unEx(), CONST(5), tt, f),

SEQ(LABEL(tt, BGT(a.unEx(), b.uneX(), t, f)))

13

One-dimensional fixed arrays: Pascal/Modula/C/C++

var a : array [2..5] of integer;

. . .

a[e]

translates to:

MEM(ADD(TEMP(FP), ADD(CONST k−2w, ×(CONST w, e.unEx))))

where k is offset of static array from the frame pointer FP, w is word size

In Pascal, multidimensional arrays are treated as arrays of arrays, so A[i,j] is

equivalent to A[i][j], so this translation works for subarrays. Not so in Fortran.

14

Multidimensional arrays

Array allocation:

constant bounds

• allocate in static area, stack, or heap

• no run-time descriptor is needed

dynamic arrays: bounds fixed at run-time

• allocate in stack or heap

• descriptor is needed

dynamic arrays: bounds can change at run-time

• allocate in heap

• descriptor is needed

15

Multidimensional arrays

Array layout:

Contiguous:

1. Row major

Rightmost subscript varies most quickly:

A[1,1], A[1,2], ...

A[2,1], A[2,2], ...

Used in PL/1, Algol, Pascal, C, Ada, Modula, Modula-2, Modula-3

2. Column major

Leftmost subscript varies most quickly:

A[1,1], A[2,1], ...

A[1,2], A[2,2], ...

Used in FORTRAN

By vectors

Contiguous vector of pointers to (non-contiguous) subarrays

16

Multi-dimensional arrays: row-major layout

array [1..N,1..M] of T

≡ array [1..N] of array [1..M] of T

no. of elt’s in dimension j: D j =U j −L j +1

position of A[i1, ..., in]:

(in−Ln)
+(in−1−Ln−1)Dn

+(in−2−Ln−2)DnDn−1

+ · · ·
+(i1−L1)Dn · · ·D2

which can be rewritten as

variable part
︷ ︸︸ ︷

i1D2 · · ·Dn+ i2D3 · · ·Dn+ · · ·+ in−1Dn+ in
−(L1D2 · · ·Dn+L2D3 · · ·Dn+ · · ·+Ln−1Dn+Ln)
︸ ︷︷ ︸

constant part

Address of A[i1, ..., in]:

address(A) + ((variable part − constant part) × element size)

17

case (switch) statements

case E of V1: S1 . . .Vn: Sn end

1. evaluate the expression

2. find value in case list equal to value of expression

3. execute statement associated with value found

4. jump to next statement after case

Key issue: finding the right case

• sequence of conditional jumps (small case set)

O(| cases |)

• binary search of an ordered jump table (sparse case set)

O(log2 | cases |)

• hash table (dense case set)

O(1)

18

case (switch) statements

case E of V1: S1 . . .Vn: Sn end

One translation approach:
t := expr

jump test

L1: code for S1

jump next

L2: code for S2

jump next

. . .

Ln: code for Sn

jump next

test: if t =V1 jump L1

if t =V2 jump L2

. . .

if t =Vn jump Ln

code to raise run-time exception

next:

19

Labels and gotos

A little complicated!

Resolving references to labels multiply-defined in different scopes:

begin

L: begin

goto L;

. . . { possible definition of L }

end

end

• Scope labels like variables

• On use, label definition is either resolved or unresolved

• On definition, backpatch previous unresolved label uses

Jumping out of blocks or procedures:

1. Pop run-time stack

2. Fix display (if used); static chain needs no fixing

3. Restore registers if jumping out of a procedure

20

Parameter passing

Place information in formal parameter location for callee to access actual

parameter:
• value
• address
• dope vector

Parameter passing modes:
value (copy-in), result (copy-out), value-result

Copy actual into formal on call, formal into actual on return
reference (var), read-only

Copy address of actual into formal
name, formal procedures, label parameters

Name parameters are re-evaluated on every reference

Data objects distinguish:
• values (constants)
• locations (ordinary variables)
• addresses of locations containing values

(indirect references, var parameters)

21

Value, result, value-result parameters

Value:

• treat formal as a local variable initialized with actual

• actual can be any expression of correct type

Result:

• treat formal as uninitialized local variable

• on return formal is copied into actual

• actual must be an l-value

Value-result:

• treat formal as local variable initialized with actual

• on return formal is copied to actual

• actual must be an l-value

22

Value, result, value-result parameters

Implementation:

Scalars:

• result/value-result ⇒

pass address of actual, copy value to/from local copy

• value ⇒ simply pass value directly

Arrays:

• pass dope vector

• static arrays ⇒ pass pointer to base of array

• result/value-result ⇒ two local dope vectors

• value ⇒ one local dope vector

Records:

• handle as scalar (since fixed in size)

• best to pass address, let callee copy

(more compact calling sequences)

23

Reference and read-only parameters

Usually pass address

Scalars:

• reference ⇒ pass address of actual

• read-only ⇒ pass value (rather than address):

copy actual into read-only local

Arrays: pass dope vector (simple pointer if static)

Records: pass base address

24

