
Register Allocation

Copyright ©2023 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and full citation on the first page. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or fee. Request permission to publish from
hosking@acm.org.

1

Register allocation

allocation

errors

IR machine
code

instruction
selection

register

Register allocation:

• have value in a register when used

• limited resources
• changes instruction choices

• can move loads and stores
• optimal allocation is difficult

⇒ NP-complete for k ≥ 1 registers

2

Register allocation by simplification

Assume K registers

1. Build interference graph G: for each program point

(a) compute set of temporaries simultaneously live
(b) add edge to graph for each pair in set

2. Simplify : Color graph using a simple heuristic

(a) suppose G has node m with degree < K

(b) if G
′ = G−{m} can be colored then so can G, since nodes adjacent to m

have at most K −1 colors
(c) each such simplification will reduce degree of remaining nodes leading to

more opportunity for simplification
(d) leads to recursive coloring algorithm

3. Spill : suppose 6 ∃m of degree < K

(a) target some node (temporary) for spilling (optimistically, spilling node will
allow coloring of remaining nodes)

(b) remove and continue simplifying

3

Register allocation by simplification (cont.)

4. Select : assign colors to nodes

(a) start with empty graph

(b) must be a color for non-spill nodes (basis for removal)
(c) if adding spill node and no color available (neighbors already K-colored)

then mark as an actual spill
(d) repeat select

5. Start over : if select has no actual spills then finished, otherwise

(a) rewrite program to fetch actual spills before each use and store after each
definition

(b) recalculate liveness and repeat

4

Coalescing

• Can delete a move instruction when source s and destination d do not

interfere:

– coalesce them into a new node whose edges are the union of those of s

and d

• In principle, any pair of non-interfering nodes can be coalesced

– unfortunately, the union is more constrained and new graph may no longer
be K-colorable

– overly aggressive

5

Simplification with aggressive coalescing

build

any co
al

es
ce

d
o
n
e

simplify

any

d
o
n
e

sp

il
l

spill

select

aggressive
 coalesce

6

Conservative coalescing

Apply tests for coalescing that preserve colorability.

Suppose a and b are candidates for coalescing into node ab.

Briggs: coalesce only if ab has < K neighbors of significant degree ≥ K

• simplify first removes all insignificant-degree neighbors
• ab will then be adjacent to < K neighbors

• simplify can then remove ab

George: coalesce only if all significant-degree neighbors of a already interfere with

b

• simplify removes all insignificant-degree neighbors of a

• remaining significant-degree neighbors of a already interfere with b so
coalescing does not increase the degree of any node

7

Iterated register coalescing

Interleave simplification with coalescing to eliminate most moves while

guaranteeing not to introduce spills:

1. Build interference graph G and distinguish move-related from

non-move-related nodes

2. Simplify : remove non-move-related nodes of low degree one at a time

3. Coalesce: conservatively coalesce move-related nodes

• remove associated move instruction
• if resulting node is non-move-related it can now be simplified

• repeat simplify and coalesce until only significant-degree or uncoalesced
moves

4. Freeze: if unable to simplify or coalesce

(a) look for move-related node of low-degree

(b) freeze its associated moves (give up on coalescing)

(c) now treat as non-move-related; resume iteration of simplify and coalesce

8

Iterated register coalescing (cont.)

5. Spill : if no low-degree nodes

(a) select candidate for spilling

(b) remove to stack and continue simplifying

6. Select : pop stack assigning colors (including actual spills)

7. Start over : if select has no actual spills then finished, otherwise

(a) rewrite code to fetch actual spills before each use and store after each
definition

(b) recalculate liveness and repeat

9

Iterated register coalescing

select

potential
spill

actual
 spill

build

conservative
 coalesce

simplify

freeze

SSA constant
 propagation

(optional)

sp
il

ls
d
o
n
e

an
y

10

Spilling

• Spills require repeating build and simplify on the whole program

• To avoid increasing number of spills in future rounds of build can simply

discard coalescences

• Alternatively, preserve coalescences from before first potential spill, discard

those after that point

• Move-related spilled temporaries can be aggressively coalesced, since (unlike

registers) there is no limit on the number of stack-frame locations

11

Precolored nodes

Precolored nodes correspond to machine registers (e.g., stack pointer, arguments,

return address, return value)

• select and coalesce can give an ordinary temporary the same color as a
precolored register, if they don’t interfere

• e.g., argument registers can be reused inside procedures for a temporary

• simplify, freeze and spill cannot be performed on them

• also, precolored nodes interfere with other precolored nodes

So, treat precolored nodes as having infinite degree

This also avoids needing to store large adjacency lists for precolored nodes;

coalescing can use the George criterion

12

Temporary copies of machine registers

Since precolored nodes don’t spill, their live ranges must be kept short:

1. use move instructions

2. move callee-save registers to fresh temporaries on procedure entry, and back

on exit, spilling between as necessary

3. register pressure will spill the fresh temporaries as necessary, otherwise they

can be coalesced with their precolored counterpart and the moves deleted

13

Caller-save and callee-save registers

Variables whose live ranges span calls should go to callee-save registers,

otherwise to caller-save

This is easy for graph coloring allocation with spilling

• calls interfere with caller-save registers

• a cross-call variable interferes with all precolored caller-save registers, as well
as with the fresh temporaries created for callee-save copies, forcing a spill

• choose nodes with high degree but few uses, to spill the fresh callee-save
temporary instead of the cross-call variable

• this makes the original callee-save register available for coloring the cross-call
variable

14

Example

enter:

c := r3

a := r1

b := r2

d := 0

e := a

loop:

d := d + b

e := e - 1

if e > 0 goto loop

r1 := d

r3 := c

return [r1, r3 live out]

• Temporaries are a, b, c, d, e

• Assume target machine with K = 3 registers: r1, r2
(caller-save/argument/result), r3 (callee-save)

• The code generator has already made arrangements to save r3 explicitly by
copying into temporary a and back again

15

Example (cont.)

Interference graph:

cr3

ar1

r2
eb

d

16

Example (cont.)

• No opportunity for simplify or freeze (all non-precolored nodes have
significant degree ≥ K)

• Any coalesce will produce a new node adjacent to ≥ K significant-degree
nodes

• Must spill based on priorities:
Node uses + defs uses + defs degree priority

outside loop inside loop
a (2 +10× 0)/ 4 = 0.50
b (1 +10× 1)/ 4 = 2.75
c (2 +10× 0)/ 6 = 0.33
d (2 +10× 2)/ 4 = 5.50
e (1 +10× 3)/ 3 = 10.30

• Node c has lowest priority so spill it

17

Example (cont.)

Interference graph with c removed:

d

r3

ar1

r2
eb

18

Example (cont.)

Only possibility is to coalesce a and e: ae will have < K significant-degree

neighbors (after coalescing d will be low-degree, though high-degree before)

ae

r3

r1

r2
b

d

19

Example (cont.)

Can now coalesce b with r2 (or coalesce ae and r1):

r2b

r3

r1 dae

20

Example (cont.)

Coalescing ae and r1 (could also coalesce d with r1):

r2b

r3

dr1ae

21

Example (cont.)

Cannot coalesce r1ae with d because the move is constrained : the nodes

interfere. Must simplify d:

r3

r1ae

r2b

22

Example (cont.)

• Graph now has only precolored nodes, so pop nodes from stack coloring

along the way
– d ≡ r3
– a, b, e have colors by coalescing
– c must spill since no color can be found for it

• Introduce new temporaries c1 and c2 for each use/def, add loads before each

use and stores after each def

23

Example (cont.)

enter:

c1 := r3

M[c_loc] := c1

a := r1

b := r2

d := 0

e := a

loop:

d := d + b

e := e - 1

if e > 0 goto loop

r1 := d

c2 := M[c_loc]

r3 := c2

return [r1, r3 live out]

24

Example (cont.)

New interference graph:

c2

r3

ar1

r2
eb

d

c1

25

Example (cont.)

Coalesce c1 with r3, then c2 with r3:

r3c1c2

ar1

r2
eb

d

26

Example (cont.)

As before, coalesce a with e, then b with r2:

r2b

r1 d

r3c1c2

ae

27

Example (cont.)

As before, coalesce ae with r1 and simplify d:

r3c1c2

r2b

r1ae

28

Example (cont.)

Pop d from stack: select r3. All other nodes were coalesced or precolored. So, the

coloring is:

• a ≡ r1
• b ≡ r2
• c ≡ r3
• d ≡ r3
• e ≡ r1

29

Example (cont.)

Rewrite the program with this assignment:

enter:

r3 := r3

M[c_loc] := r3

r1 := r1

r2 := r2

r3 := 0

r1 := r1

loop:

r3 := r3 + r2

r1 := r1 - 1

if r1 > 0 goto loop

r1 := r3

r3 := M[c_loc]

r3 := r3

return [r1, r3 live out]

30

Example (cont.)

• Delete moves with source and destination the same (coalesced):

enter:

M[c_loc] := r3

r3 := 0

loop:

r2 := r3 + r2

r1 := r1 - 1

if r1 > 0 goto loop

r1 := r3

r3 := M[c_loc]

return [r1, r3 live out]

• One uncoalesced move remains

31

