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A System Using Physical Addressing

¢ Used in “simple” systems like embedded microcontrollers in 
devices like cars, elevators, and digital picture frames

0:
1:

M-1:

Main memory

CPU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

4



Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

A System Using Virtual Addressing

¢ Used in all modern servers, laptops, and smart phones
¢ One of the great ideas in computer science
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Address Spaces
¢ Linear address space: Ordered set of contiguous non-negative integer 

addresses:
{0, 1, 2, 3 … }

¢ Virtual address space: Set of N = 2n virtual addresses
{0, 1, 2, 3, …, N-1}

¢ Physical address space: Set of M = 2m physical addresses
{0, 1, 2, 3, …, M-1}
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Why Virtual Memory (VM)?
¢ Uses main memory efficiently

§ Use DRAM as a cache for parts of a virtual address space

¢ Simplifies memory management
§ Each process gets the same uniform linear address space

¢ Isolates address spaces
§ One process can’t interfere with another’s memory
§ User program cannot access privileged kernel information and code
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VM as a Tool for Caching
¢ Conceptually, virtual memory is an array of N contiguous 

bytes stored on disk. 
¢ The contents of the array on disk are cached in physical 

memory (DRAM cache)
§ These cache blocks are called pages (size is P = 2p bytes)
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DRAM Cache Organization
¢ DRAM cache organization driven by the enormous miss penalty

§ DRAM is about 10x slower than SRAM
§ Disk is about 10,000x slower than DRAM

¢ Consequences
§ Large page (block) size: typically 4 KB, sometimes 4 MB
§ Fully associative 

§ Any VP can be placed in any PP
§ Requires a “large” mapping function – different from cache memories

§ Highly sophisticated, expensive replacement algorithms
§ Too complicated and open-ended to be implemented in hardware

§ Write-back rather than write-through
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Enabling Data Structure: Page Table
¢ A page table is an array of page table entries (PTEs) that 

maps virtual pages to physical pages. 
§ Per-process kernel data structure in DRAM
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Page Hit
¢ Page hit: reference to VM word that is in physical memory 

(DRAM cache hit)
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Page Fault
¢ Page fault: reference to VM word that is not in physical 

memory (DRAM cache miss)
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Handling Page Fault
¢ Page miss causes page fault (an exception)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or 

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address



Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Handling Page Fault
¢ Page miss causes page fault (an exception)
¢ Page fault handler selects a victim to be evicted (here VP 4)
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Handling Page Fault
¢ Page miss causes page fault (an exception)
¢ Page fault handler selects a victim to be evicted (here VP 4)
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Handling Page Fault
¢ Page miss causes page fault (an exception)
¢ Page fault handler selects a victim to be evicted (here VP 4)
¢ Offending instruction is restarted: page hit!
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Key point: Waiting until the miss to copy the page to 
DRAM is known as demand paging
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Allocating Pages
¢ Allocating a new page (VP 5) of virtual memory.
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Locality to the Rescue Again!
¢ Virtual memory seems terribly inefficient, but it works 

because of locality. 

¢ At any point in time, programs tend to access a set of active 
virtual pages called the working set
§ Programs with better temporal locality will have smaller working sets

¢ If (working set size < main memory size) 
§ Good performance for one process after compulsory misses

¢ If ( SUM(working set sizes) > main memory size ) 
§ Thrashing: Performance meltdown where pages are swapped (copied) 

in and out continuously
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VM as a Tool for Memory Management
¢ Key idea: each process has its own virtual address space

§ It can view memory as a simple linear array
§ Mapping function scatters addresses through physical memory

§ Well-chosen mappings can improve locality
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VM as a Tool for Memory Management
¢ Simplifying memory allocation

§ Each virtual page can be mapped to any physical page
§ A virtual page can be stored in different physical pages at different times

¢ Sharing code and data among processes
§ Map virtual pages to the same physical page (here: PP 6)
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Simplifying Linking and Loading

¢ Linking
§ Each program has similar virtual 

address space
§ Code, data, and heap always start 

at the same addresses.

¢ Loading 
§ execve allocates virtual pages 

for .text and .data sections & 
creates PTEs marked as invalid

§ The .text and .data sections 
are copied, page by page, on 
demand by the virtual memory 
system

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp
(stack 
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded 
from 
the 
executable 
file
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VM as a Tool for Memory Protection
¢ Extend PTEs with permission bits
¢ MMU checks these bits on each access

Process i: AddressREAD WRITE
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•••

Process j:

Yes

SUP

No
No
Yes

AddressREAD WRITE

PP 9Yes No
PP 6Yes Yes
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Summary: Why virtual memory?
¢ Illusion of a large address space

§ Use physical memory as a cache for disk-resident virtual address 
space

¢ Efficient memory management 
§ Processes have a uniform memory map and layout
§ Easy for compiler/linkers to target a uniform address space

¢ Sharing of code and data
§ Processes can share code and data efficiently
§ Multiple virtual pages mapped to one physical copy of data

¢ Protection
§ Use bits in the page table entries to protect invalid accesses
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VM Address Translation
¢ Virtual Address Space

§ V = {0, 1, …, N–1}

¢ Physical Address Space
§ P = {0, 1, …, M–1}

¢ Address Translation
§ MAP:  V ® P  U  {Æ}
§ For virtual address a:

§ MAP(a)  =  a’ if data at virtual address a is at physical address a’ in P
§ MAP(a)  = Æ if data at virtual address a is not in physical memory

– Either invalid or stored on disk
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Summary of Address Translation Symbols
¢ Basic Parameters

§ N = 2n : Number of addresses in virtual address space
§ M = 2m : Number of addresses in physical address space
§ P = 2p : Page size (bytes)

¢ Components of the virtual address (VA)
§ TLBI: TLB index
§ TLBT: TLB tag
§ VPO: Virtual page offset 
§ VPN: Virtual page number 

¢ Components of the physical address (PA)
§ PPO: Physical page offset (same as VPO)
§ PPN: Physical page number
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Address Translation With a Page Table

Virtual page number (VPN) Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address

Physical address

Valid Physical page number (PPN)

Page table 
base register

(PTBR)

Page table 

Physical page table 
address for the current
process

Valid bit = 0:
Page not in memory

(page fault)

0p-1pn-1

0p-1pm-1

Valid bit = 1
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Address Translation: Page Hit

1) Processor sends virtual address to MMU 

2-3) MMU fetches PTE from page table in memory

4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

MMU Cache/
MemoryPA

Data

CPU
VA

CPU Chip PTEA

PTE
1

2

3

4

5
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Address Translation: Page Fault

1) Processor sends virtual address to MMU 
2-3) MMU fetches PTE from page table in memory
4) Valid bit is zero, so MMU triggers page fault exception
5) Handler identifies victim (and, if dirty, pages it out to disk)
6) Handler pages in new page and updates PTE in memory
7) Handler returns to original process, restarting faulting instruction

MMU Cache/
Memory

CPU VA

CPU Chip PTEA

PTE
1

2

3

4

5

Disk

Page fault handler

Victim page

New page

Exception

6

7
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Integrating VM and Cache

VACPU MMU

PTEA

PTE

PA

Data

Memory
PAPA

miss

PTEAPTEA
miss

PTEA 
hit

PA 
hit

Data

PTE

L1
cache

CPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address
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Speeding up Translation with a TLB

¢ Page table entries (PTEs) are cached in L1 like any other 
memory word
§ PTEs may be evicted by other data references
§ PTE hit still requires a small L1 delay

¢ Solution: Translation Lookaside Buffer (TLB)
§ Small set-associative hardware cache in MMU
§ Maps virtual page numbers to  physical page numbers
§ Contains complete page table entries for small number of pages
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Accessing the TLB
¢ MMU uses the VPN portion of the virtual address to 

access the TLB:

TLB tag (TLBT) TLB index (TLBI)
0p-1pn-1

VPO

VPN

p+t-1p+t

PTEtagv
…

PTEtagvSet 0

PTEtagv PTEtagvSet 1

PTEtagv PTEtagvSet T-1

T = 2t sets

TLBI selects the set

TLBT matches tag 
of line within set
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TLB Hit

MMU Cache/
Memory

CPU

CPU Chip

VA
1

PA

4

Data
5

A TLB hit eliminates a memory access

TLB

2

VPN

PTE

3
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TLB Miss

MMU Cache/
MemoryPA

Data

CPU
VA

CPU Chip

PTE

1

2

5

6

TLB

VPN

4

PTEA
3

A TLB miss incurs an additional memory access (the PTE)
Fortunately, TLB misses are rare. Why?



Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Multi-Level Page Tables
¢ Suppose:

§ 4KB (212) page size, 48-bit address space, 8-byte PTE 

¢ Problem:
§ Would need a 512 GB page table!

§ 248 * 2-12  * 23 = 239 bytes

¢ Common solution: Multi-level page table
¢ Example: 2-level page table

§ Level 1 table: each PTE points to a page table (always 
memory resident)

§ Level 2 table: each PTE points to a page 
(paged in and out like any other data)

Level 1
Table

...

Level 2
Tables

...
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A Two-Level Page Table Hierarchy
Level 1

page table

...

Level 2
page tables

VP 0

...

VP 1023

VP 1024

...

VP 2047

Gap

0

PTE 0

...

PTE 1023

PTE 0

...

PTE 1023

1023 null
PTEs

PTE 1023 1023 
unallocated

pages
VP 9215

Virtual
memory

(1K - 9)
null PTEs 

PTE 0

PTE 1

PTE 2 (null)

PTE 3 (null)

PTE 4 (null)

PTE 5 (null)

PTE 6 (null)

PTE 7 (null)

PTE 8

2K allocated VM pages
for code and data

6K unallocated VM pages

1023 unallocated  pages

1 allocated VM page
for the stack

32 bit addresses, 4KB pages, 4-byte PTEs
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Translating with a k-level Page Table

Page table 
base register

(PTBR)

VPN 1
0p-1n-1

VPOVPN 2 ... VPN k

PPN

0p-1m-1
PPOPPN

VIRTUAL ADDRESS

PHYSICAL ADDRESS

... ...

Level 1
page table

Level 2
page table

Level k
page table
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Summary

¢ Programmer’s view of virtual memory
§ Each process has its own private linear address space
§ Cannot be corrupted by other processes

¢ System view of virtual memory
§ Uses memory efficiently by caching virtual memory pages

§ Efficient only because of locality
§ Simplifies memory management and programming
§ Simplifies protection by providing a convenient interpositioning point 

to check permissions
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Agenda
¢ Simple memory system example
¢ Case study: Core i7/Linux memory system
¢ Memory mapping
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Review of Symbols
¢ Basic Parameters

§ N = 2n : Number of addresses in virtual address space
§ M = 2m : Number of addresses in physical address space
§ P = 2p : Page size (bytes)

¢ Components of the virtual address (VA)
§ TLBI: TLB index
§ TLBT: TLB tag
§ VPO: Virtual page offset 
§ VPN: Virtual page number 

¢ Components of the physical address (PA)
§ PPO: Physical page offset (same as VPO)
§ PPN: Physical page number
§ CO: Byte offset within cache line
§ CI: Cache index
§ CT: Cache tag
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Simple Memory System Example
¢ Addressing

§ 14-bit virtual addresses
§ 12-bit physical address
§ Page size = 64 bytes

13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 10 9 8 7 6 5 4 3 2 1 0

VPO

PPOPPN

VPN

Virtual Page Number Virtual Page Offset

Physical Page Number Physical Page Offset
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1. Simple Memory System TLB
¢ 16 entries
¢ 4-way associative

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet
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2. Simple Memory System Page Table
Only show first 16 entries (out of 256)

10D0F
1110E
12D0D
0–0C
0–0B
1090A
11709
11308

ValidPPNVPN

0–07
0–06
11605
0–04
10203
13302
0–01
12800

ValidPPNVPN
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3. Simple Memory System Cache
¢ 16 lines, 4-byte block size
¢ Physically addressed
¢ Direct mapped

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

03DFC2111167

––––0316

1DF0723610D5

098F6D431324
––––0363

0804020011B2

––––0151

112311991190

B3B2B1B0ValidTagIdx

––––014F

D31B7783113E

15349604116D

––––012C
––––00BB

3BDA159312DA

––––02D9

8951003A1248

B3B2B1B0ValidTagIdx



Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Address Translation Example #1
Virtual Address: 0x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __        PPN: ____

Physical Address

CO ___ CI___ CT ____ Hit? __              Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

00101011110000

0x0F 0x3 0x03 Y N 0x0D

0001010 11010

0 0x5 0x0D Y 0x36
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Address Translation Example #2
Virtual Address: 0x0020

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __        PPN: ____

Physical Address

CO___ CI___ CT ____ Hit? __              Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

00000100000000

0x00 0 0x00 N N 0x28

0000000 00111

0 0x8 0x28 N Mem
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Address Translation Example #3
Virtual Address: 0x0020

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __        PPN: ____

Physical Address

CO___ CI___ CT ____ Hit? __              Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

00000100000000

0x00 0 0x00 N N 0x28

0000000 00111

0 0x8 0x28 N Mem
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Agenda
¢ Simple memory system example
¢ Case study: Core i7/Linux memory system
¢ Memory mapping
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Intel Core i7 Memory System

L1 d-cache
32 KB, 8-way

L2 unified cache
256 KB, 8-way

L3 unified cache
8 MB, 16-way 

(shared by all cores)

Main memory

Registers

L1 d-TLB
64 entries, 4-way

L1 i-TLB
128 entries, 4-way

L2  unified TLB
512 entries, 4-way

L1 i-cache
32 KB, 8-way

MMU 
(addr translation)

Instruction
fetch

Core x4

DDR3 Memory controller
3 x 64 bit @ 10.66 GB/s

32 GB/s total (shared by all cores)

Processor package

QuickPath interconnect
4 links @ 25.6 GB/s each

To other 
cores
To I/O
bridge
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Review of Symbols
¢ Basic Parameters

§ N = 2n : Number of addresses in virtual address space
§ M = 2m : Number of addresses in physical address space
§ P = 2p : Page size (bytes)

¢ Components of the virtual address (VA)
§ TLBI: TLB index
§ TLBT: TLB tag
§ VPO: Virtual page offset 
§ VPN: Virtual page number 

¢ Components of the physical address (PA)
§ PPO: Physical page offset (same as VPO)
§ PPN: Physical page number
§ CO: Byte offset within cache line
§ CI: Cache index
§ CT: Cache tag
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End-to-end Core i7 Address Translation
CPU

VPN VPO
36 12

TLBT TLBI
432

...

L1 TLB (16 sets, 4 entries/set)

VPN1 VPN2
99

PTE

CR3

PPN PPO
40 12

Page tables

TLB
miss

TLB
hit

Physical
address 

(PA)

Result
32/64

...

CT CO
40 6

CI
6

L2, L3, and 
main memory

L1 d-cache 
(64 sets, 8 lines/set)

L1
hit

L1
miss

Virtual address (VA)

VPN3 VPN4
99

PTE PTE PTE
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Core i7 Level 1-3 Page Table Entries

Page table physical base address Unused G PS A CD WT U/S R/W P=1

Each entry references a 4K child page table. Significant fields:
P: Child page table present in physical memory (1) or not (0).

R/W: Read-only or read-write access access permission for all reachable pages.

U/S: user or supervisor (kernel) mode access permission for all reachable pages.

WT: Write-through or write-back cache policy for the child page table. 

A:  Reference bit (set by MMU on reads and writes, cleared by software).

PS:  Page size either 4 KB or 4 MB (defined for Level 1 PTEs only).

Page table physical base address: 40 most significant bits of physical page table 
address (forces page tables to be 4KB aligned)

XD: Disable or enable instruction fetches from all pages reachable from this PTE.

51 12 11 9 8 7 6 5 4 3 2 1 0
UnusedXD

Available for OS (page table location on disk) P=0

526263

Supplementary slide
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Core i7 Level 4 Page Table Entries

Page physical base address Unused G D A CD WT U/S R/W P=1

Each entry references a 4K child page. Significant fields:
P: Child page is present in memory (1) or not (0)

R/W: Read-only or read-write access permission for child page

U/S: User or supervisor mode access

WT: Write-through or write-back cache policy for this page

A: Reference bit (set by MMU on reads and writes, cleared by software) 

D: Dirty bit (set by MMU on writes, cleared by software)

Page physical base address: 40 most significant bits of physical page address 
(forces pages to be 4KB aligned)

XD: Disable or enable instruction fetches from this page.

51 12 11 9 8 7 6 5 4 3 2 1 0
UnusedXD

Available for OS (page location on disk) P=0

526263

Supplementary slide
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Core i7 Page Table Translation

CR3

Physical  
address

of page

Physical 
address

of L1 PT

9
VPO

9 12 Virtual 
address

L4 PT
Page 

table

L4 PTE

PPN PPO
40 12 Physical 

address

Offset into 
physical and 

virtual page

VPN 3 VPN 4VPN 2VPN 1

L3 PT
Page middle

directory

L3 PTE

L2 PT
Page upper

directory

L2 PTE

L1 PT
Page global

directory

L1 PTE

99

40
/

40
/ 40

/
40

/

40
/

12/

512 GB 
region 

per entry

1 GB 
region 

per entry

2 MB 
region 

per entry

4 KB
region 

per entry
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Cute Trick for Speeding Up L1 Access

¢ Observation
§ Bits that determine CI identical in virtual and physical address
§ Can index into cache while address translation taking place
§ Generally we hit in TLB, so PPN bits (CT bits) available next
§ “Virtually indexed, physically tagged”
§ Cache carefully sized to make this possible

Physical 
address 

(PA)

CT CO
40 6

CI
6

Virtual 
address 

(VA) VPN VPO

36 12

PPOPPN

Address
Translation

No
Change

CI

L1 Cache

CT Tag Check



Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Virtual Address Space of a Linux Process

Kernel code and data

Memory mapped region 
for shared libraries

Runtime heap (malloc)

Program text (.text)
Initialized data (.data)

Uninitialized data (.bss)

User stack

0

%rsp

Process
virtual
memory

brk

Physical memoryIdentical  for 
each process

Process-specific data
structs (ptables,

task and mm structs, 
kernel stack) Kernel

virtual 
memory

0x00400000

Different for 
each process
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vm_next

vm_next

Linux Organizes VM as Collection of “Areas” 
task_struct

mm_struct

pgdmm

mmap

vm_area_struct

vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

Text

Data

Shared libraries

0

¢ pgd: 
§ Page global directory address
§ Points to L1 page table

¢ vm_prot:
§ Read/write permissions for 

this area

¢ vm_flags
§ Pages shared with other 

processes or private to this 
process

vm_flags

vm_flags

vm_flags
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Linux Page Fault Handling 

read
1

write
2

read
3

vm_next

vm_next

vm_area_struct

vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

text

data

shared libraries
vm_flags

vm_flags

vm_flags

Segmentation fault:
accessing a non-existing page

Normal page fault

Protection exception:
e.g., violating permission by 
writing to a read-only page (Linux 
reports as Segmentation fault)
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Agenda
¢ Simple memory system example
¢ Case study: Core i7/Linux memory system
¢ Memory mapping
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Memory Mapping
¢ VM areas initialized by associating them with disk objects.

§ Process is known as memory mapping. 

¢ Area can be backed by (i.e., get its initial values from) :
§ Regular file on disk (e.g., an executable object file)

§ Initial page bytes come from a section of a file
§ Anonymous file (e.g., nothing)

§ First fault will allocate a physical page full of 0's (demand-zero page)
§ Once the page is written to (dirtied), it is like any other page

¢ Dirty pages are copied back and forth between memory and a 
special swap file.
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Virtual Address Space of a Linux Process

Kernel code and data

Memory mapped region 
for shared libraries

Runtime heap (malloc)

Program text (.text)
Initialized data (.data)

Uninitialized data (.bss)

User stack

0

%rsp

Process
virtual
memory

brk

Physical memoryIdentical  for 
each process

Process-specific data
structs (ptables,

task and mm structs, 
kernel stack) Kernel

virtual 
memory

0x00400000

Different for 
each process
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vm_next

vm_next

Linux Organizes VM as Collection of “Areas” 
task_struct

mm_struct

pgdmm

mmap

vm_area_struct

vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

Text

Data

Shared libraries

0

¢ pgd: 
§ Page global directory address
§ Points to L1 page table

¢ vm_prot:
§ Read/write permissions for 

this area

¢ vm_flags
§ Pages shared with other 

processes or private to this 
process

vm_flags

vm_flags

vm_flags



Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Sharing Revisited: Shared Objects

¢ Process 1  maps 
the shared 
object. 

Shared
object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory
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Sharing Revisited: Shared Objects

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

¢ Process 2 maps 
the shared 
object. 

¢ Notice how the 
virtual 
addresses can 
be different.

Shared
object
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Sharing Revisited: 
Private Copy-on-write (COW) Objects

¢ Two processes 
mapping a private 
copy-on-write 
(COW)  object. 

¢ Area flagged as 
private copy-on-
write

¢ PTEs in private 
areas are flagged 
as read-only

Private 
copy-on-write object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

Private
copy-on-write
area
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¢ Instruction writing 
to private page 
triggers 
protection fault. 

¢ Handler creates 
new R/W page. 

¢ Instruction 
restarts upon 
handler return. 

¢ Copying deferred 
as long as 
possible!

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

Copy-on-write

Write to private
copy-on-write

page

Private 
copy-on-write object

Sharing Revisited: 
Private Copy-on-write (COW) Objects
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User-Level Memory Mapping
void *mmap(void *start, int len,

int prot, int flags, int fd, int offset)

¢ Map len bytes starting at offset offset of the file specified 
by file description fd, preferably at address start
§ start: may be 0 for “pick an address”
§ prot: PROT_READ, PROT_WRITE, ...
§ flags: MAP_ANON, MAP_PRIVATE, MAP_SHARED, ...

¢ Return a pointer to start of mapped area (may not be start)
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User-Level Memory Mapping
void *mmap(void *start, int len,

int prot, int flags, int fd, int offset)

len bytes

start
(or address 

chosen by kernel)

Process virtual memoryDisk file specified by 
file descriptor fd

len bytes

offset
(bytes)

0 0



Carnegie Mellon

66Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Example: Using mmap to Copy Files

/* mmapcopy driver */
int main(int argc, char **argv)
{

struct stat stat;
int fd;

/* Check for required cmd line arg */
if (argc != 2) {

printf("usage: %s <filename>\n",
argv[0]);

exit(0);
}

/* Copy input file to stdout */
fd = Open(argv[1], O_RDONLY, 0);
Fstat(fd, &stat);
mmapcopy(fd, stat.st_size);
exit(0);

}

¢ Copying a file to stdout without transferring data to user 
space .

#include "csapp.h"

void mmapcopy(int fd, int size)
{

/* Ptr to memory mapped area */
char *bufp;

bufp = Mmap(NULL, size, 
PROT_READ,
MAP_PRIVATE, 
fd, 0);

Write(1, bufp, size);
return;

}

mmapcopy.c mmapcopy.c


