Code Generation

Copyright ©2023 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and full citation on the first page. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or fee. Request permission to publish from
hosking@acm.org.

Instruction selection

Simple approach:

e Macro-expand each IR tuple/subtree into machine instructions
e Expanding tuples/subtrees independently = poor quality code
e Sometimes mapping is many-to-one

e “Maximal munch”: works reasonably well with RISC

Other approaches:

e Model target machine state as IR is expanded
(Iinterpretive code generation)

Register and temporary management

Temporaries hold data values relevant to current computation:

e Usually registers
e May be in-memory storage temporaries in local stack frame

Register allocation: assign registers to temporaries

e Limited number of hard registers
= some temporaries may need to be allocated to storage
— assume a pseudo-register for each temporary
— register allocator chooses temporaries to spill
— allocator generates corresponding mapping

— allocator inserts code to spill/restore pseudo-registers to/from storage as
necessary

We will deal with register allocation after instruction selection

Tree patterns

e Express each machine instruction as fragment of IR tree: a tree pattern

e Instruction selection means tiling IR tree with minimal set of tree patterns

MIPS tree patterns

Notation:

v reqgister i

Rd destination register
Rs source register

Rb base register

I 32-bit immediate
l16 16-bit immediate
label | code label

Addressing modes:

e register: R
e Indexed: I;4(Rb)

e immediate: /4

MIPS tree patterns

— r; TEMP
— ro CONST 0
I Rd 1 CONST
la Rd label NAME
move Rd Rs MOVE(e, o)
add Rd Rs; Rs; —|—(0, 0)

Rd Rs; [6 +(e, CONST16), —|—(CONST16, o)
mulo Rd Rs; Rsy | x(e,e)

Rd Rs Lis ><(0, CONST16), X(CONSTm, 0)
and Rd Rs; Rs; | AND(e,)

Rd Rs; L6 AND(O, CONST16), AND(CONST16, 0)
or Rd Rs; Rs; | OR(e, o)

Rd Rs, Is | OR(e, CONST,s), OR(CONST, o)
Xor Rd Rs; Rs; | XOR(e, o)

Rd Rs; Lis XOR(O, CONST16), XOR(CONSTm, 0)
sub Rd Rs; Rsy | —(e,0)

Rd Rs L6 —(0, CONST16)
div Rd Rs; Rs, /(0, 0)

Rd Rs Lis /(0, CONST16)
st Rd Rs, Rs, | RSHIFT(e, e)

Rd Rs 1Is | RSHIFT(e, CONST)
sl Rd Rs; Rs, | LSHIFT(e, o)

Rd Rs L6 LSH'FT(O, CONST16)

Rd Rs Lis ><(0, CONSTzk)
sra Rd Rs; Rs; | ARSHIFT(e,)

Rd Rs L6 ARSH'FT(O, CONST16)

Rd Rs L6 /(0, CONSTZk)
W Rd 1,4(RD) MEM(=(e, CONST4)),

MEM(+(CONST 6, o)),
MEM(CONST;), MEM(e)

MIPS tree patterns

sw Rs I,(Rb) MOVE(MEM(+(s, CONST), o),
MOVE(MEM(4(CONST g, s)), o),
MOVE(MEM(CONST), o),
MOVE(MEM(e), ¢
b [abel JUMP(NAME, [e]
ir Rs JUMP(e, [e])
beq Rs; Rs; label | CJUMP(EQ, e, o, [abel, o)
Rs; L6 label CJUMP(EQ, ,CONST16, label, 0)
CJUMP(EQ. CONST s, o, label. o)
bne Rs; Rs, label | CUUMP(NE, e, o, label, o)
Rs, Iis label | CJUMP(NE. o. CONSTc, label, o)
CJUMP(NE, CONST s, e label. o)
B Rs; Rs, Tabel | CJUMP(LT, o, e, label, o)
Rs; Lis label CJUMP(LT, ,CONST16, label, 0)
bgt Rs; Rs, label | CUUMP(GT, e, o, label, o)
R51 Lie label CJUMP(GT CONST16, Iabel, 0)
ble Rs; Rs; label | CUUMP(LE, o, o, label, o)
Rs, Iis label CJUMP(L , ,CONST16, label, 0)
bge Rs; Rs, label | CUUMP(GE, e, o, label, o)
RS] L6 label CJUMP(GE, o, CONST16, Iabel, 0)
bltu Rs; Rs; label | CUUMP(ULT, e, o, label, o)
Rs, 16 label CJUMP(ULT CONST16, label, 0)
bleu Rs; Rs, label | CJUMP(ULE, ., o, label, o)
Rs, Iis label CJUMP(ULE o, CONST16, label, 0)
bgtu Rs, Rs, label | CJUMP(UGT. e, e, label, o)
Rs, s label CJUMP(UGT CONST16, label, o)
bgeu Rs; Rs; label | CUUMP(UGE, o, o, label, o)
RSl L6 label CJUMP(UGE o, CONST16, Iabel, o)
jal Tabel CALL(NAME, [o])

label:

LABEL

Tiling

e Tiles are a set of tree patterns for the target machine
e Goal is to cover the IR tree with nonoverlapping tiles

e.g., afi] :=x

fo CONST x

TEMP i CONST 4

lw r; a($fp)
sll rr 2
add rin)
lw r x($fp)
sw 1 (r1)

add r; $fp a
W ry (r1)
sil rnr, 2
addrir;
add r, $fp X
lw n (I’z)
SW 1m (}’1)

Optimal and optimum tilings

Optimum tiling: least cost instruction sequence

e shortest
e fewest cycles

Optimum tiling has tiles whose costs sum to lowest possible value

Optimal: no two adjacent tiles combine into single tile of lower cost
optimum = optimal
optimal % optimum

CISC instructions have complex tiles = optimal 5 optimum
RISC instructions have small tiles = optimal ~ optimum

Optimal tiling

Maximal “munch’:

1. Start at root of tree

2. Tile root with largest tile that fits

3. Repeat for each subtree

10

Optimum tiling

Dynamic programming

e Assign a cost to every tree node: sum of instruction costs of best tiling for that
node (including best tilings for children)

Example:
MI%M
CONST 1 CONST 2
Tile Instruction Tile Cost Leaves Cost Total Cost
+(o, o) add 1 1+1 3
+(e, CONST 2) add 1 1+0 2

+(CONST 1, o) add 1 0+1 2

11

CISC machines

e few registers (x86 has only 6 general plus SP and FP)
allocate TEMP nodes freely, assume good register allocation

e different register classes, some operations only on certain registers

(x86/x86-64 allows mul/div only on eax/rax, high-order bits into edx/rdx)
eax < i
11 1h X3 = eax < eax X 13; edx «+
t] < eax

register allocator removes redundant moves

e 2-address instructions
<& bh+3= 1 <
I < 1 +13
register allocator removes redundant moves

e arithmetic operations can address memory

spill phase of register allocator can handle as
eax <+ [ebp-8]
eax < eax + ecx = [ebp-8] <« [ebp-8] + ecx
[ebp-8] + eax

e several memory addressing modes
e variable-length instructions
e instructions with side-effects such as “auto-increment” addressing

12

