
Convener: Shoaib Akram
shoaib.akram@anu.edu.au

Ambiguity in Virtual Addressing
1
2
3
4
5
6
7
8

Al
ic

e
(a

 u
se

r)

(v
irt

ua
l a

dd
re

ss
 sp

ac
e)

(v
irt

ua
l P

ag
es

)

1
2
3
4
5
6
7
8 Bo

b
(a

no
th

er
 u

se
r)

(v

irt
ua

l a
dd

re
ss

 sp
ac

e)
(v

irt
ua

l P
ag

es
)

main memory

§ Virtual addresses have ambiguity
§ Block A in page # 1: Alice or Bob?
§ Translated virtual addresses are non-ambiguous
§ They pinpoint the location of a block in physical

memory (physical addresses)
§ OS/hardware does the translation

TA AA’
T

B’

Homonym and Synonym
§ Homonym

§ Two similar virtual addresses from different processes with different
physical addresses

§ Homonyms in English: same spelling, different meaning
§ Synonym

§ Two different virtual addresses (same process) with the same
physical address

§ Also called virtual aliases

Example of Homonym

§ Example 4K page size
§ Process 1 has pages A, B, C

and D
§ Page B is held on disk
§ Process 2 has pages X, Y, Z
§ Page Z is held on disk
§ Process 1 cannot access

pages X, Y, Z
§ Process 2 cannot access page

A, B, C, D
§ OS can access any page (full

privileges)

Key idea: Virtual page 0 of process 1, and
virtual page 0 of process B are homonyms

Example of Synonym

§ Process 1 and Process 2 want to
share a page of memory

§ Process 1 maps virtual page A to
physical page P

§ Process 2 maps virtual page Z to
physical page P

§ Permissions can vary between
the sharing processors.

§ Note: Process 1 can also map
the same physical page at
multiple virtual addresses

Key idea: Virtual pages B and C are
synonyms

TLB Issues
§ TLB is a dedicated cache for recently

accessed page table entries
§ Page tables (per process) are stored in

physical memory
§ Starting address of the table for the

currently executing process is in the page
table register (PTR)

§ Memory management unit (MMU) uses
the PTR to walk the page table (TLB miss)

§ TLB is exposed to the OS
§ Many scenarios require the OS to flush

an entry (or entries) from the TLB
§ Page replacement
§ Page remapping (in multicores, this

results in a TLB shootdown)

OS-maintained

Question
§ When we move a page to the swap area (e.g., on replacement) on

disk, there is no longer a virtualàphysical mapping in the page table.
What happens to the cached contents of that page in the processor
caches?
§ The OS flushes the contents from the cache when it decides to

migrate a page to disk
§ The attempt to access any data from that virtual page generates a

page fault

Tag Bits in the TLB
§ How many tag bits in each TLB entry?

§ 32-bit system, 4 KB page size, 256-entry
fully-associative TLB
§ Need to search every entry in the TLB

for a virtual page
§ 20 bits for the tag

§ 32-bit system, 4 KB page size, 256-entry
direct-mapped TLB
§ 8 bits for indexing the TLB
§ 12 bits for the tag

Note: If the virtual page and the physical frame are both the
same size (4 KB), then the low-order 12 bits of the physical
address remain unchanged after the translation from the
virtual address

index bits

Enabling Protection

Can add access rights to the page
table entries to protect certain pages
from being written

§ Malicious user can
manipulate page table entries

§ OS sets the bit on/off on a
user to kernel switch Access right check

MIPS

Cache Access with Virtual Mem
§ Recall the two major steps of accessing a four-way set-associative cache

§ Finding the set # (n low order bits)
§ Comparing each of the four tags to the tag bits of address (high order)

§ Question: To use virtual or physical address to index the cache?
§ Physically Indexed and Physically Tagged cache (PIPT)

§ TLB access is on the critical path
§ Virtually Indexed and Virtually Tagged cache (VIVT)

§ Two virtual pages (different processes, Alice & Bob) mapped to the
same physical address

§ Two virtual pages (one process, Alice) mapped to the same physical
page

PIPT (2-Way Set Assoc)
tag data (64 B)
tag data
tag data
tag data
tag data
tag data
tag data
tag data

way # 1

tag data (64 B)
tag data
tag data
tag data
tag data
tag data
tag data
tag data

way # 2

set # 0
set # 1
set # 3

…

System specs
§ 32 bit addresses
§ Page size = 4 KB
§ 4 GB physcial memory

Hypothetical cache
§ Block size = 64 bytes
§ # sets = 128
§ # sets X block size = 8 KB
§ Two pages fit in one unit/way

cache unit
8 KB …

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Virtual
Address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Physical
Address

Page Offset = 12 bitsTag # = 20 bits

Block Offset = 6 bitsSet Index = 7 bitsBlock Tag # = 19 bits

TLB

PIPT – Removing Ambiguity

§ Size of virtual and physical page is 4 KB
§ The low-order 12 bits do not change after translation
§ The page offset is used to index into the page to access the word/byte

§ We must remove the ambiguity in the 13th bit and wait for the translation
§ Two processes may have the same 13th bit in the virtual addresses but not in their

physical addresses

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Virtual
Address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Physical
Address

Page Offset = 12 bitsTag # = 20 bits

Block Offset = 6 bitsSet Index = 7 bitsBlock Tag # = 19 bits

TLB

PIPT
§ Advantage (Will become clear once we see other indexing

schemes)
§ No constraint on the size of the cache unit

§ (# sets X block size) can exceed the 4 KB page size
§ Multiple pages can fit inside a single unit

§ An easy way to build large caches without increasing
associativity

§ Disadvantage
§ TLB access and cache access are serialized
§ Must get translation from TLB to find the correct set in the

cache

VIVT

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Virtual
Address

Page Offset = 12 bitsTag # = 20 bits

Block Offset = 6 bits

Set Index = 7 bitsBlock Tag # = 19 bits

Two problems
§ Virtual aliasing due to multiple users

§ Cache flushing on a context switch solves this problem
§ Virtual aliasing due to multiple virtual pages mapped to a single

physical page
§ Two copies of the same physical block in the cache

(correctness problem)
§ How can we solve this problem?

Problem
Synonyms (aliases)

§ When the OS/program uses two virtual addresses for the same physical address
§ Allowed behavior with some practical uses

§ Duplicate addresses are aliases of each other
§ If one is modified, then the other has wrong data (impossible with a physical cache)

0

4 KB

8 KB

tag data (64 B)
tag data
tag data
tag data
tag data
tag data
tag data
tag data

way # 1

Virtual Space
Cache Way

Physical Space

block # 0

block # 64

block # 0A C

B
8 KB

Limit the cache unit size (# sets X block size) to be 4 KB

Solution

Dealing with Synonyms

0

4 KB

8 KB

tag data (64 B)
tag data
tag data
tag data

way # 1

Virtual Space
Cache Way

Physical Space

block # 0

block # 64

block # 0
4 KB

Dealing with synonyms comes with a limitation on cache
design

VIVT

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Virtual
Address

Page Offset = 12 bitsTag # = 20 bits

Block Offset = 6 bits

Set Index = 7 bitsBlock Tag # = 19 bits

Two problems
§ Virtual aliasing due to multiple users

§ Cache flushing on a context switch solves this problem
§ Virtual aliasing due to multiple virtual pages mapped to a single

physical page
§ Two copies of the same physical block in the cache

(correctness problem)
§ How can we solve this problem?

VIPT

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Virtual
Address

Page Offset = 12 bitsTag # = 20 bits

Block Offset = 6 bits

Set Index = 6 bits

Block Tag # = 20 bits

VIPT: Virtual Indexing and Physical Tags
§ Use virtual bits of the page offset to index the cache

§ Limitation: Cache unit size cannot exceed 4 KB
§ Use physical tags to eliminate ambiguity due to virtual aliases

(multiple users)
§ Better alternative to flushing on context switches

Limitation:
sets * line-size cannot be
greater than page size

VIPT

Operation of a cache with VIPT
§ Use the page offset to index the cache (step # 1)
§ In parallel, get the translation from the TLB (step # 1)
§ Then, compare the physical tag to the translated portion of the

address (step # 2)

Overlapped in time

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Virtual
Address

Page Offset = 12 bitsTag # = 20 bits

Block Offset = 6 bits

Set Index = 6 bits

Block Tag # = 20 bits

VIPT

(1) TLB access

(1) Cache indexing

(3) Tag comparison

Operation of a cache with VIPT
§ Use the page offset to index the cache (step # 1)
§ In parallel, get the translation from the TLB (step # 1)
§ Then, compare the physical tag to the translated portion of the

address (step # 2)

Overlapped in time

Question
§ The upper-most cache uses VIPT for performance reasons. With the size of the cache

unit limited to 4 KB, what option does a microarchitect has to increase the cache
capacity?
§ With OS vendors not taking measures to eliminate aliasing in software, the L1-D

cache size is stuck around 32 KB to 64 KB
§ Increasing associativity to increase cache capacity à High L1-D latency

tag data (64 B)
tag data
tag data
tag data
tag data
tag data
tag data
tag data

way # 1

tag data (64 B)
tag data
tag data
tag data
tag data
tag data
tag data
tag data

way # 2

set # 0
set # 1
set # 3

…4 KB
…

Popular Addressing Strategy
Level 1 is VIPT
Level 2-3 are PIPT

VIPT Example

<28>

Specs
§ Address spaces: 64-bit virtual, 41-bit physical
§ 8 KB page size
§ 8 KB direct-mapped L1 cache
§ 64 Byte blocks (lines)
§ 256 entry direct-mapped TLB
Explaining A-K (# bits)
8 KB page

§ 13 bit page offset (A)
§ 51 bits virtual page # (B)

256-entry direct-mapped TLB
§ 8 bits to index the TLB (C)
§ TLB tag is 51 minus 8 = 43 (D)

Tagging the physcial pages
§ 41 – 13 = 28 (H,I)

L1 Cache
§ 64-byte line size (6 bits) E
§ 128 sets (blocks) à 7 bits F

AB

EFCD

G H I K

Example: PIPT Addressed Cache

Complete the translation
before indexing the
cache

