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Plan & Progress
Week 1:  Motivation, overview, & ISA revision

Week 2:  Digital logic & Single-Cycle MIPS/ARM CPU

This Week: Performance & In-Order Pipelined CPU



Big Picture
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ISA is the boundary

C Program

Assembly
compiler
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§ Fetch
§ Decode/Reg-Read
§ Execute
§ Memory Access
§ Writeback

Single-Cycle CPU Summary
ARM Black à Datapath

Blue à Control



§ Fetch
§ Decode/Reg-Read
§ Execute
§ Memory Access
§ Writeback

Single-Cycle CPU Summary
MIPS



Performance Analysis
§ We want the fastest (best performing) computer for a task

§ How should we measure and report performance?
§ Which metric is fair for comparing two computers?

§ Number of instructions
§ Clock frequency
§ Cycles per Instruction (CPI)
§ Number of cores

Important to understand the true, 
gimmick-free measure of computer 
performance



# Instructions
§ RISC computer

§ Many more simple instructions
§ But simple hardware means shorter clock cycle 

§ CISC computer
§ Small number of instructions

§ But complex hardware means longer clock cycle

Bottomline: Number of instructions alone is not a good metric 
for quantifying the performance of applications



CISC Instructions vs. Critical Path
sum  $dst-reg, $src1-reg, #offset($src2-reg)

Changes to CPU datapath/ctrl to support sum? 



Clock Frequency
§ Consider the two scenarios

§ Computer A has a faster clock rate than computer B
§ But A executes more instructions than B

§ Computer A has a faster clock rate than computer B
§ But A takes multiple cycles to execute an instruction

§ Is A faster than B?

Bottomline: Clock frequency alone is not a fair metric for 
comparing the performance of A and B



Cycles per Instruction (CPI)
§ Cycles per instruction

§ Ratio of # cycles to # instructions
§ A program has 10 instructions. Each instruction takes one cycle

§ Instructions = 10, Cycles = 10, CPI = 1
§ A program has 10 instructions. Two out of 10 instructions take 

two cycles
§ Instructions = 10, Cycles = 12, CPI = 1.2

§ The inverse of CPI is called IPC (Instructions per Cycle)
§ Instructions per cycle 
§ For the above examples, IPC is 1 and 0.83



CPI
§ Reasons why each instruction can take multiple cycles

§ Multi-cycle CPU
§ Memory accesses take multiple cycles
§ Interrupts and exceptions
§ Stalls due to branches, jumps, page faults

§ Memory accesses (loads) take variable # cycles because 
§ Data may be present in faster (SRAM) cache 
§ It may be present in slower main memory (DRAM)
§ Real DRAM has variable latency 

§ There is a small SRAM cache called a row buffer for 
storing recently accessed data



CPI
§ Two computers A and B have the same CPI for a specific 

program.  
§ Is there performance equivalent?

§ We need to know the cycle time
§ We need to know the # instructions

§ Question: List two conditions which if satisfied make IPC a fair 
metric for comparing two microarchitectures.

Bottomline: CPI alone is not a good metric for quantifying the 
performance of application A



The # cycles a processor takes to execute a program divided by the 
total # instructions (inverse is instructions per cycle or IPC)

Cycles per Instructions (CPI)

IPC is used in microarchitectural studies (It reveals insight about the 
instruction throughput, bottleneck identification)

It can be estimated using an architectural simulator or performance 
counter hardware on modern processors



Execution Time
§ The time it takes for a program to execute from start to finish 

is the only true/golden measure of performance

Execution	time	= (#instructions)( !"!#$%
&'%()*!(&+'

) (%$!+',%
!"!#$

)

§ seconds per cycle = cycle time
§ Execution time is measured in seconds
§ Golden metric for quantifying computer performance!



Execution Time
Execution	time	= (#instructions)( !"!#$%

&'%()*!(&+'
) (%$!+',%

!"!#$
)

# instructions
§ Depends on the ISA, skill of programmer, compiler, 

algorithm, programming language
cycles per instruction

§ Depends on the microarchitecture esp. memory system, 
compiler, ISA, programming language, algorithm

seconds per cycle (a.k.a. clock cycle time, clock rate)
§ critical path, circuit technology, type of adders, gate-

level details, ISA



Exercise: Perf Analysis
§ Find the time it takes to execute a program with 100 billion 

instructions on a single-cycle CPU in 16 nm CMOS manufacturing 
process.  See the table for delays of logic elements.

Parameter Delay (ps)
tpcq_PC	 40
tmem 200
tdec 70
tmux 25
tRFread 100
tALU 120
tRFsetup 60

Tc =	tpcq_PC	+	2tmem +	tdec +	tRFread +	tALU +	
2tmux +	tRFsetup



A Performance Quiz Series
Pick all fair metrics to compare two alternative 
microarchitectures (same ISA/program/frequency)

→ #instructions

→ cycle time

→ cycles per instruction (CPI)

→ execution time



Pick all fair metrics to compare two alternative compilers 
(same ISA/program/microarchitecture)

→ #instructions

→ cycle time

→ cycles per instruction (CPI)

→ execution time

A Performance Quiz Series



Exercise

Class A B C
CPI for class 1 2 3
# instructions sequence 1 2 1 2
# instructions sequence 2 4 1 1

n Sequence 1: # instructions = 5
n Clock Cycles

= 2×1 + 1×2 + 2×3
= 10

n Avg. CPI = 10/5 = 2.0

n Sequence 2: # instructions = 6
n Clock Cycles

= 4×1 + 1×2 + 1×3
= 9

n Avg. CPI = 9/6 = 1.5

Alternative compiled code sequences using instructions in classes A, B, and C



Is instructions per second (IPS) a fair metric for:

→ comparing two microarchitectures

→ comparing two ISAs

→ comparing two compilers

→ comparing two algorithms 

A Performance Quiz Series

Millions of instructions per second (MIPS) was once used for marketing computers
(measured against a publicly known benchmark)  Please read Ch-1, Sec 1.6, PH1



A Performance Quiz Series

cycle Clock
Seconds

nInstructio
cycles Clock

Program
nsInstructioTime CPU ´´=

Which components of performance are affected by:

(A) Algorithm 

(B) Programming language 

(C) Compiler 

(D) ISA



A Performance Quiz Series

cycle Clock
Seconds

nInstructio
cycles Clock

Program
nsInstructioTime CPU ´´=

Which components of performance are affected by:

(A) Algorithm (# instructions, CPI)

(B) Programming language (# instructions, CPI)

(C) Compiler (# instructions, CPI)

(D) ISA (all three)



Measurement Methodology
§ The good practice: Take a program of interest and measure its 

execution time
§ The better practice: Take a collection of programs like the 

programs of interest, and measure their performance
§ In case you do not have the program yet
§ In case someone wants to measure perf. of your machine 

independently 
§ This collection of programs is called a benchmark suite

§ Dhrystone and CoreMark (embedded systems)
§ SPEC (Standard Performance Evaluation Corporation)
§ SPEC CPU is standard suite for high-performance CPUs



Speed of a Circuit

Arbitrary
Circuitinputs outputs

tpd

At a high level, an arbitrary digital circuit processes a group of inputs and 
produces a group of outputs

We needs metrics to quantify the speed with which we can process inputs to 
produce outputs (i.e., the performance of a circuit)

§ Latency:  The time required to produce one group of outputs once the 
inputs arrive (propagation delay, end-to-end latency)

§ Throughput: The number of input groups processed per unit of time



Example: Latency/Throughput
§ What is the latency and throughput for a tray of 

cookies?
§ Step # 1: Roll cookies (5 minutes)
§ Step # 2: Bake in the oven (15 minutes)
§ Once cookies are baked, start another tray

§ Latency (hours/tray):

§ Throughput (trays/hour):



Parallelism
Many scenarios in the real-world requires us to increase the 
throughput of the digital system

§ # add operations per second (ALU)
§ # instructions per second (CPU)

Parallelism is the key technique digital systems use to increase 
throughput

§ Process several inputs at the same time



Defining a Task
Task: The process of producing a group of outputs from a group of 
inputs can be considered a task

§ Add/Subtract
§ Fourier transform



Spatial Parallelism
Spatial Parallelism:  Use multiple copies of hardware 
(circuit) to get multiple tasks done at the same time

Arbitrary
Circuit

Arbitrary
Circuit

Arbitrary
Circuit

Arbitrary
Circuit

§ Suppose a task has a latency of L seconds
§ No spatial parallelism:  Throughput is 1/L (one task per L seconds)
§ N copies of hardware:  Throughput is N/L (N tasks per L seconds)
§ Gain in throughput (speedup) = N 



Note on Latency
Spatial Parallelism does not improve (reduce) the latency 
of the circuit.  We can finish more tasks per unit of time.  
But each task still takes L seconds 



Temporal Parallelism
Temporal Parallelism (pipelining):  Break down a circuit into 
stages, where each task passes through all stages, and multiple 
tasks are spread through stages  

Automotive pipeline 
§ Build multiple cars in parallel  
§ Each car goes through all stages 
§ Each stage requires different work
§ All stages should take (roughly) the 

same time



Pipelining
If a task is broken into N stages, and all stages are of equal length, 
then the throughput is N/L 

Arbitrary
Circuit

Tc

Arbitrary
Circuit

Tc

§ The challenge of pipelining is to find stages of equal length
§ Let’s go back to baking cookies



Cookie Parallelism
Ben and Jon are making cookies.  Let’s study the latency 
and throughput of rolling/baking many cookie trays with

§ No parallelism
§ Spatial parallelism
§ Pipelining
§ Spatial parallelism + pipelining



No Parallelism (Ben Only)

Time (mins)

0

Ben 1

5 10 15 20 25

Ben 1

30 35 40 45 50 55 60

Ben 2 Ben 2
Ben 3 Ben 3

Latency (hours/tray):
Throughput (trays/hour):



Spatial Parallelism (Ben & Jon) 

Time (mins)

0

Ben 1

5 10 15 20 25

Ben 1

30 35 40 45 50 55

Jon 1 Jon 1

60

Ben 2 Ben 2
Jon 2 Jon 2

Ben 3 Ben 3
Jon 3 Jon 3

Note: Jon owns a tray and oven (hardware duplication)

Latency (hours/tray):
Throughput (trays/hour):



Pipelining (Ben Only)

Time (mins)

0

Ben 1

5 10 15 20 25

Ben 1

30 35 40 45 50 55 60

Ben 2 Ben 2
Ben 3 Ben 3

Ben 4

Note: Ben decides not to waste a separate tray and oven

Latency (hours/tray):
Throughput (trays/hour):



Spatial + Temporal Parallelism

Time (mins)

0

Ben 1

5 10 15 20 25

Ben 1

30 35 40 45 50 55

Jon 1 Jon 1

60

Ben 2 Ben 2
Jon 2 Jon 2

Ben 3 Ben 3
Jon 3 Jon 3

Ben 4
Jon 4Latency (hours/tray):

Throughput (trays/hour):



Answers Explained
§ No parallelism

§ Latency is clearly 20 minutes (1/3 hours/tray)
§ Throughput is 3 trays per hour

§ Spatial parallelism
§ Latency remains unchanged as it still takes 20 mins to finish a tray
§ Throughput is doubled via duplication: 6 trays per hour

§ Pipelining
§ Latency for a single tray remains unchanged
§ Throughput: Ben puts a new tray in the oven every 15 minutes, so the 

throughput is 4 trays per hour
§ Note that in the first hour, Ben loses 5 minutes to fill the pipeline

§ Spatial parallelism + pipelining
§ Latency remains unchanged
§ Throughput: Ben & Jon combo puts two trays in the oven every 15 

minutes, so the throughput is 8 trays per hour



§ Divide a large combinational block/circuit into shorter stages 
§ Insert registers between the stages

§ The outputs from one stage are copied into a register and 
communicated to the next stage

§ Run the pipelined circuit at a higher clock frequency
§ Each clock cycle, data flows through the pipeline from left 

to the right
§ Multiple tasks can be spread across the pipeline

Pipelining Circuits



Sequential Laundry
Time

Alice

Bob

Tim

Wash Dry Fold Hang

A new load begins every 2 hours

6 
PM

8 
PM



Pipelined Laundry
Time

Alice

Bob

Tim

A new load begins every 30 mins
→ 120 mins divided by 4 
→ Speed-up of 4 (ideal)
→ Need sufficient workload

6 
PM

8 
PM

6:
30

 



Pipelined Performance
Our pipelined laundry system has four stages

→ k = 4, Speed-up approaches k for large workloads
→ Pipeline fill time: # time units it take for the first load to reach 

the last stage of the pipeline
→ Pipeline drain time: After the last load has entered the system, an 

additional k time units are needed to drain the pipeline

Pipelining paradox: Each load still takes the same time. Pipelining 
improves the throughput of the laundry system via parallelism



Pipelining Instruction Execution 
We can pipeline the single-cycle implementation of the MIPS ISA

Fetch

Decode + Register Read

Execute (Address gen)

Memory Access

Writeback



Performance Analysis
Find the average time b/w instructions of a single-cycle 
implementation to a pipelined implementation.



Performance Analysis
Find the average time b/w instructions of a single-cycle 
implementation to a pipelined implementation.

single-cycle
cycle time 

pipelined
cycle time 

internal fragmentation

Speedup of 4 (ideal = 5) Ideal period = 160 ps



Performance Analysis

2400

2400 ps (single cycle) versus 1400 ps (pipelined) à speedup = 1.7
Repeat the analysis for 1,000,003 instructions. Speedup?



Performance Analysis
2400 ps (single cycle) versus 1400 ps (pipelined) à speedup = 1.7
Repeat the analysis for 1,000,000 instructions. Speedup?

Nonpipelined execution time = 800 ps * 1,000,000 + 2400 ps 
= 800,002,400 ps

Pipelined execution time = 1,000,000 * 200 ps + 1400 ps 
= 200,001,400 ps

Nonpipelined/pipelined = 4.00



Register File Read/Write
Register file is shared by instruction decode and writeback stages of the pipeline

→ Need a policy to avoid race conditions due to simultaneous read & write
→ Read during the second half of the clock cycle 
→ Write during the first half of the clock cycle 



Pipelining Idealism
The laundry system provides an indeal speedup of k (=4), while 
realistic  processor pipelines deliver sub-optimal speedup. The 
disparity is due to three idealized assumptions (a.k.a. pipelined 
idealism) in the lanudry system.  

1. Uniform subcomputations
2. Identical computations
3. Independent computations



1. Uniform Subcomputations
The computation to be pipelined can be evenly partitioned into
k uniform-latency subcomputations. If the latency (clocking 
period) of the original computation is T, then the clocking 
period of the pipelined computation is T/k

In our previous example, instruction fetch has a latency of 
200 ps and register read has a latency of 100 ps

→ This inefficiency is called internal fragmentation of the 
pipeline stages

→ The new clock period is Tf divided by k where Tf is the 
worst-case stage delay



Example
Find the internal fragmentation of the following pipeline



Example
Find the internal fragmentation of the following pipeline

à (200 * 5) – 800 = 200 ps



Uniform Subcomputations
No inefficiency due to partitioning of the computation

No additional delays (e.g., due to buffering) 
→ Not realistic for actual processor pipelines

Challenge: Balancing pipeline stages

Sources of imbalanced stages?
→ E.g., Memory

Two approaches: (1) Computation merging (2) partitioning
Is the MIPS pipeline balanced? 



Problem
Two pipeline designs of the 5-stage generic 
instruction sequence

IF & ID

EXEC

MEM

WB

IF1

IF2

ID1

EX1

EX2

EX3

EX4

MEM1

MEM2

WB1

WB2

à Assume the total latency of five generic 
computations in the MIPS ISA is 280 ns. The 
clock cycle times for a 4-stage design and the 
11-stage design are 80 ns and 30 ns, respectively. 
What is the internal fragmentation for the two 
pipelines? What is the speedup relative to the 
nonpipelined implementation?



Solution
Two pipeline designs of the 5-stage generic 
instruction sequence

IF & ID

EXEC

MEM

WB

IF1

IF2

ID1

EX1

EX2

EX3

EX4

MEM1

MEM2

WB1

WB2

à Assume the total latency of five generic 
computations in the MIPS ISA is 280 ns. The 
clock cycle times for a 4-stage design and the 
11-stage design are 80 ns and 30 ns, respectively. 
What is the internal fragmentation for the two 
pipelines? What speedup do they offer relative to 
the nonpipelined implementation?

Speedup (4-stage) = 3.5X and (11-stage) = 9.3X
Frag (4-stage) = 40 ps and (11-stage) = 50 ps 



2. Identical Subcomputations
The same computation is repeatedly applied to different data 
over time

→ Wash, dry, fold, hang, but clothes(Alice) != clothes(Bob)

In a general-purpose pipeline, not all stages are used by all the 
instructions 

→ In a load-store architecture, arithmetic instructions do 
not use the MEM stage

→ This inefficiency is called external fragmentation of the 
pipeline stages



Identical Subcomputations
External fragmentaion leads to idle stages for some instruction 
types

Pipeline fill and drain cycles are also a form of external 
fragmentation since not all stages are busy during those cycles

Challenge: Unifying instruction types



3. Independent Subcomputations
All computations concurrently residing in the pipeline are 
independent (i.e., no control or data dependences)

A pipeline with independent computations operates in “streaming 
mode” or at full speed. If a later computation depends on an 
earlier computation that has not executed yet, the later 
computation waits in the pipeline (officially called pipeline stall) 

Challenge: Minimizing pipelines stalls



Multi-Clock-Cycle Diagrams
Each instruction (Y-axis) has its own datapath. Timeline  on X-axis 
Unless we save instructions, data, and control bits in pipeline registers, we lose 
the information about the previous instruction

Graph of 
instructions &
data flow over
time



Pipeline Registers (PPR)
IF/ID ID/EX EX/MEM MEM/WB ????

PPR: microarchitectural
state

RF: architectural
state



Width of Pipeline Regs
What is the width of each of the following pipeline registers?

IF/ID

ID/EX

EX/MEM

MEM/WB

Note: We will expand these registers as we build a more 
realistic pipeline



Width of Pipeline Regs
What is the width of each of the following pipeline registers?

IF/ID: 64

ID/EX: 128

EX/MEM: 97

MEM/WB: 64

Note: We will expand these registers as we build a more 
realistic pipeline



Shows the state of the entire datapath during a single cycle

Single-Clock-Cycle Diagrams

Vertical slice through a set of multiple clock cycle diagrams

Which instructions occupy what resources in a specific 
cycle?

Let’s look at single-clock cycle diagrams for load and store 
instructions



IF: Load/Store
shaded (left) portion means write



ID: Load/Store
shaded (right) portion means read



EX: Load



MEM: Load



WB: Load

Do you see a bug
in the load instruction?



WB: Load (Corrected)

write register write register write register



EX: Store



MEM: Store



Writeback: Store



Showing Resource Usage



We will see a lot of these in the in-order to out-of-order 
transition

Drawing Pipelines with Less Detail



Single-Cycle w/t multiple insts



Pipelined Control Unit
Strategy: Set the control lines during each stage
Each major component is active during a single stage

Do we need a write signal for PC and pipeline regs?

Where should we store the nine control signals for each instruction?



Pipelined Control
Control signals are generated during the decode stage
They move down the pipeline like any other data



Pipelined 
Control

EXID

MEM

WB
IF



Practice Problem
What is the width of each of the following pipeline registers?

IF/ID

ID/EX

EX/MEM

MEM/WB



Hazards
There are events in pipelining called hazards when the next 
instruction cannot execute in the following clock cycle

Coping mechanisms: Jump, 
Walk around, Forewarned, 
Stop, Find another way

Real life hazards

Some hurt performance
Others clever ways to get 
around the hazard



Types of Pipeline Hazards
Structural hazards (e.g., shared instruction/data memory) 

Data hazards (dependences)

Control hazards (branches)



Structural Hazards
Hardware cannot support the combination of instructions in 
the same clock cycle, e.g., unified instruction/data memory

F D E M W
F D E M W

F D E M W
F D E M W

C1 C2 C3 C4 C5 C6 C7 C8
I1
I2
I3
I4



Data/Control Hazards

backward flow, control hazard

backward flow, data hazard

forward flow, 
no hazard



Instructions and data generally flow from left to right

Right-to-left flow affect future instructions and leads to hazards
→ Writeback stage places the result into the register file 

(potential for data hazard) 
→ Selection of next PC, choice of PC + 4 or branch target 

address (MEM stage)

Data/Control Hazards



Pipeline Data Hazards
Data hazard: When an instruction cannot execute in the
proper clock cycle because data is not available

add $s0 $t0 $t1

sub $t2 $s0 $t3

Question: How many cycles the sub instruction needs to 
wait for the 5-stage MIPS pipeline?



add $s0 $t0 $t1

sub $t2 $s0 $t3

Cycle # add sub

1 IF ⚫

2 ID IF

3 EX ID

4 MEM EX

5 WB MEM

6 WB

Cycle # add sub

1 IF ⚫

2 ID ❌

3 EX ❌

4 MEM ❌

5 WB IF

6 ID

7 EX

8 MEM

9 WB

Cycle # add sub

1 IF ⚫

2 ID ❌

3 EX ❌

4 MEM IF

5 WB ID

6 EX

7 MEM

8 WB

No dependences
Read/Write RF in 
different cycles

Read/Write RF in the 
same cycle

⚫ Not Fetched
❌ Stall



Question
Who can rescue us from the pipeline stalls due to data 
hazards? 

→ Compiler
→ Hardware

Question: Does the sub instruction need to wait until the add 
instruction writes the new value of $s0 to the register file?

Compiler can reorder instructions or insert nops but 
dependences are too frequent. We need a different 
approach



Forwarding or Bypassing
Forwarding: Adding extra hardware to retrieve the missing operand 
early instead of waiting for the writeback (resolving data hazards)

valid path?



Forwarding or Bypassing
Forwarding: Adding extra hardware to retrieve the missing operand 
early instead of waiting for the writeback (resolving data hazards)

valid path?



Load-Use Data Hazard
Forwarding cannot prevent all stalls (e.g., load followed by use)
Pipeline stall/bubble: A stall introduced to resolve a hazard

Each cycle, a 
stage is idle due
to the bubble



Visualizing Bubbles

F D E M WI1
I2
I3
I4

C1 C2 C3 C4 C5 C6 C7 C8

à
Insts

F D E M W
F D E M W

F D E M W

💭
💭
💭

F D E M W
F D E M W

💭
💭



Forwarding Exercise 1

F D E M W
F D E M W

F D E M W
F D E M W

I1
I2
I3
I4

C1 C2 C3 C4 C5 C6 C7 C8 IF/ID

à
Insts

Is forwarding from I1(EX/MEM) to I2(ID/EX) valid?
Is forwarding from I1(MEM/WB) to I3(ID/EX) valid?
Is forwarding from I1(MEM/WB) to I2(ID/EX) valid?

ID/EX
EX/MEM
MEM/WB

PPR Code



Forwarding Exercise 1

F D E M W
F D E M W

F D E M W
F D E M W

C1 C2 C3 C4 C5 C6 C7 C8 IF/ID
ID/EX
EX/MEM
MEM/WB

PPR Code

❌

Is forwarding from I1(EX/MEM) to I2(ID/EX) valid?
Is forwarding from I1(MEM/WB) to I3(ID/EX) valid?
Is forwarding from I1(MEM/WB) to I2(ID/EX) valid?

I1
I2
I3
I4à

Insts



lw $t1 0($t0)

lw $t2 4($t0)

add $t3 $t1 $t2

sw $t3 12($t0)

lw $t4 8($t0)

add $t5 $t1 $t4

sw $t5 16($t0)

Find all the hazards and reorder the instructions to avoid stalls. 

Forwarding Exercise 2



Dependences, Data Hazard, Stall, 
and Forwarding
Data dependence is a property of the program

→ Instruction j reads what instruction i writes
Data dependence leads to hazard (depending on the microarchitecture)

→ We call it read-after-write (RAW) hazard
Stall is a hardware-based RAW-hazard-avoiding mechanism

→ Hurts performance because pipeline does not operate at full speed 
Forwarding is another hardware-based RAW-hazard-avoiding mechanism 

→ Except load-use hazards, pipeline operates at full speed 

Compiler can help
→ Insert nops (still need a hardware mechanism to stall just in case)
→ Reorder instructions (difficult because RAW is too common)  



1. Forwarding logic and control

2. Hazard detection logic (for load-use hazards)

3. Inserting pipeline bubbles/stalls/nops

Next Steps



1. Detecting the need to forward (forwarding conditions)

2. Designing a new forwarding unit for the processor

3. Introducing forwarding paths

4. Finalize changes to information in PPRs, and new control signals

Forwarding Implementation 



Dependences and Hazards
sub $2 $1 $3

and $12 $2 $5

or $13 $6 $2

add $14 $2 $2

sw $15 100($2)

Register $2 before sub instruction = 10
After sub = -20
All subsequent instructions must see -20 for $2 



Dependences and Hazards



Dependences and Hazards



Detecting the Need to Forward
The previous figure illustrates the goal of forwarding: When an 
instruction needs a register in the EX stage that an older 
instruction currently in MEM or WB stage intends to write, 
forward the result to the input of the ALU 



Detecting the Need to Forward
We need a notation to check for dependences between 
instructions about to execute and older ones in MEM/WB stages 

PPR.Field à A specific Field in the pipeline register PPR

EX/MEM.Rd à In the EX/MEM pipeline register, the 5-bit field 
for the destination register

ID/EX.Rs à In the ID/EX pipeline register, the 5-bit field for the 
first source register



Four Hazard Types
Type 1a. EX/MEM.RegisterRd = ID/EX.RegisterRs
Type 1b. EX/MEM.RegisterRd = ID/EX.RegisterRt
Type 2a. MEM/WB.RegisterRd = ID/EX.RegisterRs
Type 2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

Forward from 
EX/MEM PPR

Forward from 
MEM/WB PPR

Only forward when the older instruction intends to write
à EX/MEM.RegWrite is 1
àMEM/WB.RegWrite is 1



Exercise
sub $2 $1 $3

and $12 $2 $5

or $13 $6 $2

add $14 $2 $2

sw $15 100($2)

Classify the hazard types in the above 
sequence?



Forwarding Unit

Forwarding 
Unit

EX/MEM.RegisterRd

MEM/WB.RegisterRd

ID/EX.RegisterRs

ID/EX.RegisterRt

EX/MEM.
RegWrite

MEM/WB.
RegWrite

ForwardA ForwardB



Question

Where should we place the forwarding unit?

How does forwarding impact the logic at the 
inputs of the ALU in the EX stage?



Forwarding Paths

Expanded multiplexors 
to add forwarding
paths



Mux control Source Explanation

ForwardA = 00 ID/EX First ALU operand comes from the register file.

ForwardA = 10 EX/MEM The first ALU operand is forwarded from the prior ALU 
result.

ForwardA = 01 MEM/WB The first ALU operand is forwarded from data memory or 
an earlier ALU result.

ForwardB = 00 ID/EX The second ALU operand comes from the register file.

ForwardB = 10 EX/MEM The second ALU operand is forwarded from the prior ALU 
result.

ForwardB = 01 MEM/WB The second ALU operand is forwarded from data memory 
or an earlier ALU result.



Forwarding Conditions

if (EX/MEM.RegWrite
and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

ForwardA = 10

if (EX/MEM.RegWrite
and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

ForwardB = 10

EX hazard:



Forwarding Conditions

if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

ForwardA = 01

if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

ForwardB = 01

MEM hazard:



Double Data Hazard
add $1 $1 $2

add $1 $1 $3

add $1 $1 $4

Hazards between the results of an instruction in the WB stage, 
the result of an instruction in the MEM stage, and the source 
operand of an instruction in the ALU stage

à Which stage should forward the result to last add?



Forwarding Conditions

if (MEM/WB.RegWrite
and not (EX/MEM.RegisterWrite

and (EX/MEM.RegisterRd = ID/EX.RegisterRs)) 
and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

ForwardA = 01

MEM hazard:

if (MEM/WB.RegWrite
and not (EX/MEM.RegisterWrite

and (EX/MEM.RegisterRd = ID/EX.RegisterRt)) 
and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

ForwardB = 01



Pipelined Datapath 
+ Forwarding



Questions to Ponder
What about forwarding in other pipeline stages?

What type of forwarding do you need to accelerate memory copies?

What is the critical path impact of forwarding?





Fixed width (MIPS) vs. variable width (x86)
→ Fetch (1st stage) + Decode (2nd stage) is difficult with a 

more complex ISA

ISA Impacts

Complex addressing modes such as register-memory increase 
external fragmentation (makes unification of formats harder)

MIPS ISA has a few symmetric instruction formats. Asymmetric 
formats leads to fragmentation as above



Load/Store architecture makes dependence detection easy 
because there are no memory references except load/store insts

ISA Impacts

Operands in MIPS are aligned in memory (One memory transfer)

Clean and symmetric formats provides a clean dynamic-static 
interface (DSI), i.e., what to do statically (compile time) vs. 
dynamically (run-time) 

MIPS writes one result to the register file and always in the last 
stage (forwarding is easy)


