
Code Generation

Copyright ©2023 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and full citation on the first page. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or fee. Request permission to publish from
hosking@acm.org.

1

Instruction selection

Simple approach:

• Macro-expand each IR tuple/subtree into machine instructions
• Expanding tuples/subtrees independently⇒ poor quality code
• Sometimes mapping is many-to-one
• “Maximal munch”: works reasonably well with RISC

Other approaches:

• Model target machine state as IR is expanded
(interpretive code generation)

2

Register and temporary management

Temporaries hold data values relevant to current computation:

• Usually registers
• May be in-memory storage temporaries in local stack frame

Register allocation: assign registers to temporaries

• Limited number of hard registers
⇒ some temporaries may need to be allocated to storage

– assume a pseudo-register for each temporary
– register allocator chooses temporaries to spill
– allocator generates corresponding mapping
– allocator inserts code to spill/restore pseudo-registers to/from storage as

necessary

We will deal with register allocation after instruction selection

3

Tree patterns

• Express each machine instruction as fragment of IR tree: a tree pattern

• Instruction selection means tiling IR tree with minimal set of tree patterns

4

MIPS tree patterns

Notation:

ri register i

Rd destination register
Rs source register
Rb base register
I 32-bit immediate
I16 16-bit immediate
label code label

Addressing modes:

• register: R

• indexed: I16(Rb)

• immediate: I16

5

MIPS tree patterns

— ri TEMP
— r0 CONST 0
li Rd I CONST
la Rd label NAME
move Rd Rs MOVE(•, •)
add Rd Rs1 Rs2 +(•, •)

Rd Rs1 I16 +(•, CONST16), +(CONST16, •)
mulo Rd Rs1 Rs2 ×(•, •)

Rd Rs I16 ×(•, CONST16), ×(CONST16, •)
and Rd Rs1 Rs2 AND(•, •)

Rd Rs1 I16 AND(•, CONST16), AND(CONST16, •)
or Rd Rs1 Rs2 OR(•, •)

Rd Rs1 I16 OR(•, CONST16), OR(CONST16, •)
xor Rd Rs1 Rs2 XOR(•, •)

Rd Rs1 I16 XOR(•, CONST16), XOR(CONST16, •)
sub Rd Rs1 Rs2 −(•, •)

Rd Rs I16 −(•, CONST16)
div Rd Rs1 Rs2 /(•, •)

Rd Rs I16 /(•, CONST16)
srl Rd Rs1 Rs2 RSHIFT(•, •)

Rd Rs I16 RSHIFT(•, CONST16)
sll Rd Rs1 Rs2 LSHIFT(•, •)

Rd Rs I16 LSHIFT(•, CONST16)
Rd Rs I16 ×(•, CONST2k)

sra Rd Rs1 Rs2 ARSHIFT(•, •)
Rd Rs I16 ARSHIFT(•, CONST16)
Rd Rs I16 /(•, CONST2k)

lw Rd I16(Rb) MEM(+(•, CONST16)),
MEM(+(CONST16, •)),
MEM(CONST16), MEM(•)

6

MIPS tree patterns

sw Rs I16(Rb) MOVE(MEM(+(•, CONST16)), •),
MOVE(MEM(+(CONST16, •)), •),
MOVE(MEM(CONST16), •),
MOVE(MEM(•), •)

b label JUMP(NAME, [•])
jr Rs JUMP(•, [•])
beq Rs1 Rs2 label CJUMP(EQ, •, •, label, •)

Rs1 I16 label CJUMP(EQ, •, CONST16, label, •)
CJUMP(EQ, CONST16, •, label, •)

bne Rs1 Rs2 label CJUMP(NE, •, •, label, •)
Rs1 I16 label CJUMP(NE, •, CONST16, label, •)

CJUMP(NE, CONST16, •, label, •)
blt Rs1 Rs2 label CJUMP(LT, •, •, label, •)

Rs1 I16 label CJUMP(LT, •, CONST16, label, •)
bgt Rs1 Rs2 label CJUMP(GT, •, •, label, •)

Rs1 I16 label CJUMP(GT, •, CONST16, label, •)
ble Rs1 Rs2 label CJUMP(LE, •, •, label, •)

Rs1 I16 label CJUMP(LE, •, CONST16, label, •)
bge Rs1 Rs2 label CJUMP(GE, •, •, label, •)

Rs1 I16 label CJUMP(GE, •, CONST16, label, •)
bltu Rs1 Rs2 label CJUMP(ULT, •, •, label, •)

Rs1 I16 label CJUMP(ULT, •, CONST16, label, •)
bleu Rs1 Rs2 label CJUMP(ULE, •, •, label, •)

Rs1 I16 label CJUMP(ULE, •, CONST16, label, •)
bgtu Rs1 Rs2 label CJUMP(UGT, •, •, label, •)

Rs1 I16 label CJUMP(UGT, •, CONST16, label, •)
bgeu Rs1 Rs2 label CJUMP(UGE, •, •, label, •)

Rs1 I16 label CJUMP(UGE, •, CONST16, label, •)
jal label CALL(NAME, [•])
label: LABEL

7

Tiling

• Tiles are a set of tree patterns for the target machine
• Goal is to cover the IR tree with nonoverlapping tiles

e.g., a[i] := x

fp CONST a

+

MEM

TEMP i CONST 4

×

+

MEM

fp CONST x

+

MEM

MOVE

lw r1 a($fp) add r1 $fp a
sll r2 ri 2 lw r1 (r1)
add r1 r1 r2 sll r2 ri 2
lw r2 x($fp) add r1 r1 r2

sw r2 (r1) add r2 $fp x
lw r2 (r2)
sw r2 (r1)

8

Optimal and optimum tilings

Optimum tiling: least cost instruction sequence

• shortest
• fewest cycles

Optimum tiling has tiles whose costs sum to lowest possible value

Optimal : no two adjacent tiles combine into single tile of lower cost

optimum ⇒ optimal
optimal 6⇒ optimum

CISC instructions have complex tiles⇒ optimal 6≈ optimum

RISC instructions have small tiles⇒ optimal ≈ optimum

9

Optimal tiling

Maximal “munch” :

1. Start at root of tree

2. Tile root with largest tile that fits

3. Repeat for each subtree

10

Optimum tiling

Dynamic programming

• Assign a cost to every tree node: sum of instruction costs of best tiling for that
node (including best tilings for children)

Example:

CONST 1 CONST 2

+

MEM

Tile Instruction Tile Cost Leaves Cost Total Cost
+(•, •) add 1 1+1 3
+(•, CONST 2) add 1 1+0 2
+(CONST 1, •) add 1 0+1 2

11

CISC machines

• few registers (x86 has only 6 general plus SP and FP)

allocate TEMP nodes freely, assume good register allocation

• different register classes, some operations only on certain registers

(x86/x86-64 allows mul/div only on eax/rax, high-order bits into edx/rdx)
eax← t2

t1← t2× t3 ≡ eax← eax × t3; edx←
t1 ← eax

register allocator removes redundant moves

• 2-address instructions
t1← t2+ t3 ≡ t1← t2

t1← t1+ t3
register allocator removes redundant moves

• arithmetic operations can address memory

spill phase of register allocator can handle as
eax ← [ebp-8]
eax ← eax + ecx ≡ [ebp-8]← [ebp-8] + ecx
[ebp-8]← eax

• several memory addressing modes

• variable-length instructions

• instructions with side-effects such as “auto-increment” addressing

12

