
Convener: Shoaib Akram
shoaib.akram@anu.edu.au

Plan
Week 4: Data and branch hazards, branch prediction

Week 4: Correlating predictors (via an example)

Week 5: Hybrid, Neural, and Tag-based predictors

Week 5: BTBs, Exception handling, Multiscalar Pipelines

Week 5: Move towards Out-of-Order

Reasons for Mispredictions
Unseen (cold) branches à training time

§ Relearning due to phase behavior
§ 2n history patterns for a BHR of size n

Randomized/cryptographic algorithms

Lack of information
§ Global history cannot see local

correlation
§ Not enough history bits

Negative interference/aliasing
§ Two branches with opposite bias map to the same

entry in the PHT
§ Contrast with neutral interference (similar bias)

Types of Aliasing
The three-C’s model: Compulsory Capacity Conflict

Compulsory aliasing
§ First use of address-history pair (approx. 1% mispredictions)

Capacity aliasing
§ Size of working set is greater than the size of PHT
§ 128-entry PHT, 129 branches in the program

Conflict aliasing
§ Two different address-history pairs map to the same PHT

entry
§ 128-entry PHT, 2 branches in the program with addresses

131 and 259

Interference-Reducing Predictors
The next two predictors try to reduce the negative interference
due to a shared PHT

gskewed Predictor

Bi-Mode Predictor

Branch Filtering

gskewed
Operation

§ Divide the PHT into multiple banks
§ Each bank is indexed with a different hash
§ Combine the results with a majority function
§ Total update: update all PHTs with the correct outcome
§ Partial update: Do not update the mispredicted bank if

overall prediction is correct

Intuition: If two branch-history pairs conflict in one PHT, then
they are unlikely to conflict in the other two PHTs

Is gshare not sufficient?
Consider the following branch-history pairs:

BHR 0 1 1 0

PC 1 1 0 0

Index 1 0 1 0

BHR 1 1 0 1

PC 0 1 1 1

Index 1 0 1 0

gshare

gskewed Predictor

Branch Address PHT0 PHT1 PHT2

Global BHR

f0

f1

f1

Majority

Branch Prediction

gskewed Predictor
f0(x,y) = H(y) ⊻ H-1(x) ⊻ x

f1(x,y) = H(y) ⊻ H-1(x) ⊻ y

f2(x,y) = H-1(y) ⊻ H(x) ⊻ x

§ (x,y) are n-bits long
§ H-1 is inverse of H

f0(x1) = f0(x2) then f1(x1) != f1(x2) and f2(x1) != f2(x2)

H(bn, bn-1,…,b3,b2,b1) = (bn XOR b1, bn, bn-1,…,b3,b2)

gskewed Predictor

11

PHT0

01

11

PHT1 PHT2

Majority

1 Branch Prediction

PC-History Pair

1 0 1Majority function masks
the disagreeing vote

Used in Alpha EV8
Never realized

Bi-Mode Predictor
Operation

§ Split branches into two groups (ST and SNT)
§ Use two PHTs (direction predictors) and index with the

same address-history hash
§ ST branches map to one PHT, and SNT branches to the other
§ A meta-predictor (choice predictor) selects the PHT bank
§ Index the choice predictor with the branch address

Intuition: Branches have a bias (ST or SNT). Separating them into two
PHT mitigates –ve interference. If two branches map to the same
entry in the PHT, they are unlikely to harm each other

Bi-Mode Predictor
Branch Address

Choice
PredictorPHT0

Branch Prediction

Mux

XOR

PHT1

Choice predictor is updated
with the branch outcome

Only the selected PHT bank
is updated after the
outcome is known

Branch History
NNNNNNNTNNTN

§ Which PHT?
§ Entries of PHT?

Bi-Mode Predictor
15% of Cortex A15 power

Sizing more complicated
as one needs to tune PHT
sizes and that of the
choice predictor

Branch Filtering
Intuition: Reduce the # branches stored in the PHT by removing
highly biased branches from the PHT

Operation
§ Track how many times a branch has gone in the same

direction
§ Beyond a threshold, a branch is “filtered” and no longer

updates the PHT
§ If the direction changes, reset the counter, and note the

new direction

Branch Filtering
Branch Address

Global BHR

Exclusive
OR

…

AND

Branch Prediction

Mux

direction

counter

Branch Counting Table

gshare

1 0

Alternative Context Predictors

Motivation: Can we combine all of the above into a single
context? Can we use per-branch-type information? Can we use
additional information to form context?

Tradeoffs in choosing the branch prediction context
• Local or global history
• Length of branch history register
• How many bits of the branch address?

Motivation: Distinguish the local and global correlations with
the same structure

Some mispredictions are due to
• Wrong type of history (wrong-history misprediction)
• Some branches prefer local, some global, and some

both

Alloyed History Predictor

Alloyed History Predictor

Branch Address

Add Local Global

Global BHR

Alloyed History
Local BHT

PHT

Branch Prediction

Loop Counting Predictors
If we want to accurately predict loops, what size BHR do we
need for a loop that iterates n times?

PHT size is exponential in the history length

Loop predictor in Pentium M
§ # iterations (limit)
§ Current count
§ Direction
§ Can detect 11101110 and 00010001

Sum: Assembly

MOV R1, #0
MOV R0, #0

FOR
CMP R0, #10
BGE DONE
ADD R1, R1, R0
ADD R0, R0, #1
B FOR

DONE

ARM Assembly code
; R0 = i, R1 = sum

C code:
int i;
int sum = 0;

for (i = 0; i < 10; i = i + 1) {
sum = sum + i;

}

check termination condition
to break out of the loop if
condition is met

keep iterating by
branching back

Example of NNNNNNNNNNT pattern

Sum: Alternative Approach
MOV R1, #0
MOV R0, #0

COND
CMP R0, #10
BLT FOR
B DONE

FOR
ADD R1, R1, R0
ADD R0, R0, #1
B COND

DONE

§ More faithfully follow the for loop
semantics in C

§ Use BLT instead of BGE

Example of TTTTTTTTTTN pattern

Loop Counting Predictors

Count Limit Prediction (P)

Final
Prediction (F)

Mux

0

1

=

XOR

The Pentium-M Loop Predictor Table (One entry)

0

C

P C F

0 0 0

0 1 1

1 0 1

1 1 0

count < limit

Motivation: Increasing the # history bits
§ Exponentially increases the PHT size
§ Many patterns are irrelevant (training noise)

The Perceptron Predictor

Question: Can we use more history bits without the
exponential increase in area?

§ Use perceptron for training the branch predictor
§ Use branch history as a feature vector (not index)

https://www.youtube.com/watch?v=5g0TPrxKK6o&ab_channel=Udacity

Perceptron Table of perceptron weights

w0 w1 w2 w3 wnBranch Address

X X X X X

Global BHR

x1 x2 x3 xn

1
x0

Bias

Addition Tree

Recompute
Tree

Updated weight values

Branch
Outcomesign bit

Branch Prediction

y

Hybrid Branch Predictors
Motivation: Programs contain a mix of branch types. Different
branches may be strongly correlated with different types of
history (i.e., global vs local)

Hybrid branch predictors employ two or more single-scheme
branch prediction algorithms

• Combine multiple predictions to make one final
prediction

McFarling (1993) proposed the multi-scheme tournament
predictor

Tournament Predictor
Branch Address

Meta
Predictor

P0 P1

Branch Prediction

Mux

Tournament Predictor
Branch Address

Meta
Predictor

P0: gshare

Branch Prediction

Mux

BHR

P1: PAp

XOR

C

PHTBHT
PHT

Operation
§ After the branch outcome is available, P0 and P1 are updated

according to their respective update rules
§ The meta-predictor is structurally identical to Smith2, the

update rules (state transitions) are different
§ The meta-predictor is indexed by the low-order bits of the

branch address
§ It makes a prediction which predictor will be correct

§ Meta prediction of 0 indicates that P0 should be used
§ Meta prediction of 1 indicates that P1 should be used
§ Meta-prediction is made from the most significant bit of the

counter

Tournament Meta-Predictor
P0/P1 both correct/incorrect: state unchanged

P1
(Strong)

P1
(Weak)

P0
(Strong)

P0
(Weak)

P0 Correct

P1 Correct

P0 Correct

P1 Correct

P1 CorrectP0 Correct

P0 Correct

P1 Correct

01

1011

00

Fusion-Based Hybrid Predictor
Motivation: Do not throw away the output from any
predictor

Fusion-Based Hybrid Predictor

Branch Address

Global BHR

Fusion
Table

Branch Prediction

P0 P1 P2 Pn

TAGE
TAgged GEometric Predictors
(state-of-the-art)

Two key innovations
• Use multiple history lengths

• History lengths make a geometric series
• Use tags to alleviate aliasing

Tagged Hybrid Predictors

Take prediction from the predictor with the longest
branch history and a matching tag, base = default.

