Basic Blocks and Traces

Copyright ©2023 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and full citation on the first page. To copy otherwise, to republish, to post on

servers, or to redistribute to lists, requires prior specific permission and/or fee. Request permission to publish from
hosking@acm.org.

Basic blocks and Traces

Issues:

e To simplify translation there are mismatches between tree code and actual

machine instructions:

1. CJUMP to two labels; machine conditionals fall through on false

2. ESEQ and CALL order evaluation of subtrees for side-effects — constrains
optimization

3. CALL as argument to another CALL causes interference between register
arguments

e Can rewrite equivalent trees without these cases:

— SEQ can only be subtree of another SEQ
— SEQs clustered at top of tree
— might as well turn into simple linear list of statements

e 3-stage transformation:

1. to linear list of canonical trees without SEQ/ESEQ
2. to basic blocks with no internal jumps or labels

3. to traces with every CJUMP immediately followed by false target

Canonical trees

1. No SEQ or ESEQ
2. CALL can only be subtree of EXP(...) or MOVE(TEMP t,...)

Transformations:

e lift ESEQs up tree until they can become SEQs
e turn SEQs into linear list

ESEQ(s, ESEQ(s», ¢)) ESEQ(SEQ(s1,s2), €)

op, S, €1), €2 A op, ey, e2
MEM(ESEQ(s, e1)) = ESEQ(s, MEM(ey))
JUMP(ESEQ(s, ¢1)) = SEQ(s, JUMP(e,))
CJUMP (op, = SEQ(s, CUUMP(op, e, e, 11, 1))

ESEQ(s, e1), 2, 11, D)
BINOP(op, ¢;, ESEQ(s, ¢;)) = ESEQMOVE(TEMP t, ¢),

ESEQ(s,
BINOP(op, TEMP t, ¢5)))

CJUMP(op, = SEQ(MOVE(TEMP t, ¢;),

él, ESEQ(S, 62), ll, lz) SEQ(S,

CJUMP(op, TEMP t, e, 11, 15)))

MOVE(ESEQ(s, el), e») = SEQ(s, MOVE(ey, ¢,))
CALL(f, a) = ESEQ(MOVE(TEMP t, CALL(f, a)),

TEMP(t))

Taming conditional branches

1. Form basic blocks: sequence of statements always entered at the beginning
and exited at the end:

e first statementis a LABEL
e last statement is a JUMP or CUUMP
e contains no other LABELs, JUMPS or CJUMPs

2. Order blocks into trace:
e every CJUMP followed by false target
e JUMPs followed by target, if possible, to eliminate JUMP

Basic blocks

Control flow analysis discovers basic blocks and control flow between them:

1. scan from beginning to end:

e LABEL / starts a new block and previous block ends (append JUMP [if
necessary)

e JUMP or CJUMP ends a block and starts next block (prepend new LABEL
if necessary)

2. prepend new LABELSs to blocks with non-LABEL at beginning

3. append JUMP(NAME done) to last block

Traces

1. Pick an untraced block, the start of some trace
2. Follow a possible execution path, choosing false targets first

3. Repeat until all blocks are traced
Cleaning up:

e CJUMP followed by true target: switch targets, negate condition
e CJUMP(o, a, b, I1, I7) followed by neither /; nor [:

1. create new l}

2. rewrite as CUUMP(o, a, b, I;, I

), LABEL [}, JUMP [
e JUMP [, LABEL / — LABEL !

