
COMP3710, Computer Microarchitecture

Final Exam (Weight: 40%)
Due date: November 14, 2021 (13:00 pm)

Total Points: 100

Important Instructions: (1) Write down your name and UID on the first page
of your submission. (2) Submit the submission as a single pdf file.

Logistics: This exam is an individual effort and submission.

Note: Please practice concision. Be specific. Note that a “yes/no” style of
answering would lead to no credit. Avoid ambiguity. Hiding the most crucial
information deep in the text would lead to reduced credit. Use good headings,
colors, and bold text to your advantage. Attempt all questions and do not be
intimidated by open-ended questions.

Advice for open-ended questions: Be succinct and to the point. Use itemized
lists. Use diagrams whenever necessary. Clearly explain the diagrams in one or
two sentences. It is crucial to provide/explain the high-level ideas of your
approach first. Then explore in detail one or two aspects of your proposed
approach. Positively ignore tedious implementation details and corner cases.

Submission: Please submit a single Pdf file to the email below:
comp3710arch2022@gmail.com

Design Questions (45 points)

(10 points)

Q1. A processor manufacturer is considering an ARF+ROB pipeline due to
ease of implementation and low verification cost. However, the manufacturer
wants to implement the no-data-capture policy, a feature that is native to the
PRF pipeline. Design an ARF+ROB pipeline that implements a no-data-capture
policy, i.e., instructions read their operands after the issue stage. Specifically,
when the instruction is selected for execution and sent to the execution unit, it
reads the operand values from ARF or ROB just prior to execution.

1. Briefly explain your “big idea” and the proposed technique(s) to tackle
this problem.

2. What changes does your proposal require to the ARF, the ROB, or any
other structures?

3. What additional actions does an instruction need to perform in the issue
stage, the execute stage, the writeback stage and any of the front-end
stages?

4. Explain the new instruction commit policy from the head of the ROB?

(20 points)

Q2. It has been noticed that register writes in many programs exhibit a
significant amount of value locality. This finding opens new horizons for the
microarchitect. If the results of many instructions can be predicted before they
are executed and issued, then dependent instructions no longer need to wait for
parent instructions to finish execution. Value prediction attacks RAW hazards.
Therefore, a processor manufacturer is considering the addition of a value
prediction unit to boost their processor’s performance. The manufacturer wants
to limit the scope of the value predictor to load instructions because they take a
long time to resolve (e.g., an on-chip data cache miss takes 100 cycles to
resolve). A load value predictor exploits value locality: most of the times, a load
instruction retrieves a value from memory that matches a previously seen value
for the same address. Your task in this question is to design an OOO pipeline
with load value prediction.

Explore the problem of adding value prediction to the ARF+ROB pipeline from
as many angles as possible, including context selection, predictor placement,
splitting the load operation into generating the address and performing the
actual load from memory, support for speculative execution of dependent
instructions, verifying predictions, and a recovery mechanism. Briefly explain
what changes your approach requires to the major structures of an ARF+ ROB
pipeline, including the issue queue, the functional units, load/store queues, and
the ROB. Provide brief arguments for why your proposed approach will reduce
the penalty of long-latency load instructions.

(5 points)

Q3. Consider a PRF pipeline with no back-end architectural map table
(AMT). The active list (AL) contains the previous logical-to-destination register
mappings. The front-end register map table (RMT) is in a speculative state. A
microarchitect is considering different rollback strategies to repair the front-end
register map table (RMT) on an exception. Explain why these two strategies are
both legitimate candidates for repairing the RMT: (1) walking the AL
backwards from tail to head and incrementally installing the previous mappings
into the RMT (2) walking the AL forwards from head to tail. Briefly explain
which of the two strategies is simpler to implement. Which one requires
maintaining additional state during the rollback process?

(5 points)

Q4. A 32-bit system uses a virtually indexed, physically tagged 4-way
set-associative Level-1 cache with a total (data) capacity of 32 KB. The system
uses a page size of 4 KB. Provide two ways in which the OS virtual to physical
page mapping can lead to abnormal cache behavior. How should an architect
design a correctly operating cache without changing the 32 KB cache capacity?

(5 points, 2.5, 2.5)

Q5. Consider a 16 KB PIPT Level-1 2-way set-associative cache. The system
has a page size of 4 KB. The low-order thirteen bits of the physical address are
used to index the cache. Unfortunately, due to a manufacturing defect, the
thirteenth bit for indexing the set in the cache is permanently stuck at ground
(bit is always zero). An architect is trying to gain insight into the consequences
of deploying the faulty system in real-life. Multiple users will share the system.
Explain the implications of deploying this system in practice from the viewpoint
of (1) program correctness, and (2) cache utilization and overall performance.

Analytical Questions (55 points)

(5 points)

Q1. A processor manufacturer is struggling to choose the size of the active list
(active/instruction window) for their upcoming processor. They know that the
processor will be used in conjunction with a memory system with the following
property: each memory access (i.e., cache miss) will take 100 cycles. Moreover,
the processor is expected to run a critical workload with sparse memory
accesses, i.e., one long-latency memory operation every few hundreds of
instructions. The manufacture has already decided to use an issue width of four,
i.e., 4-wide superscalar. What is a reasonably sized active list for this processor?

(5 points)

Q2. A microarchitect is trying to estimate the potential reduction in execution
time for a code sequence by doubling the frequency of their 4-issue superscalar
processor (from 1 GHz to 2 GHz). They have made the following observations
by executing the code sequence at 1 GHz: (1) In the beginning, the OOO
(ARF+ROB) pipeline executes instructions at full capacity (four instructions)
(2) At some point, the pipeline issues three independent memory (load)
operations to the memory system one after the other (3) The pipeline continues
operation for some time after the third load is issued to the memory system (4)
the pipeline eventually comes to a halt (5) When the first load returns from
memory, the OOO pipeline restarts execution. The following diagram depicts
this scenario. Each epoch relates to one iteration of the code sequence. You
should focus only on the first (iteration) epoch. The X-axis represents time, and
the Y-axis represents two modes of the pipeline (1) working at full capacity
(IPC = 4) and (2) waiting for a response from memory (IPC = 0). Which
following estimation of the execution time of the first epoch at 2 GHz is
correct? Briefly justify your choice.

1. TL1/2 + (TM-TC)

2. TL2/2 + (TM-TC)

3. TL3/2 + (TM-TC)

4. TC/2 + (TM-TC)

5. TL1/2 + (TM-TL1)

(5 points)

Q3. A processor has a split load store queue (LSQ) with 32 entries each. The
processor executes load and store operations whenever their addresses are
ready. A store operation (S1) is dispatched in this out of order pipeline with an
SQ_index (store’s entry in the store queue) of 17. The current LQ_tail is
positioned at index 14. By the time S1 is ready to execute, ten new loads have
been dispatched to the load queue. The load addresses at the following LQ
indices are aliases of the S1 address: 15, 18, 21, and 23. Which of the
speculative loads does S1 needs to consider as part of its execution? Which
specific load is canceled (i.e., have its mispredict bit set in the active list)?
Briefly explain how the mispredict bit of the active list entry is set.

(5 points, 2.5, 2.5)

Q4. A program executes 2,000,000 memory references. When run on a
system containing a particular cache, the cache has a miss rate of 7 percent, of
which 1/4 are compulsory misses, 1/4 are capacity misses, and 1/2 are conflict
misses.

a) Suppose the only change an architect is allowed to make to the cache is to
increase the associativity. What is the maximum number of misses that
they can hope to eliminate?

b) If the architect is allowed to both increase the cache size and increase the
associativity, what is the maximum number of misses that they can hope
to eliminate?

(5 points)

Q5. Consider a 16 MB 16-way Level-3 cache that is shared by two programs
A and B. There is a mechanism in the cache that monitors cache miss rates for
each program and allocates 1-15 ways to each program such that the overall
number of cache misses is reduced. This technology in recent Intel processors is
called the Cache Allocation Technology (CAT). Assume that program A has an
MPKI of 100 when it is assigned 1 MB of the cache. Each additional 1 MB
assigned to the program A reduces the MPKI by 1. Program B has an MPKI of
50 when it is assigned 1 MB of cache; each additional 1 MB assigned to
program B reduces its MPKI by 2. What is the best allocation of ways to
programs A and B if minimizing the overall MPKI is the goal? Is MPKI the
correct metric to best exploit a technology such as CAT? Which metric must the
cache controller consider in addition to MPKI?

(5 points, 2.5, 2.5)

Q6. A system has 48-bit virtual addresses, 36-bit physical addresses, and
128 MB of main memory. If the system uses 4096-byte pages, how many
virtual and physical pages can the address spaces support? How many page
frames of memory are there?

(5 points)

Q7. A processor has 32-bit virtual and physical addresses. The page size is
4 KB, and the processor’s TLB has 128 entries and is a 4-way set-associative.
How much storage is required for the TLB?

(5 points, 2.5, 2.5)

Q8. What is the maximum memory capacity supported by the following two
servers with a single processor socket? Assume a 64-bit word size.

a) Two memory controllers per processor die, two memory channels per
controller, two dual-ranked DIMMs per channel, and x4 4 Gb chips.

b) One memory controller per processor die, four memory channels per
controller, two dual-ranked DIMMs per channel, and x16 4 Gb chips.

(10 points, 3, 3, 4)

Q9. For the following access stream, estimate the time it takes for the memory
request to finish for three scheduling policies: (1) Open-page, (2) Closed-page,
and (3) Oracular. The Oracular policy dynamically switches between open and
closed policies based on prior knowledge of the access stream. X, X+1, X+2,
X+3 map to the same row, and Y, Y+1 map to a different row in the same bank.
Access to an open row (row buffer hit) takes 20 ns, access to a closed row if
another row is already open (row buffer conflict) takes 60 ns, and access to an
empty row buffer (bit lines are precharged already) takes 40 ns.

Request Arrival Time Open Closed Oracular
X 0 ns
Y 30 ns
X+1 100 ns
X+3 210 ns
Y+1 250 ns
X+2 330 ns

(5 points, 2.5, 2.5)

Q10. A high-performance computing application iterates over contiguous words
in a virtual page. The pattern repeats for adjacent virtual pages over time. For
such an application, an architect is considering the address mapping scheme at
the bank level. Explain the potential advantage and disadvantages of row
interleaving over cache block interleaving for the application. Provide a
scenario where a high-performance computing application would benefit
tremendously from row interleaving.

