
CakeML: Verified Computation/
Compilation Stories

Michael Norrish, School of Computing, ANU

23 May 2023

+ =

Itinerary

Interactive theorem-proving

CakeML

Rendering super-standard formal
language theory with maximum
cleanness—puzzle included.

Canberra Plan, 1927. Archives of the ACT Government via flickr.com

http://flickr.com

–me, in moments of delusion

“Solving the world’s problems with theorem-proving.”

Interactive Theorem-Proving

Interactive theorem-proving is core to 99% of what I do.

Example systems: ACL2, Coq, HOL4, HOL Light, Isabelle and PVS

Proof in Action

Human guided proof

Posit the goal; provide the
proof

Machine helps:

by checking validity of steps

with some automatic tools

Thus: “proof assistant” term

HOL4

Under development since the mid
1980s

Engineered in the “LCF tradition”:
a small kernel minimises the TCB

Similar logic to Isabelle/HOL and
HOL Light

Simpler logic than (e.g.) Coq’s.

CakeML
What?

CakeML
What?
1. A programming language in the style of Standard ML and OCaml.

CakeML
What?
1. A programming language in the style of Standard ML and OCaml.

strict evaluation, stateful

CakeML
What?
1. A programming language in the style of Standard ML and OCaml.

2. An ecosystem of proofs and verification tools

strict evaluation, stateful

CakeML
What?
1. A programming language in the style of Standard ML and OCaml.

2. An ecosystem of proofs and verification tools

strict evaluation, stateful

3. A verified, end-to-end compiler

What Do These Words Mean? (I)

“A programming language in the style of SML and OCaml…”

(functional, has pattern-matching, nice recursion, nice datatypes)

But:

Strict: arguments are evaluated before being passed to functions.
(Unlike Haskell.)

Stateful: CakeML supports variables that you can update by
assigning to them. (Again, unlike Haskell.)

What Do These Words Mean? (II)

Verified: CakeML has proofs that guarantee it will behave correctly

End-to-end: The proofs are about “all of it”:

From: reading in the input file (a stream of characters)

To: actual machine code for the CPU (x86, ARM etc)

Dimensions of Compiler Verification

Dimensions of Compiler Verification

source code

abstract syntax

intermediate language

bytecode

machine code

how far compiler goes

Dimensions of Compiler Verification

source code

abstract syntax

intermediate language

bytecode

machine code

how far compiler goes

compiler
algorithm

implementation
in ML

implementation
in machine code

interactive call in read-
eval-print loop runtime

the thing that is verified

Dimensions of Compiler Verification

source code

abstract syntax

intermediate language

bytecode

machine code

how far compiler goes

compiler
algorithm

implementation
in ML

implementation
in machine code

interactive call in read-
eval-print loop runtime

the thing that is verified

Our verification covers the full
spectrum of both dimensions.

Goal: End-to-end

[[·]]

` P (val x = ...)

Ingredients

[[·]] : string ! v

[[·]] : int list ! s ! s

Verified
Compilation

Bootstrapping

parsing

type inference

compilation

function in logic (compiler)

Bootstrapping

parsing

type inference

compilation

function in logic (compiler)

CakeML program (compiler-ML)

⊢ compiler-ML implements compiler

Proof-producing

synthesis (ICFP’12)

Bootstrapping

parsing

type inference

compilation

function in logic (compiler)

CakeML program (compiler-ML)

⊢ compiler-ML implements compiler

Proof-producing

synthesis (ICFP’12)

⊢ compiler (compiler-ML) = compiler-x86

by evaluation

in the logic

Bootstrapping

parsing

type inference

compilation

function in logic (compiler)

CakeML program (compiler-ML)

⊢ compiler-ML implements compiler

Proof-producing

synthesis (ICFP’12)

⊢ compiler (compiler-ML) = compiler-x86

by evaluation

in the logic

⊢ ∀c. (compiler c) implements c
by compiler

correctness

Bootstrapping

parsing

type inference

compilation

function in logic (compiler)

CakeML program (compiler-ML)

⊢ compiler-ML implements compiler

Proof-producing

synthesis (ICFP’12)

⊢ compiler (compiler-ML) = compiler-x86

by evaluation

in the logic

⊢ ∀c. (compiler c) implements c
by compiler

correctness

Theorem: ⊢ compiler-x86 implements compiler

What Do These Words Mean?(III)

Ecosystem: Not only is the
CakeML compiler “verified” (as
before), but we also have a variety
of methods for proving (other)
CakeML programs correct.

When your Haskell program
misbehaves, who/what do you
blame?

Your program (you)? GHC? The
OS? The hardware? Cosmic rays?

Photo by Kohei314, via flickr.com

Hmm, Can This Possibly Be True?

Scepticism is fair.

Must ask:

“What are your assumptions?”

(Correct) Proofs are only as good
as the assumptions behind them!

Assumption 1: our logic is sound.

Any attempt to prove this would in turn depend on knowing that
the logic being used to prove this was sound,

which would require another proof of soundness, carried out in
yet another logical system…

this makes for an infinite regress…

See also: Gödel.

from Wikipedia

Assumption 2: Our implementation of the logic is correct.

HOL4 is not verified…

The language it’s written in hasn’t been verified either

But:

The Trusted Code Base in HOL4 is small by design

It’s been eyeballed for many decades by experts

It can export proof logs for independent checking

Assumption 3: Our correctness theorem says what we think it
says

Complicated logical statements are easy to misinterpret

Luckily, our correctness statement is not so bad:

` config_ok cc mc)
case compile cc prelude input of
Success (bytes,�_limit))
9 behaviours.
cakeml_semantics � prelude input =
Execute behaviours ^

8ms.
code_installed (bytes,cc,� ,�_limit ,mc,ms))
machine_sem mc � ms ✓
extend_with_resource_limit behaviours

| Failure ParseError)
cakeml_semantics � prelude input = CannotParse

| Failure TypeError)
cakeml_semantics � prelude input = IllTyped

| Failure CompileError) true

Figure 5. Top-level compiler correctness theorem.

to alter the state midway through this execution.

↵ asm = Inst (↵ inst) | Jump (↵ word)
| Call (↵ word) | JumpReg num
| Loc num (↵ word)
| JumpCmp cmp num (↵ reg_imm) (↵ word)

The LABLANG-to-target compiler’s proof lifts per instruction
simulations to a simulation result for the entire LABLANG program.

10. Top-level Correctness Theorem
The top-level correctness theorem relates the source semantics, the
compiler, and the target semantics.

The top-level semantics of CakeML, cakeml_semantics, is
defined as follows based on the specification of the parser, the
specification of what is typeable, and the observable semantics,
semantics, of executing a CakeML program.

cakeml_semantics � prelude input =
case parse (lex input) of
None) CannotParse

| Some prog)
if can_type_prog (prelude @ prog) then
Execute (semantics � (prelude @ prog))

else IllTyped

We define semantics in the style of Owens et al. (2016) as a
function that returns a set of behaviours. A behaviour is either
divergence, termination, or failure. The first two carry a possibly
infinite stream of FFI I/O events, representing a trace of all the I/O
actions that the program has performed given the initial FFI state.
As mentioned earlier, an FFI state is an oracle that specifies how
the environment will respond to calls to the FFI.

behaviour = Fail | Diverge (io_event stream)
| Terminate outcome (io_event list)

The top-level correctness theorem is shown in Figure 5. Here
ms is the machine state, mc is the machine configuration and
extend_with_resource_limit adjusts the behaviours set to allow
early exit on the outcome which signals a resource-limit-hit.

11. Evaluation of the Compiler in the Logic
One of the important properties of the first CakeML compiler is the
ability to bootstrap itself in the logic. Bootstrapping the compiler
in the logic has become harder to achieve in reasonable time for the
new version because we have more transformations in the compiler,
and some of these transformations scale poorly when evaluated
in the logic. Register allocation is the most significant scalability

bottleneck — even though it is fully verified, evaluating it in the
logic on the large clash graphs of the compiler is infeasible.

In order to make evaluation in the logic feasible again, we opted
for a translation validation approach for the register allocator that
produces HOL theorems comparable to the ones produced by a
direct evaluation. The translation validation produces theorems of
the following form, which fits the top-level correctness theorem.

` compile cc prelude input =
Success (concrete_machine_code,number)

The translation validation approach is logically set up to avoid
an in-logic execution of the register allocator function. The logical
setup is simple: we store a list of colouring functions into the com-
piler configuration and make the register allocator check whether
the next colouring it finds is a valid colouring for the current pro-
gram fragment; if it is, then it uses the colouring, otherwise it runs
the verified allocator. We run an SML version of the verified allo-
cator to initialise the list of colouring functions.

Another bottleneck is the evaluation of the instruction encoder
in the assembler. Here, a speed up was achieved by memoisation
and use of specialised evaluation theorems. At the time of writing,
the assembler loop’s final exit condition is the most significant per-
formance bottleneck. We believe it can be significantly improved,
both by proving that some of the checks are always going to be
true, and rephrasing the computation of the remaining checks.

12. Discussion of Related Work
There has been much interest in verified compilation and optimi-
sation; CompCert, a verified optimising compiler for C, is perhaps
the most well-known project. Like CompCert, our work focuses on
verifying an entire compiler, rather than specific verified optimisa-
tions. In this section, we first give a comparison with the previous
CakeML compiler, then we discuss related work for various parts
of our new compiler.

Detailed Comparison with Previous Compiler Our source lan-
guage (CakeML) has been extended with an FFI, allowing for I/O
within CakeML programs. We also added support for new primi-
tive datatypes: strings, bytes, words, immutable vectors and muta-
ble arrays. We have improved the source semantics by removing
the pre-type-checking elaboration step; closure values now include
the lexically scoped top-level environments (containing data con-
structor and top-level/module-top-level definitions).

The product of the previous compiler was a verified interactive
loop (REPL) since our focus there was on end-to-end verification.
We have not yet constructed a similar REPL for the new compiler.
The previous compiler compiled from source to a single IL, then to
stack-machine-based bytecode and finally to x86-64. The bytecode
was designed so that each operation mapped to a fixed sequence of
x86 instructions, and it was also designed to make verification of
the GC as easy as possible. Unfortunately, the ease of verification
also meant that the compiler had poor performance – we found the
bytecode IL too low level for functional programming optimisa-
tions (multi-argument functions, lambda lifting, etc.) and too high
level for backend optimisations. For example, it naively followed
the semantics and allocated a closure on each additional argument
to a function, pattern matches were not compiled efficiently (even
for exhaustive, non-nested patterns), and the bytecode compiler
only used registers as temporary storage within single bytecode in-
structions. The new version fixes all of these problems and further
splits each improvement into its own phase and IL in order to keep
the verification of different parts as separate and as understandable
as possible.

Optimisations The CompCert project has investigated a slew of
verified optimisations, and some of our optimisations, e.g. compila-

Assumption 4: Our logical model of the real world is accurate

We assume that x86 (ARM, RISCV,…) chips really do behave
according to the logical spec we have for them.

We assume that the OS implements its
various system calls in accordance with
our spec.

State-of-the-Art Assurance

Al
go

rit
hm

s
&

Da
ta

 s
tru

ct
ur

es

Ve
rifi

ed
 in

 IT
P

State-of-the-Art Assurance

Al
go

rit
hm

s
&

Da
ta

 s
tru

ct
ur

es

Ve
rifi

ed
 in

 IT
P

So
ur

ce
 in

 H
ig

h
Le

ve
l L

an
gu

ag
e

(O
C

am
l,

H
as

ke
ll,

 S
ca

la
…

)

ITP Code Extraction

State-of-the-Art Assurance

Al
go

rit
hm

s
&

Da
ta

 s
tru

ct
ur

es

Ve
rifi

ed
 in

 IT
P

So
ur

ce
 +

 O
S

ca
lls

e.

g.
, I

O
 fo

r p
ar

si
ng

 in
pu

ts

So
ur

ce
 in

 H
ig

h
Le

ve
l L

an
gu

ag
e

(O
C

am
l,

H
as

ke
ll,

 S
ca

la
…

)

ITP Code Extraction User Writes Code

State-of-the-Art Assurance

Al
go

rit
hm

s
&

Da
ta

 s
tru

ct
ur

es

Ve
rifi

ed
 in

 IT
P

So
ur

ce
 +

 O
S

ca
lls

e.

g.
, I

O
 fo

r p
ar

si
ng

 in
pu

ts

M
ac

hi
ne

 C
od

e

So
ur

ce
 in

 H
ig

h
Le

ve
l L

an
gu

ag
e

(O
C

am
l,

H
as

ke
ll,

 S
ca

la
…

)

ITP Code Extraction (Unverified) Compiler CompilesUser Writes Code

CakeML Assurance

Al
go

rit
hm

s
&

Da
ta

 s
tru

ct
ur

es

Ve
rifi

ed
 in

 IT
P

So
ur

ce
 +

 O
S

ca
lls

e.

g.
, I

O
 fo

r p
ar

si
ng

 in
pu

ts

M
ac

hi
ne

 C
od

e

Ve
rifi

ed
 C

ak
eM

L
so

ur
ce

Verifying Translator CakeML CompilesUser Writes & Proves Code

CakeML Projects at Many Levels

Maths Hardware

CakeML Projects at Many Levels

Maths Hardware

Verified Silver chip–PLDI’19

CakeML Projects at Many Levels

Maths Hardware

Verified Silver chip–PLDI’19

99% of the Compiler–Various venues

CakeML Projects at Many Levels

Maths Hardware

Library level algorithms on strings–Xiao & Shaker

Verified Silver chip–PLDI’19

99% of the Compiler–Various venues

CakeML Projects at Many Levels

Maths Hardware

Library level algorithms on strings–Xiao & Shaker

Formula/automata translation for model checking–Simon Jantsch

Verified Silver chip–PLDI’19

99% of the Compiler–Various venues

CakeML Projects at Many Levels

Maths Hardware

Library level algorithms on strings–Xiao & Shaker

Formula/automata translation for model checking–Simon Jantsch

Verified Silver chip–PLDI’19
PureCake (Haskell-like extension)–PLDI’23

99% of the Compiler–Various venues

CakeML Projects at Many Levels

Maths Hardware

Library level algorithms on strings–Xiao & Shaker

Formula/automata translation for model checking–Simon Jantsch

 All in HOL4

Verified Silver chip–PLDI’19
PureCake (Haskell-like extension)–PLDI’23

99% of the Compiler–Various venues

Parsing: an Application for the
Ecosystem

A verified, general-purpose,
parser-construction tool is very
appealing

Applications (not just compilers)
often need to parse input
formats.

“Verify Once, Run Ever-after”

Strong work in this area does
already exist

Parsing: an Application for the
Ecosystem

CakeML’s existing parser is a
custom-built PEG

Its verification was just as
“custom” (i.e., tedious)

General tools need general
treatments of things like first and
follow sets

from: Appel, Modern Compiler Implementation in ML

Grammars, Classically

A grammar is a 4-tuple (G, N, T, S), with

N a finite set of non-terminal symbols;

T a finite set of terminal symbols;

S∈N a distinguished non-terminal (the “start symbol”);

G a finite set of production rules, each of the form: N → (N+T)*

–Every interactive theorem-proving person ever

“I never met a finite set I didn’t want to treat as a list”

Calculating Nullability

N

…M…P…Q…

ε

…M…R…S…Q…

…M……S…Q…
ε

Definition nullable_def:

 nullable G sf ⇔ derives G sf []
End

Start with the mathematical definition:

Where derives is the reflexive and transitive closure

of the relation that expands a non-terminal into a

production rule’s RHS.

Calculating Nullability

N

…M…P…Q…

ε

…M…R…S…Q…

…M……S…Q…
ε

Definition nullable_def:

 nullable G sf ⇔ derives G sf []
End

Start with the mathematical definition:

Where derives is the reflexive and transitive closure

of the relation that expands a non-terminal into a

production rule’s RHS.

This list is just fine

Calculating Nullability

N

…M…P…Q…

ε

…M…R…S…Q…

…M……S…Q…
ε

Definition nullable_def:

 nullable G sf ⇔ derives G sf []
End

Start with the mathematical definition:

Where derives is the reflexive and transitive closure

of the relation that expands a non-terminal into a

production rule’s RHS.

This list is just fine

• Terminals are not nullable.

• Non-terminals are nullable if any of their RHSs are nullable.

• Critical Realisation: recursive loopbacks can be ignored.

Calculating Nullability

Recursive algorithm:

N

…M…P…Q…

ε

…M…R…S…Q…

…M……S…Q…
ε

Calculating Nullability

Recursive algorithm:

nullableA G s [] = TN

…M…P…Q…

ε

…M…R…S…Q…

…M……S…Q…
ε

Calculating Nullability

Recursive algorithm:

nullableA G s [] = T

nullableA G s (TOK _ :: _) = F

N

…M…P…Q…

ε

…M…R…S…Q…

…M……S…Q…
ε

Calculating Nullability

Recursive algorithm:

nullableA G s [] = T

nullableA G s (TOK _ :: _) = F

nullableA G s (NT n :: rest) =

N

…M…P…Q…

ε

…M…R…S…Q…

…M……S…Q…
ε

Calculating Nullability

Recursive algorithm:

nullableA G s [] = T

nullableA G s (TOK _ :: _) = F

nullableA G s (NT n :: rest) =

N

…M…P…Q…

ε

…M…R…S…Q…

…M……S…Q…
ε

nullableA G s rest ∧

Calculating Nullability

Recursive algorithm:

nullableA G s [] = T

nullableA G s (TOK _ :: _) = F

nullableA G s (NT n :: rest) =

N

…M…P…Q…

ε

…M…R…S…Q…

…M……S…Q…
ε

nullableA G s rest ∧

n is not a member of set s ∧

Calculating Nullability

Recursive algorithm:

nullableA G s [] = T

nullableA G s (TOK _ :: _) = F

nullableA G s (NT n :: rest) =

N

…M…P…Q…

ε

…M…R…S…Q…

…M……S…Q…
ε

nullableA G s rest ∧

n is not a member of set s ∧
 nullableA G (n INSERT s) r

 For some r a production for non-terminal n

Calculating Nullability

Recursive algorithm:

nullableA G s [] = T

nullableA G s (TOK _ :: _) = F

nullableA G s (NT n :: rest) =

Theorem:

nullable G sf ⇔ nullableA G ∅ sf

N

…M…P…Q…

ε

…M…R…S…Q…

…M……S…Q…
ε

nullableA G s rest ∧

n is not a member of set s ∧
 nullableA G (n INSERT s) r

 For some r a production for non-terminal n

Clean, Mathematical Formulations

Clean, Mathematical Formulations

A high-level property characterising nullability can be re-expressed
more “algorithmically”

without using lists!

Clean, Mathematical Formulations

A high-level property characterising nullability can be re-expressed
more “algorithmically”

without using lists!

The notion of first set can be handled similarly:

A sentential form has a first set (just as an s.f. may be nullable)

Uses “seen” set of visited non-terminals (recursive calls can be
ignored)

Iterating Over all of a Grammar

Formulations of nullable and first are functions on sentential forms.

Each of a grammar’s non-terminals are themselves (short) sentential
forms.

Thus: we can take the image of these functions over the non-terminal
set, and be done.

Computationally, this looks bad: calculating e.g., nullable(N) will
recalculate nullable for all non-terminals N refers to, and so on,
recursively.

Essence of Refinement

Haven’t committed to using lists
to represent grammars

Have separated concerns

Have deferred other algorithmic
decisions

Have already lost some
efficiencies…

CENEX oil refinery, Montana—Greg Goebel via flickr.com

http://flickr.com

The Evil That Is the Follow Set

The “iterate until result stops changing” seems unavoidable.

It’s also painful:

The Evil That Is the Follow Set

The “iterate until result stops changing” seems unavoidable.

It’s also painful:

—Lasser, Casinghino, Fisher, Roux (ITP’2019)

The Evil That Is the Follow Set

The “iterate until result stops changing” seems unavoidable.

It’s also painful:

—Lasser, Casinghino, Fisher, Roux (ITP’2019)

(The paper above is following Appel and doing this for all of nullable, first, and follow.)

Follow’s Clean Characterisation (I)

Symbol t is in N’s follow set if
there is a valid derivation from
some M ending in a sentential
form with t occurring immediately
after N.

The “all at once” view

M

N t

Follow’s Clean Characterisation (II)

<latexit sha1_base64="ZGmYpVoN9GxEReVj3JhoIWM75ik=">AAACn3icbZHPbhMxEMa9S4FS/jSUIxdDilQ4RLulKpV6Ke0hcCAKEmmLslE068wmVr32yp6ljVZ5Fd6LV+Ap8G5zSBtGsvTpm9/I489poaSjKPoThA82Hj56vPlk6+mz5y+2Wy93zp0prcCBMMrYyxQcKqlxQJIUXhYWIU8VXqRXZ3X/4hdaJ43+QfMCRzlMtcykAPLWuPU7SXEqdVVYYzKyiIut5PONNPlZtfuNJ2R4AqqYAe9xTxLw5DiROjnu7q6A3pWaJznQzGVVJq2jxbi71wy8r8FTqcHOv+psHTZKmeua7jUk6snqLuNWO+pETfF1ES9Fmy2rP279TSZGlDlqEgqcG8ZRQaMKLEmh6seVDgsQVzDFoZcacnSjqslxwd95Z8IzY/3RxBt3daKC3Ll5nnqyWf9+rzb/1xuWlB2NKqmLklCL24uyUnEfb/0pfCItClJzL0BY6XflYgYWBPmvu3NLWjrX5OOacOL7UayL8/1OfNiJvu+3T06XMW2y1+wt22Mx+8RO2BfWZwMmgo3gQ/AxOAjfhN2wF/Zv0TBYzrxidyr8+Q8Z+sze</latexit>

M ! ↵N� 2 G a 2 firstG(�)

a 2 followG(N)

<latexit sha1_base64="RYk4bACqxxAmj7JNkqs7v7/8UF4=">AAACw3icfZHNahsxEMe1m36k6ZeTHnsRdQruxezmkBZySRNK2kNMCnFssIyZlbW2sFZapNk0ZvHL9S36Cn2KahUXnKR0YODPzG+Y4T9ZqaTDJPkVxVuPHj95uv1s5/mLl69et3b3rpypLBd9bpSxwwycUFKLPkpUYlhaAUWmxCBbnDb9wbWwThp9ictSjAuYaZlLDuhLk9ZPlomZ1HVpjcnRCrHaYZ9vpClO6/1zytBQBqqcA+1RTyJQdsSkZkdn+xsgKwDnLq91pRT4zavJWSfQHzYpPys1/cvmRinzoyHPA3VppQa7/Kbz/6C9gAo93bx30mon3SQEfSjStWiTdVxMWr/Z1PCqEBq5AudGaVLiuAaLkqvGgMqJEvgCZmLkpYZCuHEdvF7R974ypbmxPjXSUN2cqKFwbllkngzn3+81xX/1RhXmn8a11GWFQvPbRXmlqH9B8zg6lVZwVEsvgFvpb6V8DhY4+vfe2ZJVzgV/XDAnvW/FQ3F10E0Pu8n3g/bxydqmbfKWvCMdkpKP5Jh8JRekT3jUiXrRIBrGX+JFbGO8ReNoPfOG3Il49QfQFtuG</latexit>

M ! ↵N� 2 G nullableG(�) a 2 followG(M)

a 2 followG(N)

The equivalent step-at-a-time view, following Lasser et al.:

Here, the recursive reference is “backwards” (which rules does

N appear in), and recursions can’t be ignored.

Iterating Over Finite Sets

<latexit sha1_base64="L8gCgZfE48GnDKOPiHNg/4rAR54=">AAACN3icdZDNSgMxFIUz9b/+jbp0EyyCYCmZirXuim5cVrCt0Cklk8loaCYZk4xQhr6FS1/ErVt9AVfuRNz5BqatihW9EPhyzr3c5AQJZ9og9OTkpqZnZufmF/KLS8srq+7aelPLVBHaIJJLdR5gTTkTtGGY4fQ8URTHAaetoHc89FvXVGkmxZnpJ7QT4wvBIkawsVLXrfgZpF1UhP7VVYpDy94XF+2l/G34JJRGDzUB/UHXLaDSHiqjwyocgbdfGQOqHkKvhEZVqG35uzdPtX696775oSRpTIUhHGvd9lBiOhlWhhFOB3k/1TTBpIcvaNuiwDHVnWz0vwHctkoII6nsEQaO1J8TGY617seB7YyxudS/vaH4l9dOTVTtZEwkqaGCjBdFKYdGwmFYMGSKEsP7FjBRzL4VkkusMDE20oktQap1oqSM9CBvw/lKAP4PzXLJq5TQqU3pCIxrHmyCLbADPHAAauAE1EEDEHAL7sEDeHTunGfnxXkdt+acz5kNMFHO+wdh164P</latexit>

{e0, e1, , e2, · · · , en}

Iterating Over Finite Sets

We want a fold-like way to iterate
over the elements of the set (e.g.,
grammar’s rules).

(Making the set look like a list.)<latexit sha1_base64="L8gCgZfE48GnDKOPiHNg/4rAR54=">AAACN3icdZDNSgMxFIUz9b/+jbp0EyyCYCmZirXuim5cVrCt0Cklk8loaCYZk4xQhr6FS1/ErVt9AVfuRNz5BqatihW9EPhyzr3c5AQJZ9og9OTkpqZnZufmF/KLS8srq+7aelPLVBHaIJJLdR5gTTkTtGGY4fQ8URTHAaetoHc89FvXVGkmxZnpJ7QT4wvBIkawsVLXrfgZpF1UhP7VVYpDy94XF+2l/G34JJRGDzUB/UHXLaDSHiqjwyocgbdfGQOqHkKvhEZVqG35uzdPtX696775oSRpTIUhHGvd9lBiOhlWhhFOB3k/1TTBpIcvaNuiwDHVnWz0vwHctkoII6nsEQaO1J8TGY617seB7YyxudS/vaH4l9dOTVTtZEwkqaGCjBdFKYdGwmFYMGSKEsP7FjBRzL4VkkusMDE20oktQap1oqSM9CBvw/lKAP4PzXLJq5TQqU3pCIxrHmyCLbADPHAAauAE1EEDEHAL7sEDeHTunGfnxXkdt+acz5kNMFHO+wdh164P</latexit>

{e0, e1, , e2, · · · , en}

Iterating Over Finite Sets

We want a fold-like way to iterate
over the elements of the set (e.g.,
grammar’s rules).

(Making the set look like a list.)<latexit sha1_base64="L8gCgZfE48GnDKOPiHNg/4rAR54=">AAACN3icdZDNSgMxFIUz9b/+jbp0EyyCYCmZirXuim5cVrCt0Cklk8loaCYZk4xQhr6FS1/ErVt9AVfuRNz5BqatihW9EPhyzr3c5AQJZ9og9OTkpqZnZufmF/KLS8srq+7aelPLVBHaIJJLdR5gTTkTtGGY4fQ8URTHAaetoHc89FvXVGkmxZnpJ7QT4wvBIkawsVLXrfgZpF1UhP7VVYpDy94XF+2l/G34JJRGDzUB/UHXLaDSHiqjwyocgbdfGQOqHkKvhEZVqG35uzdPtX696775oSRpTIUhHGvd9lBiOhlWhhFOB3k/1TTBpIcvaNuiwDHVnWz0vwHctkoII6nsEQaO1J8TGY617seB7YyxudS/vaH4l9dOTVTtZEwkqaGCjBdFKYdGwmFYMGSKEsP7FjBRzL4VkkusMDE20oktQap1oqSM9CBvw/lKAP4PzXLJq5TQqU3pCIxrHmyCLbADPHAAauAE1EEDEHAL7sEDeHTunGfnxXkdt+acz5kNMFHO+wdh164P</latexit>

{e0, e1, , e2, · · · , en}

<latexit sha1_base64="cCg87Sj6bwlt5nNBA7PwJqT1hC8=">AAACAnicdVC7SgNBFJ2NrxhfUcHGZjAIVmE2Yky6GBvLBM0DkhBmJ7PJkNmdZWZWCEs6W1v9B8FCbC39CRs/wK9wsqtgRA9cOJxzL/fe4wScKY3Qm5VaWFxaXkmvZtbWNza3sts7TSVCSWiDCC5k28GKcubThmaa03YgKfYcTlvO+Hzmt66pVEz4V3oS0J6Hhz5zGcHaSJdnfdTP5lD+GBVQuQRjYp8UE4JKZWjnUYxcZa/+zh6rr7V+9qM7ECT0qK8Jx0p1bBToXoSlZoTTaaYbKhpgMsZD2jHUxx5VvSg+dQoPjTKArpCmfA1j9edEhD2lJp5jOj2sR+q3NxP/8jqhdku9iPlBqKlPkkVuyKEWcPY3HDBJieYTQzCRzNwKyQhLTLRJZ26LEyoVSCFcNc2YcL4TgP+TZiFvF/OoblKqggRpsA8OwBGwwSmogAtQAw1AwBDcgjtwb91YD9aT9Zy0pqyvmV0wB+vlE3TUm6Q=</latexit>

A0

Iterating Over Finite Sets

We want a fold-like way to iterate
over the elements of the set (e.g.,
grammar’s rules).

(Making the set look like a list.)<latexit sha1_base64="L8gCgZfE48GnDKOPiHNg/4rAR54=">AAACN3icdZDNSgMxFIUz9b/+jbp0EyyCYCmZirXuim5cVrCt0Cklk8loaCYZk4xQhr6FS1/ErVt9AVfuRNz5BqatihW9EPhyzr3c5AQJZ9og9OTkpqZnZufmF/KLS8srq+7aelPLVBHaIJJLdR5gTTkTtGGY4fQ8URTHAaetoHc89FvXVGkmxZnpJ7QT4wvBIkawsVLXrfgZpF1UhP7VVYpDy94XF+2l/G34JJRGDzUB/UHXLaDSHiqjwyocgbdfGQOqHkKvhEZVqG35uzdPtX696775oSRpTIUhHGvd9lBiOhlWhhFOB3k/1TTBpIcvaNuiwDHVnWz0vwHctkoII6nsEQaO1J8TGY617seB7YyxudS/vaH4l9dOTVTtZEwkqaGCjBdFKYdGwmFYMGSKEsP7FjBRzL4VkkusMDE20oktQap1oqSM9CBvw/lKAP4PzXLJq5TQqU3pCIxrHmyCLbADPHAAauAE1EEDEHAL7sEDeHTunGfnxXkdt+acz5kNMFHO+wdh164P</latexit>

{e0, e1, , e2, · · · , en}

<latexit sha1_base64="cCg87Sj6bwlt5nNBA7PwJqT1hC8=">AAACAnicdVC7SgNBFJ2NrxhfUcHGZjAIVmE2Yky6GBvLBM0DkhBmJ7PJkNmdZWZWCEs6W1v9B8FCbC39CRs/wK9wsqtgRA9cOJxzL/fe4wScKY3Qm5VaWFxaXkmvZtbWNza3sts7TSVCSWiDCC5k28GKcubThmaa03YgKfYcTlvO+Hzmt66pVEz4V3oS0J6Hhz5zGcHaSJdnfdTP5lD+GBVQuQRjYp8UE4JKZWjnUYxcZa/+zh6rr7V+9qM7ECT0qK8Jx0p1bBToXoSlZoTTaaYbKhpgMsZD2jHUxx5VvSg+dQoPjTKArpCmfA1j9edEhD2lJp5jOj2sR+q3NxP/8jqhdku9iPlBqKlPkkVuyKEWcPY3HDBJieYTQzCRzNwKyQhLTLRJZ26LEyoVSCFcNc2YcL4TgP+TZiFvF/OoblKqggRpsA8OwBGwwSmogAtQAw1AwBDcgjtwb91YD9aT9Zy0pqyvmV0wB+vlE3TUm6Q=</latexit>

A0
<latexit sha1_base64="KFSewDHOAyag2ELC2e41CtxNk6A=">AAACAnicdVC7SgNBFJ2NrxhfUcHGZjAIVmE2Yky6GBvLBM0DkhBmJ7PJkNmdZWZWCEs6W1v9B8FCbC39CRs/wK9wsqtgRA9cOJxzL/fe4wScKY3Qm5VaWFxaXkmvZtbWNza3sts7TSVCSWiDCC5k28GKcubThmaa03YgKfYcTlvO+Hzmt66pVEz4V3oS0J6Hhz5zGcHaSJdnfbufzaH8MSqgcgnGxD4pJgSVytDOoxi5yl79nT1WX2v97Ed3IEjoUV8TjpXq2CjQvQhLzQin00w3VDTAZIyHtGOojz2qelF86hQeGmUAXSFN+RrG6s+JCHtKTTzHdHpYj9Rvbyb+5XVC7ZZ6EfODUFOfJIvckEMt4OxvOGCSEs0nhmAimbkVkhGWmGiTztwWJ1QqkEK4apox4XwnAP8nzULeLuZR3aRUBQnSYB8cgCNgg1NQARegBhqAgCG4BXfg3rqxHqwn6zlpTVlfM7tgDtbLJ3Zwm6U=</latexit>

A1

Iterating Over Finite Sets

We want a fold-like way to iterate
over the elements of the set (e.g.,
grammar’s rules).

(Making the set look like a list.)<latexit sha1_base64="L8gCgZfE48GnDKOPiHNg/4rAR54=">AAACN3icdZDNSgMxFIUz9b/+jbp0EyyCYCmZirXuim5cVrCt0Cklk8loaCYZk4xQhr6FS1/ErVt9AVfuRNz5BqatihW9EPhyzr3c5AQJZ9og9OTkpqZnZufmF/KLS8srq+7aelPLVBHaIJJLdR5gTTkTtGGY4fQ8URTHAaetoHc89FvXVGkmxZnpJ7QT4wvBIkawsVLXrfgZpF1UhP7VVYpDy94XF+2l/G34JJRGDzUB/UHXLaDSHiqjwyocgbdfGQOqHkKvhEZVqG35uzdPtX696775oSRpTIUhHGvd9lBiOhlWhhFOB3k/1TTBpIcvaNuiwDHVnWz0vwHctkoII6nsEQaO1J8TGY617seB7YyxudS/vaH4l9dOTVTtZEwkqaGCjBdFKYdGwmFYMGSKEsP7FjBRzL4VkkusMDE20oktQap1oqSM9CBvw/lKAP4PzXLJq5TQqU3pCIxrHmyCLbADPHAAauAE1EEDEHAL7sEDeHTunGfnxXkdt+acz5kNMFHO+wdh164P</latexit>

{e0, e1, , e2, · · · , en}

<latexit sha1_base64="cCg87Sj6bwlt5nNBA7PwJqT1hC8=">AAACAnicdVC7SgNBFJ2NrxhfUcHGZjAIVmE2Yky6GBvLBM0DkhBmJ7PJkNmdZWZWCEs6W1v9B8FCbC39CRs/wK9wsqtgRA9cOJxzL/fe4wScKY3Qm5VaWFxaXkmvZtbWNza3sts7TSVCSWiDCC5k28GKcubThmaa03YgKfYcTlvO+Hzmt66pVEz4V3oS0J6Hhz5zGcHaSJdnfdTP5lD+GBVQuQRjYp8UE4JKZWjnUYxcZa/+zh6rr7V+9qM7ECT0qK8Jx0p1bBToXoSlZoTTaaYbKhpgMsZD2jHUxx5VvSg+dQoPjTKArpCmfA1j9edEhD2lJp5jOj2sR+q3NxP/8jqhdku9iPlBqKlPkkVuyKEWcPY3HDBJieYTQzCRzNwKyQhLTLRJZ26LEyoVSCFcNc2YcL4TgP+TZiFvF/OoblKqggRpsA8OwBGwwSmogAtQAw1AwBDcgjtwb91YD9aT9Zy0pqyvmV0wB+vlE3TUm6Q=</latexit>

A0
<latexit sha1_base64="KFSewDHOAyag2ELC2e41CtxNk6A=">AAACAnicdVC7SgNBFJ2NrxhfUcHGZjAIVmE2Yky6GBvLBM0DkhBmJ7PJkNmdZWZWCEs6W1v9B8FCbC39CRs/wK9wsqtgRA9cOJxzL/fe4wScKY3Qm5VaWFxaXkmvZtbWNza3sts7TSVCSWiDCC5k28GKcubThmaa03YgKfYcTlvO+Hzmt66pVEz4V3oS0J6Hhz5zGcHaSJdnfbufzaH8MSqgcgnGxD4pJgSVytDOoxi5yl79nT1WX2v97Ed3IEjoUV8TjpXq2CjQvQhLzQin00w3VDTAZIyHtGOojz2qelF86hQeGmUAXSFN+RrG6s+JCHtKTTzHdHpYj9Rvbyb+5XVC7ZZ6EfODUFOfJIvckEMt4OxvOGCSEs0nhmAimbkVkhGWmGiTztwWJ1QqkEK4apox4XwnAP8nzULeLuZR3aRUBQnSYB8cgCNgg1NQARegBhqAgCG4BXfg3rqxHqwn6zlpTVlfM7tgDtbLJ3Zwm6U=</latexit>

A1
<latexit sha1_base64="bnqMV5Tq+M+2V1J8Kaq4HzsEcr8=">AAACAnicdVC7SgNBFJ2NrxhfUcHGZjAIVmE2Yky6GBvLBM0DkhBmJ7PJkNmdZWZWCEs6W1v9B8FCbC39CRs/wK9wsqtgRA9cOJxzL/fe4wScKY3Qm5VaWFxaXkmvZtbWNza3sts7TSVCSWiDCC5k28GKcubThmaa03YgKfYcTlvO+Hzmt66pVEz4V3oS0J6Hhz5zGcHaSJdn/UI/m0P5Y1RA5RKMiX1STAgqlaGdRzFylb36O3usvtb62Y/uQJDQo74mHCvVsVGgexGWmhFOp5luqGiAyRgPacdQH3tU9aL41Ck8NMoAukKa8jWM1Z8TEfaUmniO6fSwHqnf3kz8y+uE2i31IuYHoaY+SRa5IYdawNnfcMAkJZpPDMFEMnMrJCMsMdEmnbktTqhUIIVw1TRjwvlOAP5PmoW8XcyjukmpChKkwT44AEfABqegAi5ADTQAAUNwC+7AvXVjPVhP1nPSmrK+ZnbBHKyXT3gMm6Y=</latexit>

A2

Iterating Over Finite Sets

We want a fold-like way to iterate
over the elements of the set (e.g.,
grammar’s rules).

(Making the set look like a list.)<latexit sha1_base64="L8gCgZfE48GnDKOPiHNg/4rAR54=">AAACN3icdZDNSgMxFIUz9b/+jbp0EyyCYCmZirXuim5cVrCt0Cklk8loaCYZk4xQhr6FS1/ErVt9AVfuRNz5BqatihW9EPhyzr3c5AQJZ9og9OTkpqZnZufmF/KLS8srq+7aelPLVBHaIJJLdR5gTTkTtGGY4fQ8URTHAaetoHc89FvXVGkmxZnpJ7QT4wvBIkawsVLXrfgZpF1UhP7VVYpDy94XF+2l/G34JJRGDzUB/UHXLaDSHiqjwyocgbdfGQOqHkKvhEZVqG35uzdPtX696775oSRpTIUhHGvd9lBiOhlWhhFOB3k/1TTBpIcvaNuiwDHVnWz0vwHctkoII6nsEQaO1J8TGY617seB7YyxudS/vaH4l9dOTVTtZEwkqaGCjBdFKYdGwmFYMGSKEsP7FjBRzL4VkkusMDE20oktQap1oqSM9CBvw/lKAP4PzXLJq5TQqU3pCIxrHmyCLbADPHAAauAE1EEDEHAL7sEDeHTunGfnxXkdt+acz5kNMFHO+wdh164P</latexit>

{e0, e1, , e2, · · · , en}

<latexit sha1_base64="cCg87Sj6bwlt5nNBA7PwJqT1hC8=">AAACAnicdVC7SgNBFJ2NrxhfUcHGZjAIVmE2Yky6GBvLBM0DkhBmJ7PJkNmdZWZWCEs6W1v9B8FCbC39CRs/wK9wsqtgRA9cOJxzL/fe4wScKY3Qm5VaWFxaXkmvZtbWNza3sts7TSVCSWiDCC5k28GKcubThmaa03YgKfYcTlvO+Hzmt66pVEz4V3oS0J6Hhz5zGcHaSJdnfdTP5lD+GBVQuQRjYp8UE4JKZWjnUYxcZa/+zh6rr7V+9qM7ECT0qK8Jx0p1bBToXoSlZoTTaaYbKhpgMsZD2jHUxx5VvSg+dQoPjTKArpCmfA1j9edEhD2lJp5jOj2sR+q3NxP/8jqhdku9iPlBqKlPkkVuyKEWcPY3HDBJieYTQzCRzNwKyQhLTLRJZ26LEyoVSCFcNc2YcL4TgP+TZiFvF/OoblKqggRpsA8OwBGwwSmogAtQAw1AwBDcgjtwb91YD9aT9Zy0pqyvmV0wB+vlE3TUm6Q=</latexit>

A0
<latexit sha1_base64="KFSewDHOAyag2ELC2e41CtxNk6A=">AAACAnicdVC7SgNBFJ2NrxhfUcHGZjAIVmE2Yky6GBvLBM0DkhBmJ7PJkNmdZWZWCEs6W1v9B8FCbC39CRs/wK9wsqtgRA9cOJxzL/fe4wScKY3Qm5VaWFxaXkmvZtbWNza3sts7TSVCSWiDCC5k28GKcubThmaa03YgKfYcTlvO+Hzmt66pVEz4V3oS0J6Hhz5zGcHaSJdnfbufzaH8MSqgcgnGxD4pJgSVytDOoxi5yl79nT1WX2v97Ed3IEjoUV8TjpXq2CjQvQhLzQin00w3VDTAZIyHtGOojz2qelF86hQeGmUAXSFN+RrG6s+JCHtKTTzHdHpYj9Rvbyb+5XVC7ZZ6EfODUFOfJIvckEMt4OxvOGCSEs0nhmAimbkVkhGWmGiTztwWJ1QqkEK4apox4XwnAP8nzULeLuZR3aRUBQnSYB8cgCNgg1NQARegBhqAgCG4BXfg3rqxHqwn6zlpTVlfM7tgDtbLJ3Zwm6U=</latexit>

A1
<latexit sha1_base64="bnqMV5Tq+M+2V1J8Kaq4HzsEcr8=">AAACAnicdVC7SgNBFJ2NrxhfUcHGZjAIVmE2Yky6GBvLBM0DkhBmJ7PJkNmdZWZWCEs6W1v9B8FCbC39CRs/wK9wsqtgRA9cOJxzL/fe4wScKY3Qm5VaWFxaXkmvZtbWNza3sts7TSVCSWiDCC5k28GKcubThmaa03YgKfYcTlvO+Hzmt66pVEz4V3oS0J6Hhz5zGcHaSJdn/UI/m0P5Y1RA5RKMiX1STAgqlaGdRzFylb36O3usvtb62Y/uQJDQo74mHCvVsVGgexGWmhFOp5luqGiAyRgPacdQH3tU9aL41Ck8NMoAukKa8jWM1Z8TEfaUmniO6fSwHqnf3kz8y+uE2i31IuYHoaY+SRa5IYdawNnfcMAkJZpPDMFEMnMrJCMsMdEmnbktTqhUIIVw1TRjwvlOAP5PmoW8XcyjukmpChKkwT44AEfABqegAi5ADTQAAUNwC+7AvXVjPVhP1nPSmrK+ZnbBHKyXT3gMm6Y=</latexit>

A2
<latexit sha1_base64="YmoWoZNwL3LCp4PqThlxi79fW1E=">AAACAnicdVC7SgNBFJ31GeMrKtjYDAbBKswmGJMuxsYyQfOAJITZyWwyZHZnmZkVwpLO1lb/QbAQW0t/wsYP8Cuc7CoY0QMXDufcy733OAFnSiP0Zi0sLi2vrKbW0usbm1vbmZ3dphKhJLRBBBey7WBFOfNpQzPNaTuQFHsOpy1nfD7zW9dUKib8Kz0JaM/DQ5+5jGBtpMuzfqGfyaJcAeVRuQRjYp8UE4JKZWjnUIxsZb/+zh6rr7V+5qM7ECT0qK8Jx0p1bBToXoSlZoTTabobKhpgMsZD2jHUxx5VvSg+dQqPjDKArpCmfA1j9edEhD2lJp5jOj2sR+q3NxP/8jqhdku9iPlBqKlPkkVuyKEWcPY3HDBJieYTQzCRzNwKyQhLTLRJZ26LEyoVSCFcNU2bcL4TgP+TZj5nF3OoblKqggQpcAAOwTGwwSmogAtQAw1AwBDcgjtwb91YD9aT9Zy0LlhfM3tgDtbLJ3mom6c=</latexit>

A3

Iterating Over Finite Sets

We want a fold-like way to iterate
over the elements of the set (e.g.,
grammar’s rules).

(Making the set look like a list.)<latexit sha1_base64="L8gCgZfE48GnDKOPiHNg/4rAR54=">AAACN3icdZDNSgMxFIUz9b/+jbp0EyyCYCmZirXuim5cVrCt0Cklk8loaCYZk4xQhr6FS1/ErVt9AVfuRNz5BqatihW9EPhyzr3c5AQJZ9og9OTkpqZnZufmF/KLS8srq+7aelPLVBHaIJJLdR5gTTkTtGGY4fQ8URTHAaetoHc89FvXVGkmxZnpJ7QT4wvBIkawsVLXrfgZpF1UhP7VVYpDy94XF+2l/G34JJRGDzUB/UHXLaDSHiqjwyocgbdfGQOqHkKvhEZVqG35uzdPtX696775oSRpTIUhHGvd9lBiOhlWhhFOB3k/1TTBpIcvaNuiwDHVnWz0vwHctkoII6nsEQaO1J8TGY617seB7YyxudS/vaH4l9dOTVTtZEwkqaGCjBdFKYdGwmFYMGSKEsP7FjBRzL4VkkusMDE20oktQap1oqSM9CBvw/lKAP4PzXLJq5TQqU3pCIxrHmyCLbADPHAAauAE1EEDEHAL7sEDeHTunGfnxXkdt+acz5kNMFHO+wdh164P</latexit>

{e0, e1, , e2, · · · , en}

<latexit sha1_base64="cCg87Sj6bwlt5nNBA7PwJqT1hC8=">AAACAnicdVC7SgNBFJ2NrxhfUcHGZjAIVmE2Yky6GBvLBM0DkhBmJ7PJkNmdZWZWCEs6W1v9B8FCbC39CRs/wK9wsqtgRA9cOJxzL/fe4wScKY3Qm5VaWFxaXkmvZtbWNza3sts7TSVCSWiDCC5k28GKcubThmaa03YgKfYcTlvO+Hzmt66pVEz4V3oS0J6Hhz5zGcHaSJdnfdTP5lD+GBVQuQRjYp8UE4JKZWjnUYxcZa/+zh6rr7V+9qM7ECT0qK8Jx0p1bBToXoSlZoTTaaYbKhpgMsZD2jHUxx5VvSg+dQoPjTKArpCmfA1j9edEhD2lJp5jOj2sR+q3NxP/8jqhdku9iPlBqKlPkkVuyKEWcPY3HDBJieYTQzCRzNwKyQhLTLRJZ26LEyoVSCFcNc2YcL4TgP+TZiFvF/OoblKqggRpsA8OwBGwwSmogAtQAw1AwBDcgjtwb91YD9aT9Zy0pqyvmV0wB+vlE3TUm6Q=</latexit>

A0
<latexit sha1_base64="KFSewDHOAyag2ELC2e41CtxNk6A=">AAACAnicdVC7SgNBFJ2NrxhfUcHGZjAIVmE2Yky6GBvLBM0DkhBmJ7PJkNmdZWZWCEs6W1v9B8FCbC39CRs/wK9wsqtgRA9cOJxzL/fe4wScKY3Qm5VaWFxaXkmvZtbWNza3sts7TSVCSWiDCC5k28GKcubThmaa03YgKfYcTlvO+Hzmt66pVEz4V3oS0J6Hhz5zGcHaSJdnfbufzaH8MSqgcgnGxD4pJgSVytDOoxi5yl79nT1WX2v97Ed3IEjoUV8TjpXq2CjQvQhLzQin00w3VDTAZIyHtGOojz2qelF86hQeGmUAXSFN+RrG6s+JCHtKTTzHdHpYj9Rvbyb+5XVC7ZZ6EfODUFOfJIvckEMt4OxvOGCSEs0nhmAimbkVkhGWmGiTztwWJ1QqkEK4apox4XwnAP8nzULeLuZR3aRUBQnSYB8cgCNgg1NQARegBhqAgCG4BXfg3rqxHqwn6zlpTVlfM7tgDtbLJ3Zwm6U=</latexit>

A1
<latexit sha1_base64="bnqMV5Tq+M+2V1J8Kaq4HzsEcr8=">AAACAnicdVC7SgNBFJ2NrxhfUcHGZjAIVmE2Yky6GBvLBM0DkhBmJ7PJkNmdZWZWCEs6W1v9B8FCbC39CRs/wK9wsqtgRA9cOJxzL/fe4wScKY3Qm5VaWFxaXkmvZtbWNza3sts7TSVCSWiDCC5k28GKcubThmaa03YgKfYcTlvO+Hzmt66pVEz4V3oS0J6Hhz5zGcHaSJdn/UI/m0P5Y1RA5RKMiX1STAgqlaGdRzFylb36O3usvtb62Y/uQJDQo74mHCvVsVGgexGWmhFOp5luqGiAyRgPacdQH3tU9aL41Ck8NMoAukKa8jWM1Z8TEfaUmniO6fSwHqnf3kz8y+uE2i31IuYHoaY+SRa5IYdawNnfcMAkJZpPDMFEMnMrJCMsMdEmnbktTqhUIIVw1TRjwvlOAP5PmoW8XcyjukmpChKkwT44AEfABqegAi5ADTQAAUNwC+7AvXVjPVhP1nPSmrK+ZnbBHKyXT3gMm6Y=</latexit>

A2
<latexit sha1_base64="YmoWoZNwL3LCp4PqThlxi79fW1E=">AAACAnicdVC7SgNBFJ31GeMrKtjYDAbBKswmGJMuxsYyQfOAJITZyWwyZHZnmZkVwpLO1lb/QbAQW0t/wsYP8Cuc7CoY0QMXDufcy733OAFnSiP0Zi0sLi2vrKbW0usbm1vbmZ3dphKhJLRBBBey7WBFOfNpQzPNaTuQFHsOpy1nfD7zW9dUKib8Kz0JaM/DQ5+5jGBtpMuzfqGfyaJcAeVRuQRjYp8UE4JKZWjnUIxsZb/+zh6rr7V+5qM7ECT0qK8Jx0p1bBToXoSlZoTTabobKhpgMsZD2jHUxx5VvSg+dQqPjDKArpCmfA1j9edEhD2lJp5jOj2sR+q3NxP/8jqhdku9iPlBqKlPkkVuyKEWcPY3HDBJieYTQzCRzNwKyQhLTLRJZ26LEyoVSCFcNU2bcL4TgP+TZj5nF3OoblKqggQpcAAOwTGwwSmogAtQAw1AwBDcgjtwb91YD9aT9Zy0LlhfM3tgDtbLJ3mom6c=</latexit>

A3
<latexit sha1_base64="YtDiHUt0aKoFNHSi0XhA7IlOK8A=">AAACBnicdVDLSgMxFM3UV62vqks30SJUhJKpWNtd1Y3LCvYBbSmZNNOGZpIhyQhl6N6duNV/cCduxb/wF9y7N20VrOiBC4dz7uXee7yQM20QenMSc/MLi0vJ5dTK6tr6Rnpzq6ZlpAitEsmlanhYU84ErRpmOG2EiuLA47TuDc7Hfv2aKs2kuDLDkLYD3BPMZwQbK9VPO7E4dEeddAbljlAelYpwQtzjwpSgYgm6OTRBpryb/Xi9bR1UOun3VleSKKDCEI61brooNO0YK8MIp6NUK9I0xGSAe7RpqcAB1e14cu4I7lulC32pbAkDJ+rPiRgHWg8Dz3YG2PT1b28s/uU1I+MX2zETYWSoINNFfsShkXD8O+wyRYnhQ0swUczeCkkfK0yMTWhmixdpHSopfT1K2XC+E4D/k1o+5xZy6NKmdAamSIIdsAeywAUnoAwuQAVUAQEDcAfuwYNz4zw6T87ztDXhfM1sgxk4L58pM50R</latexit>

An+1

Iterating Over Finite Sets

We want a fold-like way to iterate
over the elements of the set (e.g.,
grammar’s rules).

(Making the set look like a list.)

But for soundness, the result
cannot depend on the order in
which the elements are
consumed!

<latexit sha1_base64="L8gCgZfE48GnDKOPiHNg/4rAR54=">AAACN3icdZDNSgMxFIUz9b/+jbp0EyyCYCmZirXuim5cVrCt0Cklk8loaCYZk4xQhr6FS1/ErVt9AVfuRNz5BqatihW9EPhyzr3c5AQJZ9og9OTkpqZnZufmF/KLS8srq+7aelPLVBHaIJJLdR5gTTkTtGGY4fQ8URTHAaetoHc89FvXVGkmxZnpJ7QT4wvBIkawsVLXrfgZpF1UhP7VVYpDy94XF+2l/G34JJRGDzUB/UHXLaDSHiqjwyocgbdfGQOqHkKvhEZVqG35uzdPtX696775oSRpTIUhHGvd9lBiOhlWhhFOB3k/1TTBpIcvaNuiwDHVnWz0vwHctkoII6nsEQaO1J8TGY617seB7YyxudS/vaH4l9dOTVTtZEwkqaGCjBdFKYdGwmFYMGSKEsP7FjBRzL4VkkusMDE20oktQap1oqSM9CBvw/lKAP4PzXLJq5TQqU3pCIxrHmyCLbADPHAAauAE1EEDEHAL7sEDeHTunGfnxXkdt+acz5kNMFHO+wdh164P</latexit>

{e0, e1, , e2, · · · , en}

<latexit sha1_base64="cCg87Sj6bwlt5nNBA7PwJqT1hC8=">AAACAnicdVC7SgNBFJ2NrxhfUcHGZjAIVmE2Yky6GBvLBM0DkhBmJ7PJkNmdZWZWCEs6W1v9B8FCbC39CRs/wK9wsqtgRA9cOJxzL/fe4wScKY3Qm5VaWFxaXkmvZtbWNza3sts7TSVCSWiDCC5k28GKcubThmaa03YgKfYcTlvO+Hzmt66pVEz4V3oS0J6Hhz5zGcHaSJdnfdTP5lD+GBVQuQRjYp8UE4JKZWjnUYxcZa/+zh6rr7V+9qM7ECT0qK8Jx0p1bBToXoSlZoTTaaYbKhpgMsZD2jHUxx5VvSg+dQoPjTKArpCmfA1j9edEhD2lJp5jOj2sR+q3NxP/8jqhdku9iPlBqKlPkkVuyKEWcPY3HDBJieYTQzCRzNwKyQhLTLRJZ26LEyoVSCFcNc2YcL4TgP+TZiFvF/OoblKqggRpsA8OwBGwwSmogAtQAw1AwBDcgjtwb91YD9aT9Zy0pqyvmV0wB+vlE3TUm6Q=</latexit>

A0
<latexit sha1_base64="KFSewDHOAyag2ELC2e41CtxNk6A=">AAACAnicdVC7SgNBFJ2NrxhfUcHGZjAIVmE2Yky6GBvLBM0DkhBmJ7PJkNmdZWZWCEs6W1v9B8FCbC39CRs/wK9wsqtgRA9cOJxzL/fe4wScKY3Qm5VaWFxaXkmvZtbWNza3sts7TSVCSWiDCC5k28GKcubThmaa03YgKfYcTlvO+Hzmt66pVEz4V3oS0J6Hhz5zGcHaSJdnfbufzaH8MSqgcgnGxD4pJgSVytDOoxi5yl79nT1WX2v97Ed3IEjoUV8TjpXq2CjQvQhLzQin00w3VDTAZIyHtGOojz2qelF86hQeGmUAXSFN+RrG6s+JCHtKTTzHdHpYj9Rvbyb+5XVC7ZZ6EfODUFOfJIvckEMt4OxvOGCSEs0nhmAimbkVkhGWmGiTztwWJ1QqkEK4apox4XwnAP8nzULeLuZR3aRUBQnSYB8cgCNgg1NQARegBhqAgCG4BXfg3rqxHqwn6zlpTVlfM7tgDtbLJ3Zwm6U=</latexit>

A1
<latexit sha1_base64="bnqMV5Tq+M+2V1J8Kaq4HzsEcr8=">AAACAnicdVC7SgNBFJ2NrxhfUcHGZjAIVmE2Yky6GBvLBM0DkhBmJ7PJkNmdZWZWCEs6W1v9B8FCbC39CRs/wK9wsqtgRA9cOJxzL/fe4wScKY3Qm5VaWFxaXkmvZtbWNza3sts7TSVCSWiDCC5k28GKcubThmaa03YgKfYcTlvO+Hzmt66pVEz4V3oS0J6Hhz5zGcHaSJdn/UI/m0P5Y1RA5RKMiX1STAgqlaGdRzFylb36O3usvtb62Y/uQJDQo74mHCvVsVGgexGWmhFOp5luqGiAyRgPacdQH3tU9aL41Ck8NMoAukKa8jWM1Z8TEfaUmniO6fSwHqnf3kz8y+uE2i31IuYHoaY+SRa5IYdawNnfcMAkJZpPDMFEMnMrJCMsMdEmnbktTqhUIIVw1TRjwvlOAP5PmoW8XcyjukmpChKkwT44AEfABqegAi5ADTQAAUNwC+7AvXVjPVhP1nPSmrK+ZnbBHKyXT3gMm6Y=</latexit>

A2
<latexit sha1_base64="YmoWoZNwL3LCp4PqThlxi79fW1E=">AAACAnicdVC7SgNBFJ31GeMrKtjYDAbBKswmGJMuxsYyQfOAJITZyWwyZHZnmZkVwpLO1lb/QbAQW0t/wsYP8Cuc7CoY0QMXDufcy733OAFnSiP0Zi0sLi2vrKbW0usbm1vbmZ3dphKhJLRBBBey7WBFOfNpQzPNaTuQFHsOpy1nfD7zW9dUKib8Kz0JaM/DQ5+5jGBtpMuzfqGfyaJcAeVRuQRjYp8UE4JKZWjnUIxsZb/+zh6rr7V+5qM7ECT0qK8Jx0p1bBToXoSlZoTTabobKhpgMsZD2jHUxx5VvSg+dQqPjDKArpCmfA1j9edEhD2lJp5jOj2sR+q3NxP/8jqhdku9iPlBqKlPkkVuyKEWcPY3HDBJieYTQzCRzNwKyQhLTLRJZ26LEyoVSCFcNU2bcL4TgP+TZj5nF3OoblKqggQpcAAOwTGwwSmogAtQAw1AwBDcgjtwb91YD9aT9Zy0LlhfM3tgDtbLJ3mom6c=</latexit>

A3
<latexit sha1_base64="YtDiHUt0aKoFNHSi0XhA7IlOK8A=">AAACBnicdVDLSgMxFM3UV62vqks30SJUhJKpWNtd1Y3LCvYBbSmZNNOGZpIhyQhl6N6duNV/cCduxb/wF9y7N20VrOiBC4dz7uXee7yQM20QenMSc/MLi0vJ5dTK6tr6Rnpzq6ZlpAitEsmlanhYU84ErRpmOG2EiuLA47TuDc7Hfv2aKs2kuDLDkLYD3BPMZwQbK9VPO7E4dEeddAbljlAelYpwQtzjwpSgYgm6OTRBpryb/Xi9bR1UOun3VleSKKDCEI61brooNO0YK8MIp6NUK9I0xGSAe7RpqcAB1e14cu4I7lulC32pbAkDJ+rPiRgHWg8Dz3YG2PT1b28s/uU1I+MX2zETYWSoINNFfsShkXD8O+wyRYnhQ0swUczeCkkfK0yMTWhmixdpHSopfT1K2XC+E4D/k1o+5xZy6NKmdAamSIIdsAeywAUnoAwuQAVUAQEDcAfuwYNz4zw6T87ztDXhfM1sgxk4L58pM50R</latexit>

An+1

Iterating for Follow Calculation

Complexities:

Processing one sentential form updates follow information for
multiple non-terminals at once

For example, N → aMbPcQ gives partial info for follow sets of M,
P and Q

Recursive calls (to N above, say), fold in yet more partial info

The Challenge

✷✷✷ WANTED ✷✷✷

Clean Solutions to

Annoying Problems

But Which Still Refine

To

Efficient Code

The Challenge

Iterate ’til convergence (with non-
commutative accumulation) is
possible

Preserves grammars as finite sets

Mostly aesthetically pleasing

How to then memoize and
recombine 3 separate functions?

✷✷✷ WANTED ✷✷✷

Clean Solutions to

Annoying Problems

But Which Still Refine

To

Efficient Code

The Challenge

Iterate ’til convergence (with non-
commutative accumulation) is
possible

Preserves grammars as finite sets

Mostly aesthetically pleasing

How to then memoize and
recombine 3 separate functions?

Translation to CakeML will be easy,
(and will re-introduce lists…)

✷✷✷ WANTED ✷✷✷

Clean Solutions to

Annoying Problems

But Which Still Refine

To

Efficient Code

Conclusion

Compilers can be made super formal:

Programming language semantics and interactive theorem-proving
combine to create verified compilers (not only CakeML);

Compilers use a great deal of theory from many different areas to
implement their algorithms;

Even first and follow set computations present some interesting
challenges…

