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Register allocation

IR ——=|Instruction register |~ machine
selection allocation code
errors

Register allocation:

have value in a register when used

limited resources
changes instruction choices

can move loads and stores

optimal allocation is difficult
= NP-complete for k > 1 registers



Liveness analysis

Problem:

¢ |IR contains an unbounded number of temporaries
e machine has bounded number of registers

Approach:

e temporaries with disjoint /ive ranges can map to same register

e if not enough registers then spill some temporaries
(i.e., keep them in memory)

The compiler must perform liveness analysis for each temporary:

It is live if it holds a value that may be needed in future



Control flow analysis

Before performing liveness analysis, need to understand the control flow by
building a control flow graph (CFG):

e nodes may be individual program statements or basic blocks
e edges represent potential flow of control

Out-edges from node n lead to successor nodes, succin|
In-edges to node n come from predecessor nodes, pred|n|
Example:

a<+ 0

Li: b+<—a+1
c+c+b
a+bx?2
if a < N goto L
return c



Liveness analysis

Gathering liveness information is a form of data flow analysis operating over the
CFG:

e liveness of variables “flows” around the edges of the graph

e assignments define a variable, v:

— def(v) = set of graph nodes that define v
— defln] = set of variables defined by n

e occurrences of v in expressions use it:

— use(v) = set of nodes that use v
— use[n| = set of variables used in n

Liveness: v is live on edge e if there is a directed path from e to a use of v that
does not pass through any def(v)

v is live-in at node n if live on any of n’s in-edges
v is live-out at n if live on any of n’s out-edges

v € USe[n] = v live-in at n

v live-in at n = v live-out at all m € pred|n]

v live-out at n,v ¢ defln| = v live-in at n



Liveness analysis

Define:
in[n]:  variables live-in at n
outln]: variables live-out at n

Then:
outln|= | ) in[s]
seSUCC(n)
succln] = ¢ = outln] = ¢
Note:

in[n] 2 useln]

in[n] 2 outin] — defin|

useln| and defln| are constant (independent of control flow)
Now, v € in[n] iff. v € useln] or v € out|n] — defin|

Thus, in[n] = useln| U (out[n| — defin])



Iterative solution for liveness

foreach n
in[n] < ¢
out[n| + ¢
repeat
foreach n
in’[n] < in[n];
out'[n] < out[n];
in[n| < use(n| U (out[n| — def[n])
out|n] < U56$UCC[n] ins|
until in'[n] = in[n] A out’[n] = out[n],Vn
Notes:

should order computation of inner loop to follow the “flow”
liveness flows backward along control-flow arcs, from out to in
nodes can just as easily be basic blocks to reduce CFG size

could do one variable at a time, from uses back to defs, noting liveness along
the way



Iterative solution for liveness

Complexity: for input program of size N

e <N nodesin CFG
=< N variables
= N elements per in/out

= O(N) time per set-union
e for loop performs constant number of set operations per node
= O(N?) time for for loop

e each iteration of repeat loop can only add to each set
sets can contain at most every variable

— sizes of all in and out sets sum to 2N2,
bounding the number of iterations of the repeat loop

= worst-case complexity of O(N%)
ordering can cut repeat loop down to 2-3 iterations
= O(N) or O(N?) in practice



Least fixed points

There is often more than one solution for a given dataflow problem (see example).
Any solution to dataflow equations is a conservative approximation:.

e v has some later use downstream from »n
= v € oul(n)

e but not the converse

Conservatively assuming a variable is live does not break the program; just means
more registers may be needed.

Assuming a variable is dead when it is really live will break things.
May be many possible solutions but want the “smallest”: the least fixpoint.

The iterative liveness computation computes this least fixpoint.



