
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Convener: Shoaib Akram

Australian National University



Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Agenda
¢ Storage technologies and trends
¢ Locality of reference
¢ Caching in the memory hierarchy



Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Random-Access Memory (RAM)
¢ Key features

§ RAM is traditionally packaged as a chip.
§ Basic storage unit is normally a cell (one bit per cell).
§ Multiple RAM chips form a memory.

¢ RAM comes in two varieties:
§ SRAM (Static RAM)
§ DRAM (Dynamic RAM)

DRAM 
(Main 
Memory)



Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

RAM View

C D 1 9 A 6 5 B Word 4

4 0 F 3 0 7 8 8 Word 3

0 1 E E 2 8 4 2 Word 2

F 2 F 1 A C 0 7 Word 1

A B C D E F 7 8 Word 0

13 12 11 10

F E D C

B A 9 8

7 6 5 4

3 2 1 0

Word Number

..

.
..
.

Data

00000010

0000000C

00000008

00000004

00000000

Word Address

..

.
..
.

Byte Address

MSB LSB 4 Bytes

¢ Byte addressable (random access, contrast with cassette)
¢ Takes the same amount of time to read any (random) byte

§ We will refine this view shortly



Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

SRAM vs DRAM Summary

Trans. Access Needs Needs
per bit time refresh? EDC? Cost Applications

SRAM 4 or 6 1X No Maybe 100x Cache memories

DRAM 1 10X Yes Yes 1X Main memories,
frame buffers



Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Nonvolatile Memories
¢ DRAM and SRAM are volatile memories

§ Lose information if powered off.
¢ Nonvolatile memories retain value even if powered off

§ Read-only memory (ROM): programmed during production
§ Programmable ROM (PROM): can be programmed once
§ Eraseable PROM (EPROM): can be bulk erased (UV, X-Ray)
§ Electrically eraseable PROM (EEPROM): electronic erase capability
§ Flash memory: EEPROMs. with partial (block-level) erase capability

§ Wears out after about 100,000 erasings
¢ Uses for Nonvolatile Memories

§ Firmware programs stored in a ROM (BIOS, controllers for disks, 
network cards, graphics accelerators, security subsystems,…)

§ Solid state disks (replace rotating disks in thumb drives, smart 
phones, mp3 players, tablets, laptops,…)

§ Disk caches



Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University
Traditional Bus Structure Connecting 
CPU and Memory

¢ A bus is a collection of parallel wires that carry address, 
data, and control signals.

¢ Buses are typically shared by multiple devices.

Main
memory

I/O 
bridgeBus interface

ALU

Register file

CPU chip

System bus Memory bus



Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Memory Read Transaction (1)
¢ CPU places address A on the memory bus.

ALU

Register file

Bus interface
A

0

Ax

Main memory
I/O bridge

%rax

Load operation: movq A, %rax



Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Memory Read Transaction (2)
¢ Main memory reads A from the memory bus, retrieves 

word x, and places it on the bus.

ALU

Register file

Bus interface

x 0

Ax

Main memory

%rax

I/O bridge

Load operation: movq A, %rax



Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Memory Read Transaction (3)
¢ CPU read word x from the bus and copies it into register 

%rax.

x
ALU

Register file

Bus interface x

Main memory
0

A

%rax

I/O bridge

Load operation: movq A, %rax



Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Memory Write Transaction (1)
¢ CPU places address A on bus. Main memory reads it and 

waits for the corresponding data word to arrive.

y
ALU

Register file

Bus interface
A

Main memory
0

A

%rax

I/O bridge

Store operation: movq %rax, A



Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Memory Write Transaction (2)
¢ CPU places data word y on the bus.

y
ALU

Register file

Bus interface
y

Main memory
0

A

%rax

I/O bridge

Store operation: movq %rax, A



Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Memory Write Transaction (3)
¢ Main memory reads data word y from the bus and stores 

it at address A.

y
ALU

Register file

Bus interface y

main memory
0

A

%rax

I/O bridge

Store operation: movq %rax, A



Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

What’s Inside A Disk Drive?
SpindleArm

Actuator

Platters

Electronics
(including a 
processor 
and memory!)SCSI

connector

Image courtesy of Seagate Technology



Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

I/O Bus

Main
memory

I/O 
bridgeBus interface

ALU

Register file

CPU chip

System bus Memory bus

Disk 
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor
Disk

I/O bus Expansion slots for
other devices such
as network adapters.



Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Reading a Disk Sector (1)

Main
memory

ALU

Register file

CPU chip

Disk 
controller

Graphics
adapter

USB
controller

mouse keyboard Monitor
Disk

I/O bus

Bus interface

CPU initiates a disk read by writing a 
command, logical block number, and 
destination memory address to a port 
(address) associated with disk controller.



Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Reading a Disk Sector (2)

Main
memory

ALU

Register file

CPU chip

Disk 
controller

Graphics
adapter

USB
controller

mouse keyboard Monitor
Disk

I/O bus

Bus interface

Disk controller reads the sector and 
performs a direct memory access 
(DMA) transfer into main memory.



Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Reading a Disk Sector (3)

Main
memory

ALU

Register file

CPU chip

Disk 
controller

Graphics
adapter

USB
controller

mouse keyboard Monitor
Disk

I/O bus

Bus interface

When the DMA transfer completes, 
the disk controller notifies the CPU 
with an interrupt (i.e., asserts a 
special “interrupt” pin on the CPU)



Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Solid State Disks (SSDs)

¢ Pages: 512B to 4KB, Blocks: 32 to 128 pages
¢ Data read/written in units of pages. 
¢ Page can be written only after its block has been erased
¢ A block wears out after about 100,000 repeated writes.

Flash 
translation layer

I/O bus

Page 0 Page 1 Page P-1…
Block 0

… Page 0 Page 1 Page P-1…
Block  B-1

Flash memory

Solid State Disk (SSD)
Requests to read and 
write logical disk blocks



Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

SSD Performance Characteristics

¢ Sequential access faster than random access
§ Common theme in the memory hierarchy

¢ Random writes are somewhat slower
§ Erasing a block takes a long time (~1 ms)
§ Modifying a block page requires all other pages to be copied to 

new block
§ In earlier SSDs, the read/write gap was much larger.

Sequential read tput 550 MB/s Sequential write tput 470 MB/s
Random read tput 365 MB/s Random write tput 303 MB/s
Avg seq read time 50 us Avg seq write time 60 us

Source: Intel SSD 730 product specification.



Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

SSD Tradeoffs vs Rotating Disks
¢ Advantages 

§ No moving parts à faster, less power, more rugged

¢ Disadvantages
§ Have the potential to wear out 

§ Mitigated by “wear leveling logic” in flash translation layer
§ E.g. Intel SSD 730 guarantees 128 petabyte (128 x 1015 bytes) of 

writes before they wear out
§ In 2015, about 30 times more expensive per byte

¢ Applications
§ MP3 players, smart phones, laptops
§ Beginning to appear in desktops and servers



Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

The CPU-Memory Gap
The gap between DRAM, disk, and CPU speeds. 

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1985 1990 1995 2000 2003 2005 2010 2015

Ti
m

e 
(n

s)

Year

Disk seek time
SSD access time
DRAM access time
SRAM access time
CPU cycle time
Effective CPU cycle time

DRAM

CPU

SSD

Disk



Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Locality to the Rescue!

The key to bridging this CPU-Memory gap is a fundamental 
property of computer programs known as locality



Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Today
¢ Storage technologies and trends
¢ Locality of reference
¢ Caching in the memory hierarchy



Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Locality
¢ Principle of Locality: Programs tend to use data and 

instructions with addresses near or equal to those they 
have used recently

¢ Temporal locality:  
§ Recently referenced items are likely 

to be referenced again in the near future

¢ Spatial locality:  
§ Items with nearby addresses tend 

to be referenced close together in time



Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Locality Example

¢ Data references
§ Reference array elements in succession 

(stride-1 reference pattern).
§ Reference variable sum each iteration.

¢ Instruction references
§ Reference instructions in sequence.
§ Cycle through loop repeatedly. 

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;

Spatial locality
Temporal locality

Spatial locality
Temporal locality



Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Qualitative Estimates of Locality
¢ Claim: Being able to look at code and get a qualitative 

sense of its locality is a key skill for a professional 
programmer.

¢ Question: Does this function have good locality with 
respect to array a?

int sum_array_rows(int a[M][N])
{

int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];
return sum;

}



Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Locality Example
¢ Question: Does this function have good locality with 

respect to array a?

int sum_array_cols(int a[M][N])
{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];
return sum;

}



Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Memory Hierarchies
¢ Some fundamental and enduring properties of hardware 

and software:
§ Fast storage technologies cost more per byte, have less capacity, 

and require more power (heat!). 
§ The gap between CPU and main memory speed is widening.
§ Well-written programs tend to exhibit good locality.

¢ These fundamental properties complement each other 
beautifully.

¢ They suggest an approach for organizing memory and 
storage systems known as a memory hierarchy.



Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Today
¢ Storage technologies and trends
¢ Locality of reference
¢ Caching in the memory hierarchy



Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University
Example Memory 

Hierarchy Regs

L1 cache 
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,  
slower, 
and 
cheaper 
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files 
retrieved from disks 
on remote servers

L2 cache 
(SRAM)

L1 cache holds cache lines 
retrieved from the L2 cache.

CPU registers hold words 
retrieved from the L1 cache.

L2 cache holds cache lines
retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and 
costlier
(per byte)
storage 
devices

L3 cache 
(SRAM)

L3 cache holds cache lines
retrieved from main memory.

L6:

Main memory holds 
disk blocks retrieved 
from local disks.



Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Caches
¢ Cache: A smaller, faster storage device that acts as a staging 

area for a subset of the data in a larger, slower device.
¢ Fundamental idea of a memory hierarchy:

§ For each k, the faster, smaller device at level k serves as a cache for the 
larger, slower device at level k+1.

¢ Why do memory hierarchies work?
§ Because of locality, programs tend to access the data at level k more 

often than they access the data at level k+1. 
§ Thus, the storage at level k+1 can be slower, and thus larger and 

cheaper per bit.

¢ Big Idea:  The memory hierarchy creates a large pool of 
storage that costs as much as the cheap storage near the 
bottom, but that serves data to programs at the rate of the 
fast storage near the top.



Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

General Cache Concepts

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized 
transfer units

Smaller, faster, more expensive
memory caches a  subset of
the blocks

4

4

4

10

10

10



Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:
Hit!



Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memoryRequest: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
• Replacement policy:

determines which block
gets evicted (victim)



Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University
General Caching Concepts: 
Types of Cache Misses

¢ Cold (compulsory) miss
§ Cold misses occur because the cache is empty.

¢ Conflict miss
§ Most caches limit blocks at level k+1 to a small subset (sometimes a 

singleton) of the block positions at level k.
§ E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

§ Conflict misses occur when the level k cache is large enough, but multiple 
data objects all map to the same level k block.
§ E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.

¢ Capacity miss
§ Occurs when the set of active cache blocks (working set) is larger than 

the cache.



Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Examples of Caching in the Mem. Hierarchy

Hardware 
MMU

0On-Chip TLBAddress translationsTLB

Web browser10,000,000Local diskWeb pagesBrowser cache

Web cache

Network buffer 
cache

Buffer cache

Virtual Memory

L2 cache

L1 cache

Registers

Cache Type

Web pages

Parts of files

Parts of files

4-KB pages

64-byte blocks

64-byte blocks

4-8 bytes words

What is Cached?

Web proxy 
server

1,000,000,000Remote server disks

OS100Main memory

Hardware4On-Chip L1

Hardware10On-Chip L2

NFS client10,000,000Local disk

Hardware + OS100Main memory

Compiler0CPU core

Managed ByLatency (cycles)Where is it Cached?

Disk cache Disk sectors Disk controller 100,000 Disk firmware



Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Summary
¢ The speed gap between CPU, memory and mass storage 

continues to widen.

¢ Well-written programs exhibit a property called locality.

¢ Memory hierarchies based on caching close the gap by 
exploiting locality.



Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University
Example Memory 

Hierarchy Regs

L1 cache 
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,  
slower, 
and 
cheaper 
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files 
retrieved from disks 
on remote servers

L2 cache 
(SRAM)

L1 cache holds cache lines 
retrieved from the L2 cache.

CPU registers hold words 
retrieved from the L1 cache.

L2 cache holds cache lines
retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and 
costlier
(per byte)
storage 
devices

L3 cache 
(SRAM)

L3 cache holds cache lines
retrieved from main memory.

L6:

Main memory holds 
disk blocks retrieved 
from local disks.



Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

General Cache Concept

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized 
transfer units

Smaller, faster, more expensive
memory caches a  subset of
the blocks

4

4

4

10

10

10



Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Cache Memories
¢ Cache memories are small, fast SRAM-based memories 

managed automatically in hardware
§ Hold frequently accessed blocks of main memory

¢ CPU looks first for data in cache
¢ Typical system structure:

Main
memory

I/O
bridgeBus interface

ALU

Register file
CPU chip

System bus Memory bus

Cache 
memory



Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

General Cache Organization (S, E, B)
E = 2e lines per set

S = 2s sets

set

line

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

Cache size:
C = S x E x B data bytes

valid bit



Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Cache Read
E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits
Address of word:

tag set
index

block
offset

data begins at this offset

• Locate set
• Check if any line in set

has matching tag
• Yes + line valid: hit
• Locate data starting

at offset



Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Example: Direct Mapped Cache (E = 1)

S = 2s sets

Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set



Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Example: Direct Mapped Cache (E = 1)
Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

match: assume yes = hitvalid?   +

block offset

tag



Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Example: Direct Mapped Cache (E = 1)
Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

match: assume yes = hitvalid?   +

int (4 Bytes) is here

block offset

If tag doesn’t match: old line is evicted and replaced



Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Direct-Mapped Cache Simulation
M=16 bytes (4-bit addresses), B=2 bytes/block, 
S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Block

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]

miss

1 0 M[0-1]Set 0
Set 1
Set 2
Set 3



Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

find set



Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes = hit

block offset

tag



Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes = hit

block offset

short int (2 Bytes) is here

No match: 
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …



Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

2-Way Set Associative Cache Simulation

M=16 byte addresses, B=2 bytes/block, 
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Block

0

0
0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]

hit

Set 0

Set 1



Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Flexible Block Placement
Direct-mapped: Each block can go to only location only
n-way set associative: Each block can go to n locations inside a set
Fully associative: Each block can go to any location 

Australian National University



Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Flexible Block Placement
Finding which set a block can reside in a set-associative cache

§ Block number module # sets in the cache

Finding the block
§ Compare the tags of each block in a set against the 

address of the block we are looking for

Australian National University



Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Every Cache is a Set-Associative 
Cache
For a cache with 8 entries

1 set, 8 way

2 sets, 4 way

4 sets, 2 way8 sets, 1 way

Australian National University



Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

What about writes?
¢ Multiple copies of data exist:

§ L1, L2, L3, Main Memory, Disk

¢ What to do on a write-hit?
§ Write-through (write immediately to memory)
§ Write-back (defer write to memory until replacement of line)

§ Need a dirty bit (line different from memory or not)

¢ What to do on a write-miss?
§ Write-allocate (load into cache, update line in cache)

§ Good if more writes to the location follow
§ No-write-allocate (writes straight to memory, does not load into cache)

¢ Typical
§ Write-through + No-write-allocate
§ Write-back + Write-allocate



Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Replacement Policy
Direct-mapped cache

§ New block (A) arrives at location X in the cache
§ Previously residing block at location X is B
§ Replacement rule is simple: replace B with A
§ A and B both cannot reside at location X (one has to make space for the other)

Australian National University



Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Replacement Policy
2-way set associative

§ New block (A) arrives at Set X 
§ B and C reside at Set X (2 way set-associative, so two blocks in one set)
§ Replace either B or C with A (which one?)
§ One possiblity is choose randomly

§ We need a more sophisticated rule than random
§ Least Recently Used (LRU): Replace the least recently used block with A
§ References: B, C, C, C, B, B, A à Replace C with A

§ C is the least recently used, i.e., oldest access time (B has better temporal locality)

Australian National University



Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Replacement Policy
Implementing LRU (2-way)

§ Hit in way # 1 (set a per-set bit to 0)
§ Hit in way # 2 (set a per-set bit to 1)
§ Hit in way # 2 (set a per-set bit to 1)
§ Miss in the set (The bit tells us block in way # 1 is the least recently used)

Try to implement LRU with 4-way
§ Difficult to track age
§ Pseudo-LRU and Bit-LRU are approximations used in practice 

§ https://en.wikipedia.org/wiki/Pseudo-LRU

Australian National University



Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Intel Core i7 Cache Hierarchy

Regs

L1 
d-cache

L1 
i-cache

L2 unified cache

Core 0

Regs

L1 
d-cache

L1 
i-cache

L2 unified cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package
L1 i-cache and d-cache:

32 KB,  8-way, 
Access: 4 cycles

L2 unified cache:
256 KB, 8-way, 

Access: 10 cycles

L3 unified cache:
8 MB, 16-way,
Access: 40-75 cycles

Block size: 64 bytes for 
all caches. 



Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Cache Performance Metrics
¢ Miss Rate

§ Fraction of memory references not found in cache (misses / accesses)
= 1 – hit rate

§ Typical numbers (in percentages):
§ 3-10% for L1
§ can be quite small (e.g., < 1%) for L2, depending on size, etc.

¢ Hit Time
§ Time to deliver a line in the cache to the processor

§ includes time to determine whether the line is in the cache
§ Typical numbers:

§ 4 clock cycle for L1
§ 10 clock cycles for L2

¢ Miss Penalty
§ Additional time required because of a miss

§ typically 50-200 cycles for main memory (Trend: increasing!)



Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Let’s think about those numbers
¢ Huge difference between a hit and a miss

§ Could be 100x, if just L1 and main memory

¢ Would you believe 99% hits is twice as good as 97%?
§ Consider: 

cache hit time of 1 cycle
miss penalty of 100 cycles

§ Average access time:
97% hits:  1 cycle + 0.03 * 100 cycles = 4 cycles
99% hits:  1 cycle + 0.01 * 100 cycles = 2 cycles

¢ This is why “miss rate” is used instead of “hit rate”



Carnegie Mellon

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Writing Cache Friendly Code
¢ Make the common case go fast

§ Focus on the inner loops of the core functions

¢ Minimize the misses in the inner loops
§ Repeated references to variables are good (temporal locality)
§ Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified 
through our understanding of cache memories



Carnegie Mellon

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Cache Summary
¢ Cache memories can have significant performance impact

¢ You can write your programs to exploit this!
§ Focus on the inner loops, where bulk of computations and memory 

accesses occur. 
§ Try to maximize spatial locality by reading data objects with 

sequentially with stride 1.
§ Try to maximize temporal locality by using a data object as often as 

possible once it’s read from memory. 


