Register Allocation

Copyright ©2023 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and full citation on the first page. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or fee. Request permission to publish from
hosking@acm.org.

Register allocation

IR ——=|Instruction register |~ machine
selection allocation code
errors

Register allocation:

have value in a register when used

limited resources
changes instruction choices

can move loads and stores

optimal allocation is difficult
= NP-complete for k > 1 registers

Liveness analysis

Problem:

¢ |IR contains an unbounded number of temporaries
e machine has bounded number of registers

Approach:

e temporaries with disjoint /ive ranges can map to same register

e if not enough registers then spill some temporaries
(i.e., keep them in memory)

The compiler must perform liveness analysis for each temporary:

It is live if it holds a value that may be needed in future

Control flow analysis

Before performing liveness analysis, need to understand the control flow by
building a control flow graph (CFG):

e nodes may be individual program statements or basic blocks
e edges represent potential flow of control

Out-edges from node n lead to successor nodes, succin|
In-edges to node n come from predecessor nodes, pred|n|
Example:

a<+ 0

Li: b+<—a+1
c+c+b
a+bx?2
if a < N goto L
return c

Liveness analysis

Gathering liveness information is a form of data flow analysis operating over the
CFG:

e liveness of variables “flows” around the edges of the graph

e assignments define a variable, v:

— def(v) = set of graph nodes that define v
— defln] = set of variables defined by n

e occurrences of v in expressions use it:

— use(v) = set of nodes that use v
— use[n| = set of variables used in n

Liveness: v is live on edge e if there is a directed path from e to a use of v that
does not pass through any def(v)

v is live-in at node n if live on any of n’s in-edges
v is live-out at n if live on any of n’s out-edges

v € USe[n] = v live-in at n

v live-in at n = v live-out at all m € pred|n]

v live-out at n,v ¢ defln| = v live-in at n

Liveness analysis

Define:
in[n]: variables live-in at n
outln]: variables live-out at n

Then:
outln|= |) in[s]
seSUCC(n)
succln] = ¢ = outln] = ¢
Note:

in[n] 2 useln]

in[n] 2 outin] — defin|

useln| and defln| are constant (independent of control flow)
Now, v € in[n] iff. v € useln] or v € out|n] — defin|

Thus, in[n] = useln| U (out[n| — defin])

Iterative solution for liveness

foreach n
in[n] < ¢
out[n| + ¢
repeat
foreach n
in’[n] < in[n];
out'[n] < out[n];
in[n| < use(n| U (out[n| — def[n])
out|n] < U56$UCC[n] ins|
until in'[n] = in[n] A out’[n] = out[n],Vn
Notes:

should order computation of inner loop to follow the “flow”
liveness flows backward along control-flow arcs, from out to in
nodes can just as easily be basic blocks to reduce CFG size

could do one variable at a time, from uses back to defs, noting liveness along
the way

Iterative solution for liveness

Complexity: for input program of size N

e <N nodesin CFG
=< N variables
= N elements per in/out

= O(N) time per set-union
e for loop performs constant number of set operations per node
= O(N?) time for for loop

e each iteration of repeat loop can only add to each set
sets can contain at most every variable

— sizes of all in and out sets sum to 2N2,
bounding the number of iterations of the repeat loop

= worst-case complexity of O(N%)
ordering can cut repeat loop down to 2-3 iterations
= O(N) or O(N?) in practice

Least fixed points

There is often more than one solution for a given dataflow problem (see example).
Any solution to dataflow equations is a conservative approximation:.

e v has some later use downstream from »n
= v € oul(n)

e but not the converse

Conservatively assuming a variable is live does not break the program; just means
more registers may be needed.

Assuming a variable is dead when it is really live will break things.
May be many possible solutions but want the “smallest”: the least fixpoint.

The iterative liveness computation computes this least fixpoint.

