CakeML:Verified Computation/
Compilation Stories

Michael Norrish, School of Computing, ANU
23 May 2023

Itinerary

am—Ll__

/ U
, g
Q 0
%0%‘ \O}JD 555
b e / &
s =\

Interactive theorem-proving

CakeML

Rendering super-standard formal
language theory with maximum
cleanness—puzzle included.

r‘l‘m@‘ 3
1D

ey
ST Ol

Canberra Plan, 1927. Archives of the ACT Government via flickr.com

http://flickr.com

“Solving the world’s problems with theorem-proving.”

—me, in moments of delusion

Interactive heorem-Proving

Interactive theorem-proving is core to 99% of what | do.

Example systems: ACL2, Coq, HOL4, HOL Light, Isabelle and PVS

Proof in Action

>g ‘Vnabc.2<n=a*xn+Dbx*xxn=x=cCc *x*xn’;
val it =

Proof manager status: 1 proof. Human gUIde PI’OOf

1. Incomplete goalstack:
Initial goal:

Posit the goal; provide the

Vh aboc. 2<n=a*xxn+Dhb*xxnazxcCc **xn

. proof
proofs Machine hGIPSI
> e Induct;
OK..
2 subgoals: by checking validity of steps
val it =
Vaboc. 2<SUCn=a=*xSUCn+0Db **x SUCn = c %% SUC n Wlth some automat|c tools

Thus:“proof assistant” term

Vaboc. 2< 0= a*x0Q + Db *x Q@ = C %% 0

Under development since the mid
1 980s

Engineered in the “LCF tradition™:
a small kernel minimises the TCB

Similar logic to Isabelle/HOL and
HOL Light

Simpler logic than (e.g.) Coqgs.

CakeML
what—"

. A programming language in the style of Standard ML and OCaml.

CakeM
What?/ (strict evaluation, stateful)
V

. A programming language in the style of Standard ML and OCaml.

CakeM
What?/ (strict evaluation, stateful)
V

. A programming language in the style of Standard ML and OCaml.

2. An ecosystem of proofs and verification tools

CakeM
What?/ (strict evaluation, stateful)
Vv

. A programming language in the style of Standard ML and OCaml.

2. An ecosystem of proofs and verification tools

3. A verified, end-to-end compiler

What Do These Words Mean? (l)

“A programming language in the style of SML and OCaml...”
(functional, has pattern-matching, nice recursion, nice datatypes)

But;

Strict: arguments are evaluated before being passed to functions.
(Unlike Haskell.)

Stateful: CakeML supports variables that you can update by
assigning to them. (Again, unlike Haskell.)

What Do These Words Mean? (ll)

Verified: CakeML has proofs that guarantee it will behave correctly
End-to-end: The proofs are about “all of it™:

From: reading in the input file (a stream of characters)

To: actual machine code for the CPU (x86,ARM etc)

Dimensions of Compiler Verification

Dimensions of Compiler Verification

source code |
< how far compiler goes)
abstract syntax

intermediate language
bytecode

machine code

Dimensions of Compiler Verification

source code |
< how far compiler goes)
abstract syntax

intermediate language
bytecode

machine code

compiler implementation implementation interactive call in read-
algorithm in ML in machine code eval-print loop runtime
/\

(the thing that is verified)

Dimensions of Compiler Verification

source code |
< how far compiler goes)
abstract syntax

intermediate language

bytecode Our verification covers the full

. spectrum of both dimensions.
machine code

compiler implementation implementation interactive call in read-
algorithm in ML in machine code eval-print loop runtime
/\

(the thing that is verified)

Goal: End-to-end

- P(val x

Ingredients

I-| : string — v

§ Verified
t Compilation

(-] : int list — s — s

type inference

compilation

Bootstrapping

function in logic (compiler)

Bootstrapping

type inference

compilation

function in logic (compiler)

Proof-producing
synthesis (ICFP'12)

CakeML program (

implements compiler

Bootstrapping

type inference

compilation

— compiler (

function in logic (compiler)

Proof-producing
synthesis (ICFP'12)

CakeML program ()

implements compliler ESESAEE:
in the logic

) = compiler-x86

Bootstrapping

function in logic (compiler)

Proof-producing

type inference synthesis (ICFP'12)
compilation
° CakeML program ()
implements compliler ESESAEE:
in the logic
— compiler () = compiler-x86

— vo. (compiler ¢) implements ¢ SONECHIESS

Bootstrapping

function in logic (compiler)

Proof-producing

type inference synthesis (ICFP'12)

compilation

CakeML program ()

implements compliler ESESAEE:
in the logic

— compiller () = compiler-x86

Theorem:

— vo. (compiler ¢) implements ¢ SONECHIESS

compliler-x86 Implements compiler

What Do These Words Mean!(lll)

Photo by Kohei314, via f1ickr.com

Ecosystem: Not only is the
CakeML compiler “verified” (as
before), but we also have a variety
of methods for proving (other)
CakeML programs correct.

When your Haskell program
misbehaves, who/what do you

blame?

Your program (you)! GHC? The
5! The hardware? Cosmic rays?

Hmm, Can This Possibly Be True!

Scepticism is fair.
Must ask:
“What are your assumptions?”

(Correct) Proofs are only as good
as the assumptions behind them!

Assumption |: our logic is sound.

Any attempt to prove this would in turn depend on knowing that
the logic being used to prove this was sound,

which would require another proof of soundness, carried out in
yet another logical system...

this makes for an infinite regress...

See also: Godel.

from Wikipedia

Assumption 2: Our implementation of the logic is correct.
HOL4 is not verified...
The language it’s written in hasn’t been verified either
But:

The Trusted Code Base in HOL4 is small by design

It's been eyeballed for many decades by experts

It can export proof logs for independent checking

Assumption 3: Our correctness theorem says what we think it
says

Complicated logical statements are easy to misinterpret

Luckily, our correctness statement is not so bad:

~ config ok cc mc =
case compile cc prelude input of
Success (bytes,ffi_limit) =
d behaviours.
cakem| semantics ffi prelude input =
Execute behaviours N
VvV ms.
code installed (bytes,cc,ffi,ffi_limit,mc,ms) =
machine sem mc fft ms C
extend with resource limit behaviours
| Failure ParseError =
cakeml semantics ffi prelude tnput = CannotParse
| Failure TypeError =
cakem| semantics ffi prelude tnput = Il Typed
| Failure CompileError = true

Assumption 4: Our logical model of the real world is accurate

We assume that x86 (ARM, RISCV,...) chips really do behave
according to the logical spec we have for them.

We assume that the OS implements its

various system calls in accordance with
our spec.

State-of-the-Art Assurance

State-of-the-Art Assurance

)
5 QO
@)
@p)

ITP Code Extraction

State-of-the-Art Assurance

()
(@))
C —
-
@)

puts

ITP Code Extraction User Writes Code

State-of-the-Art Assurance

()
(@))
C —
-
@)

puts

ITP Code Extraction User Writes Code (Unverified) Compiler Compiles

CakeML Assurance

. . i 3 i
N P R N 2 v'
R S N . RS
¥ V- e\ N > o
3 . .y F

Verifying Translator User Writes & Proves Code CakeML Compiles

CakeML Projects at Many Levels

-

CAKEML
v A Verified Implementation of ML

—»

Hardware

CakeML Projects at Many Levels

’ CAKEML

v A Verified Implementation of ML

Verified Silver chip—PLDI’ |9

—»

Hardware

CakeML Projects at Many Levels

’ CAKEML

v A Verified Implementation of ML

" EPTECETTIY :
i Verified Silver chip—PLDI’ |9

99% of the Compiler—Various venues
_»

Hardware

CakeML Projects at Many Levels

Library level algorithms on strings—Xiao & Shaker

CAKEML

A Verified Implementation of ML

Verified Silver chip—PLDI’ |9

99% of the Compiler—Various venues

4

Hardware

CakeML Projects at Many Levels

Formula/automata translation for model checking—Simon Jantsch

-

CAKEML
V A Verified Implementation of ML

\"

Verified Silver chip—PLDI’ |9

99% of the Compiler—Various venues

4

Hardware

CakeML Projects at Many Levels

Formula/automata translation for model checking—Simon Jantsch

-

|
[} [|
------ : : V C AKE M L
T L o om \/ A Verified Implementation of ML
llllllll u =
lllllllllll -

PureCake (Haskell-like extension)-PLDI'23

99% of the Compiler—Various venues

4

aths Hardware

CakeML Projects at Many Levels

All in HOL4

Formula/automata translation for model checking—Simon Jantsch

/ Library level algorithms on strings—Xiao & Shaker

CAKEML

| A Verified Implementation of ML

\

\\

b
/ Verified Silver chip—PLDI’ |9
PureCake (Haskell-like extension)-PLDI'23

99% of the Compiler—Various venues

- >

aths Hardware

Parsing: an Application for the
Ecosystem

A verified, general-purpose,

Com llers parser-construction tool is very

Prmcuples, Techniques, appealing
s and Tools \

Applications (not just compilers)
often need to parse input
formats.

“Verify Once, Run Ever-after”

o e PN Strong work in this area does
' already exist

Parsing: an Application for the

Ecosystem

3.2. PREDICTIVE PARSING

Algorithm to compute FIRST, FOLLOW, and nullable.

Initialize FIRST and FOLLOW to all empty sets, and nullable to all false.
for each terminal symbol Z

FIRST[Z] <« {Z}
repeat .
for each production X — Y,Y,--- Y,
for each i from 1 to k, each j from i + 1 to k,
if all the Y; are nullable
then nullable[X] < true
if Y; - - - Y;,_; are all nullable
then FIRST[X] <= FIRST[X] U FIRST[Y;]
if Y; 1 - - - Y, are all nullable
then FOLLOW][Y;] < FOLLOWIY;] U FOLLOW[X]
if Y;,1 - - - Y;_; are all nullable
then FOLLOW[Y;] <~ FOLLOWTIY;] U FIRST[Y;]
until FIRST, FOLLOW, and nullable did not change in this iteration.

ALGORITHM 3.13. lterative computation of FIRST, FOLLOW, and nullable.

nullable FIR
bl nn

from: Appel, Modern Compiler Implementation in ML

CakeML’s existing parser is a
custom-built PEG

Its verification was just as
“custom” (i.e., tedious)

General tools need general
treatments of things like first and
follow sets

Grammars, Classically

A grammar is a 4-tuple (G, N, T, S), with
N a finite set of non-terminal symbols;
T a finite set of terminal symbols;

SeN a distinguished non-terminal (the “start symbol™);

G a finite set of production rules, each of the form: N = (N+T)*

“| never met a finite set | didn’t want to treat as a list”

—Every interactive theorem-proving person ever

Calculating Nullability

Start with the mathematical definition:

Definition nullable def:

/\ nullable G sf & derives G sf []

M..P...Q... End
MRAS o Where derives iIs the reflexive and transitive closure
: of the relation that expands a non-terminal into a
o M.....S..Q... production rule’s RHS.

Calculating Nullability

Start with the mathematical definition:
/ This list is just fine

Definition nullable_def:
/\ nullable G sf < derives G %
.M...P..Q... End
MRAS o Where derives iIs the reflexive and transitive closure
: of the relation that expands a non-terminal into a
M.....S...Q... production rule’s RHS.

Calculating Nullability

Start with the mathematical definition:
/ This list is just fine

N Definition nullable_def:
/\ nullable G sf & derives G %
.M..P...Q... =nd
MRAS o Where derives is the reflexive and transitive closure
: of the relation that expands a non-terminal into a
v s a. production rule’s RHS.
* Terminals are not nullable.
H * Non-terminals are nullable if any of their RHSs are nullable.
e

» Critical Realisation: recursive loopbacks can be ignored.

Calculating Nullability

Recursive algorithm:

Calculating Nullability

Recursive algorithm:

N nullableA G s []

T

Calculating Nullability

Recursive algorithm:

N nullableA G s

nullableA G s

[]

(TOK

T

Calculating Nullability

Recursive algorithm:

1///ﬁi\\\\ nullableA G s [] =T

.M...P...Q... nullableA G s (TOK _ ::) = F

M. R.S.0. nullableA G s (NT n :: rest) =
'

Calculating Nullability

Recursive algorithm:

////ﬁi\\\\ nullableA G s [] = T

.M...P...Q... nullableA G s (TOK _ :: _) = F

M...R...S...Q... nullableA G s (NT n :: rest) =
i nullableA G s rest A

M...... S...Q...

Calculating Nullability

Recursive algorithm:

nullableA G s [| = T

nullableA G s (TOK ::) = F

M...R...S...Q nullableA G s (NT n :: rest) =
i nullableA G s rest A
M. S...Q... n isnotamemberofset s A

Calculating Nullability

Recursive algorithm:

nullableA G s [] = T

nullableA G s (TOK ::) = F

M..R.S.Q nullableA G s (NT n :: rest) =
i nullableA G s rest A
M. S...Q... n isnotamemberofset s A

nullableA G (n INSERT s) r
For some r a production for non-terminal n

Calculating Nullability

Recursive algorithm:

nullableA G s [| = T

nullableA G s (TOK ::) = F
M. B S.0 nullableA G s (NT n :: rest) =
i nullableA G s rest A
e .
Mo S. Q. n isnotamemberofset s A
nullableA G (n INSERT s) r
For some r a production for non-terminal n
€ Theorem:

nullable Gsf & nullabledA G @ sf

Clean, Mathematical Formulations

Clean, Mathematical Formulations

A high-level property characterising nullability can be re-expressed
more “algorithmically”

without using lists!

Clean, Mathematical Formulations

A high-level property characterising nullability can be re-expressed
more “algorithmically”

without using lists!
The notion of first set can be handled similarly:
A sentential form has a first set (just as an s.f. may be nullable)

Uses “seen” set of visited non-terminals (recursive calls can be
ignored)

Iterating Over all of a Grammar

Formulations of nullable and first are functions on sentential forms.

Each of a grammar’s non-terminals are themselves (short) sentential
forms.

Thus: we can take the image of these functions over the non-terminal
set, and be done.

Computationally, this looks bad: calculating e.g., nullable(N) will
recalculate nullable for all non-terminals N refers to, and so on,
recursively.

Essence of Refinement

Haven’t committed to using lists
to represent grammars

Have separated concerns

Have deferred other algorithmic
decisions

Have already lost some
efficiencies...

CENEX oil refinery, Montana— Greg Goebel via flickr.com

http://flickr.com

The Evil That Is the Follow Set

The “iterate until result stops changing” seems unavoidable.

It’s also painful:

The Evil That Is the Follow Set

The “iterate until result stops changing” seems unavoidable.

It’s also painful:

Because of this algorithm’s “iterate until convergence” structure, we need to do some
extra work to prove that it terminates. To accomplish this task, we use Coq’s Program
extension [18], which provides support for defining functions using well-founded recursion.
The Program Fixpoint command enables the user to define a non-structurally recursive
function by providing a measure—a mapping from one or more function arguments to a
value in some well-founded relation 'R—and then showing that the measure of recursive call
arguments is less than that of the original arguments in R.

- .= n - - —_ = - = — - - - —_— = ama - a - a —\

—Lasser, Casinghino, Fisher, Roux (ITP’2019)

The Evil That Is the Follow Set

The “iterate until result stops changing” seems unavoidable.

It’s also painful:

Because of this algorithm’s “iterate until convergence” structure, we need to do some
extra work to prove that it terminates. To accomplish this task, we use Coq’s Program
extension [18], which provides support for defining functions using well-founded recursion.
The Program Fixpoint command enables the user to define a non-structurally recursive
function by providing a measure—a mapping from one or more function arguments to a
value in some well-founded relation 'R—and then showing that the measure of recursive call
arguments is less than that of the original arguments in R.

- .= n - - —_ = - = — - - - —_— = ama - a - a —\

—Lasser, Casinghino, Fisher, Roux (ITP’2019)

(The paper above is following Appel and doing this for all of nullable, first, and follow.)

Follow’s Clean Characterisation (l)

Symbol t is in N’s follow set if
there is a valid derivation from
some M ending in a sentential
form with t occurring immediately
after N.

The “all at once” view

Follow’s Clean Characterisation (ll)

The equivalent step-at-a-time view, following Lasser et al.:

M —aNpB € G a € firstq(5)
a € followg (V)

M — aNpB € G nullableg(5) a € followg (M)
a € followg (V)

Here, the recursive reference is “backwards” (which rules does
N appear in), and recursions can’t be ignored.

Iterating Over Finite Sets

Iterating Over Finite Sets

We want a fold-like way to iterate
over the elements of the set (e.g,,
grammar’s rules).

{eg e er ey (Making the set look like a list.)

Iterating Over Finite Sets

We want a fold-like way to iterate
over the elements of the set (e.g,,
grammar’s rules).

(Making the set look like a list.)

Iterating Over Finite Sets

We want a fold-like way to iterate
over the elements of the set (e.g,,
Ay A grammar’s rules).

(Making the set look like a list.)

Iterating Over Finite Sets

We want a fold-like way to iterate

over the elements of the set (e.g,,

Ag A, A, grammar’s rules).
€1, , €

{e (Making the set look like a list.)
Oy

Iterating Over Finite Sets

We want a fold-like way to iterate
over the elements of the set (e.g,,

Ay A A, As grammar’s rules).

(Making the set look like a list.)

Iterating Over Finite Sets

We want a fold-like way to iterate
over the elements of the set (e.g,,
grammar’s rules).

/\/\/\/\ o

{eg ey (Making the set look like a list.)

Iterating Over Finite Sets

We want a fold-like way to iterate
over the elements of the set (e.g,,
grammar’s rules).

(Making the set look like a list.)

But for soundness, the result
cannot depend on the order in
which the elements are
consumed!

Iterating for Follow Calculation

Complexities:

Processing one sentential form updates follow information for
multiple non-terminals at once

For example, N = aMDbPcQ gives partial info for follow sets of M,
P and Q

Recursive calls (to N above, say), fold in yet more partial info

The Challenge

¥ ¥ WANTED KX

CLEAN SOLUTIONS TO
ANNOYING PROBLEMS

BUuT WHICH STILL REFINE
TO
EFFICIENT CODE

The Challenge

¥ ¥ ¥ WANTED ¥k

CLEAN SOLUTIONS TO
ANNOYING PROBLEMS

BUuT WHICH STILL REFINE
TO
EFFICIENT CODE

Iterate ’til convergence (with non-
commutative accumulation) is
possible

Preserves grammars as finite sets
Mostly aesthetically pleasing

How to then memoize and
recombine 3 separate functions!?

The Challenge

¥ ¥ ¥ WANTED ¥k

CLEAN SOLUTIONS TO
ANNOYING PROBLEMS

BUuT WHICH STILL REFINE
TO
EFFICIENT CODE

Iterate ’til convergence (with non-
commutative accumulation) is
possible

Preserves grammars as finite sets
Mostly aesthetically pleasing

How to then memoize and
recombine 3 separate functions!

Translation to CakeML will be easy,
(and will re-introduce lists...)

Conclusion

Compilers can be made super formal:

Programming language semantics and interactive theorem-proving
combine to create verified compilers (not only CakeML);

Comepilers use a great deal of theory from many different areas to
implement their algorithms;

Even first and follow set computations present some interesting
challenges...

