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Instruction selection

Simple approach:

e Macro-expand each IR tuple/subtree into machine instructions
e Expanding tuples/subtrees independently = poor quality code
e Sometimes mapping is many-to-one

e “Maximal munch”: works reasonably well with RISC

Other approaches:

e Model target machine state as IR is expanded
(Iinterpretive code generation)



Register and temporary management

Temporaries hold data values relevant to current computation:

e Usually registers
e May be in-memory storage temporaries in local stack frame

Register allocation: assign registers to temporaries

e Limited number of hard registers
= some temporaries may need to be allocated to storage
— assume a pseudo-register for each temporary
— register allocator chooses temporaries to spill
— allocator generates corresponding mapping

— allocator inserts code to spill/restore pseudo-registers to/from storage as
necessary

We will deal with register allocation after instruction selection



Tree patterns

e Express each machine instruction as fragment of IR tree: a tree pattern

e Instruction selection means tiling IR tree with minimal set of tree patterns



MIPS tree patterns

Notation:

v reqgister i

Rd destination register
Rs source register

Rb base register

I 32-bit immediate
l16 16-bit immediate
label | code label

Addressing modes:

e register: R
e Indexed: I;4(Rb)

e immediate: /4



MIPS tree patterns

— r; TEMP
— ro CONST 0
I Rd 1 CONST
la Rd label NAME
move Rd Rs MOVE(e, o)
add Rd Rs; Rs; —|—(0, 0)

Rd Rs; [6 +(e, CONST16), —|—(CONST16, o)
mulo Rd Rs; Rsy | x(e,e)

Rd Rs Lis ><(0, CONST16), X(CONSTm, 0)
and Rd Rs; Rs; | AND(e, )

Rd Rs; L6 AND(O, CONST16), AND(CONST16, 0)
or Rd Rs; Rs; | OR(e, o)

Rd Rs, Is | OR(e, CONST,s), OR(CONST, o)
Xor Rd Rs; Rs; | XOR(e, o)

Rd Rs; Lis XOR(O, CONST16), XOR(CONSTm, 0)
sub Rd Rs; Rsy | —(e,0)

Rd Rs L6 —(0, CONST16)
div Rd Rs; Rs, /(0, 0)

Rd Rs Lis /(0, CONST16)
st Rd Rs, Rs, | RSHIFT(e, e)

Rd Rs 1Is | RSHIFT(e, CONST)
sl Rd Rs; Rs, | LSHIFT(e, o)

Rd Rs L6 LSH'FT(O, CONST16)

Rd Rs Lis ><(0, CONSTzk)
sra Rd Rs; Rs; | ARSHIFT(e, )

Rd Rs L6 ARSH'FT(O, CONST16)

Rd Rs L6 /(0, CONSTZk)
W Rd  1,4(RD) MEM(=(e, CONST4)),

MEM(+(CONST 6, o)),
MEM(CONST; ), MEM(e)



MIPS tree patterns

sw  Rs I,(Rb) MOVE(MEM(+(s, CONST ), o),
MOVE(MEM(4(CONST g, s)), o),
MOVE(MEM(CONST ), o),
MOVE(MEM(e), ¢
b [abel JUMP(NAME, [e]
ir Rs JUMP(e, [e])
beq Rs; Rs; label | CJUMP(EQ, e, o, [abel, o)
Rs; L6 label CJUMP(EQ, ,CONST16, label, 0)
CJUMP(EQ. CONST s, o, label. o)
bne Rs; Rs, label | CUUMP(NE, e, o, label, o)
Rs, Iis label | CJUMP(NE. o. CONSTc, label, o)
CJUMP(NE, CONST s, e label. o)
B Rs; Rs, Tabel | CJUMP(LT, o, e, label, o)
Rs; Lis label CJUMP( LT, ,CONST16, label, 0)
bgt Rs; Rs, label | CUUMP(GT, e, o, label, o)
R51 Lie label CJUMP(GT CONST16, Iabel, 0)
ble Rs; Rs; label | CUUMP(LE, o, o, label, o)
Rs, Iis label CJUMP(L , ,CONST16, label, 0)
bge Rs; Rs, label | CUUMP(GE, e, o, label, o)
RS] L6 label CJUMP(GE, o, CONST16, Iabel, 0)
bltu Rs; Rs; label | CUUMP(ULT, e, o, label, o)
Rs, 16 label CJUMP(ULT CONST16, label, 0)
bleu Rs; Rs, label | CJUMP(ULE, ., o, label, o)
Rs, Iis label CJUMP(ULE o, CONST16, label, 0)
bgtu Rs, Rs, label | CJUMP(UGT. e, e, label, o)
Rs, s label CJUMP(UGT CONST16, label, o)
bgeu Rs; Rs; label | CUUMP(UGE, o, o, label, o)
RSl L6 label CJUMP(UGE o, CONST16, Iabel, o)
jal Tabel CALL(NAME, [o])

label:

LABEL



Tiling

e Tiles are a set of tree patterns for the target machine
e Goal is to cover the IR tree with nonoverlapping tiles

e.g., afi] :=x

fo CONST x

TEMP i CONST 4

lw r; a($fp)
sll rr 2
add rin )
lw  r x($fp)
sw 1 (r1)

add r; $fp a
W ry (r1)
sil rnr, 2
addrir;
add r, $fp X
lw n (I’z)
SW 1m (}’1)



Optimal and optimum tilings

Optimum tiling: least cost instruction sequence

e shortest
e fewest cycles

Optimum tiling has tiles whose costs sum to lowest possible value

Optimal: no two adjacent tiles combine into single tile of lower cost
optimum = optimal
optimal % optimum

CISC instructions have complex tiles = optimal 5 optimum
RISC instructions have small tiles = optimal ~ optimum



Optimal tiling

Maximal “munch’:

1. Start at root of tree

2. Tile root with largest tile that fits

3. Repeat for each subtree
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Optimum tiling

Dynamic programming

e Assign a cost to every tree node: sum of instruction costs of best tiling for that
node (including best tilings for children)

Example:
MI%M
CONST 1 CONST 2
Tile Instruction Tile Cost Leaves Cost Total Cost
+(o, o) add 1 1+1 3
+(e, CONST 2) add 1 1+0 2

+(CONST 1, o) add 1 0+1 2

11



CISC machines

e few registers (x86 has only 6 general plus SP and FP)
allocate TEMP nodes freely, assume good register allocation

e different register classes, some operations only on certain registers

(x86/x86-64 allows mul/div only on eax/rax, high-order bits into edx/rdx)
eax < i
11 1h X3 = eax < eax X 13; edx «+
t] < eax

register allocator removes redundant moves

e 2-address instructions
<& bh+3= 1 <
I < 1 +13
register allocator removes redundant moves

e arithmetic operations can address memory

spill phase of register allocator can handle as
eax <+ [ebp-8]
eax < eax + ecx = [ebp-8] <« [ebp-8] + ecx
[ebp-8] + eax

e several memory addressing modes
e variable-length instructions
e instructions with side-effects such as “auto-increment” addressing
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