
Convener: Shoaib Akram
shoaib.akram@anu.edu.au

Plan
Week 4: Data and branch hazards, branch prediction

Week 4: Correlating predictors (via an example)

Week 5: Hybrid, Neural, and Tag-based predictors

Week 5: BTBs, Exception handling, Multiscalar Pipelines

Week 5: Move towards Out-of-Order

Brach Target Buffer (BTB)
§ We need for conditional branches (in the fetch stage)

§ Direction prediction
§ Target address prediction

§ Target address
§ Not taken branches: PC + sizeof(instruction)
§ Taken: Depends on the branch

§ Two types of branch target: PC-relative and indirect (register + constant)
§ Indirect branches are frequent in OOP, C++ vtable implementation, case

statements, and dynamically linked libraries (Section 2.7 and 2.12 of PH1)
§ Must also consider unconditional branches (always taken)

§ BTB (also called branch target address cache or BTAC) stores the last seen target
address for a branch instruction
§ Taken + hit in BTB à Fetch from predicted target
§ Taken + miss in BTB à Different policies (stall until resolved, non-taken target)

Brach Target Buffer (BTB)

cycle # 1

cycle # 2

cycle # 3

Phantom Branches
A predicted-taken branch that has no corresponding branch instruction

§ At fetch time, the BTB can make mistakes (aliasing)
§ Typically, the decode logic detects there is no branch and redirect the fetch in

the right direction

Predict
+ BTB I-Memcycle n

Fetch Instruction Pointer

cycle n +1 Predict
+ BTB I-MemDecode

BTB predicts taken

Decode detects no
branch. Wrong path
fetch

cycle n +2
Fetch from correct
path

Return Address Stack (RAS)
Function call

§ Jump into a function
§ Return from a function
§ Return target harder to detect (e.g., always jump from the same point to

printf() but printf() can be called from many program locations)

ISA support
§ Store the return address in a register
§ Push it on to the stack (programmer)
§ Return instruction (explicit return instruction or jump register)

RAS is a branch target predictor that provide target addresses for function returns

Return Address Stack (RAS)
RAS operation

§ On a function call, push the return address on top of the RAS
§ Pop the entry on a function return and use it as a prediction
§ Multiple entries in the RAS to support nested functions

How do we know if an instruction is a return in the fetch stage?
§ We do not. BTB provides an intitial target prediction for both the jump into a

function the return from a function
§ After the instruction is decoded, RAS provides the target (typically after

decode)
§ Without the RAS, target misprediction is not detected until the return address

is loaded from program stack into a register and the return instruction is
executed

Return Address Stack (RAS)
Question: Why do we need RAS if we have the return address on the
method stack?

§ We do not want to wait until the return address is popped from
the stack and the return instruction (or the jump and link
instruction) has executed

§ In multi-issue processors, pop and link instructions may be fetched
in the same issue packet
§ So to start fetching as soon as we can, we use an RAS

§ Furthermore, we use an RAS in the decode stage (or after) so we
can detect at least the branch instruction is a return

§ Meanwhile in the fetch stage the BTB can give an initial prediction
for the target address

Exceptions
Exceptions (or interrupts) are a form of control flow hazard

§ Disrupt the normal control flow due to an unexpected
event

§ User to kernel swicth, I/O request, arithmetic overflow,
undefined instruction, malfunction

Need to do two things
§ Save the address of the offending instruction in an

Exception Program Counter (EPC)
§ Transfer control to the OS at some specified address
§ Restart execution or terminate

Exception Handling
Two techniques

§ Vectored interrupts
§ Non-vectored interrupts (MIPS)

Vectored Interrupts
§ The interrupting device provides enough information to switch

control to the correct target address
§ The OS knows the reason for the interrupt when invoked

Non-Vectored Interrupts
§ Single point of entry regardless of the exception type
§ Note down the reason for the interrupt in a special cause register

Two additions to the pipeline
§ 32-bit EPC register (vectored or non-vectored)
§ 32-bit cause register (several bits unused)

Pipeline with Exceptions

overflow
signal

single entry
point

Example

instructions invoked on an exception

overflow exception!

Key Ideas to Handle Overflow
Exception
§ Execution must be stopped in the middle of the instruction

§ We must preserve the value of $1 to make the exception precise
§ At then end of the cycle in which the overflow is detected all Flush

signals must be asserted
§ Turn add into a nop

§ Fetch the first instruction for the exception routine
§ All instructions prior to add still complete
§ The ALU overflow signal is an input to the control unit

Exceptions Example

Exceptions Example

Instruction-Level Parallelism (ILP)
§ Pipelining exploits the parallelism among instructions

Two ways to increase parallelism
§ Increase the depth of the pipeline to overlap more instructions

§ Shorter clock cycle would potentially lead to greater performance
§ Launch multiple instructions in every pipeline stage

§ Multiple-issue pipelines
§ Need replication of components to launch multiple instructions in a

single clock cycle
§ CPI < 1 and IPC > 1

Multiple-Issue Pipelines
Two ways to issue multiple instruction in a cycle

§ Compile-time scheduling (e.g., very long instruction word or VLIW)
§ Statically pick set of instructions that issue together (called

issue packet)
§ Dynamic scheduling (superscalar)

Static instruction scheduling
§ Need to limit the co-executing instruction pairs (e.g., 1 ALU + 1 load)
§ Question: What changes do we need to the MIPS pipeline to support

dual-issue?
§ Question: How best to fill the issue packet (i.e., instruction pairs)?
§ Question: Who detects hazards and inserts stalls?

§ Compiler or hardware

Statically Scheduled Dual-Issue Pipeline

Example Scheduling

Static Multiple Issue + Loop Unrolling

Static multiple issue
§ Compiler packs instructions into a single long instruction word
§ Hardware fetches/executes issue packets: 2+ instructions
§ Very Long Instruction Word (VLIW): 4 or more instructions
§ Compiler picks the instruction mix
§ Compiler (typically) handles data/branch hazards
§ Hardware places constraints on the mix, e.g., ALU + Load

Loop unrolling
§ Compilation technique for exploiting instruction level parallelism
§ Make multiple copies of the loop body
§ Hardware schedules instructions from different iterations

addi $1, $1, -4 lw $0, 0($1)

Example
Schedule this loop on a static two-issue pipeline for MIPS

Loop: lw $t0 0($s1)

addu $t0 $t0 $s2

sw $t0 0($s1)

addi $s1 $s1 -4

bne $s1 $zero Loop

ALU or Branch
Instruction

Load/Store
Instruction

Clock Cycle

Loop: nop lw $t0, 0($s1) 1

addi $s1, $s1, -4 nop 2

addu $t0, $t0, $s2 nop 3

bne $s1, $zero, Loop sw $t0, 4($s1) 4

Loop: lw $t0 0($s1)

addi $s1 $s1 -4

addu $t0 $t0 $s2

bne $s1 $zero Loop

sw $t0 4($s1)

reordering

separate the
dependent
instructions
addi and bne

Change the
constant

IPC (ideal) = 2
IPC (real) = 1.25
Inefficient scheduling
à Three empty slots
à Not enough ILP
à ILP is found across large

instruction windows

Example
Schedule this loop on a static two-issue pipeline for MIPS
Loop: addi $s1 $s1 -8

lw $t0 8($s1)

addu $t0 $t0 $s2

sw $t0 8($s1)

lw $t1 4($s1)

addu $t1 $t1 $s2

sw $t1 4($s1)

bne $s1 $zero Loop

§ Register renaming: Use $t1 in addition
to $t0 to avoid WAR and WAW anti-
dependences.

§ Unrolling overhead: Subtract 8 at the
beginning and use constants to reduce
unrolling overhead

ALU or Branch
Instruction

Load/Store
Instruction

Clock
Cycle

Loop: addi $s1, $s1, -8 lw $t0, 0($s1) 1

nop lw $t1, 4($s1) 2

addu $t0, $t0, $s2 nop 3

addu $t1, $t1, $s2 sw $t0, 8($s1) 4

sw $t1, 4($s1) bne $s1, $zero, Loop 5

IPC (ideal) = 2
IPC (real) = 1.6
Inefficient scheduling
à Three empty slots
à Not enough ILP
à ILP is found across large

instruction windows

Example
Schedule this loop on a static two-issue pipeline for MIPS
Loop: addi $s1 $s1 -16

lw $t0 16($s1)

addu $t0 $t0 $s2

sw $t0 16($s1)

lw $t1 12($s1)

addu $t1 $t1 $s2

sw $t1 12($s1)

lw $t2 8($s1)

addu $t2 $t2 $s2

sw $t2 8($s1)

lw $t3 4($s1)

addu $t3 $t3 $s2

sw $t3 4($s1)

bne $s1 $zero Loop

ALU or Branch
Instruction

Load/Store
Instruction

Clock
Cycle

Loop: addi $s1, $s1, -16 lw $t0, 0($s1) 1

nop lw $t1, 12($s1) 2

addu $t0, $t0, $s2 lw $t2, 8($s1) 3

addu $t1, $t1, $s2 lw $t3, 4($s1) 4

addu $t2, $t2, $s2 sw $t0, 16($s1) 5

addu $t3, $t3, $s2 sw $t1, 12($s1) 6

sw $t2, 8($s1) 7

bne $s1, $zero, Loop sw $t3, 4($s1) 8

IPC (ideal) = 2
IPC (real) = 14/8 = 1.75

From In Order to Out of Order
A critical limitation of the 5-stage MIPS pipeline is the
blocking execute stage

§ Single universal unpipelined ALU
§ Execute stage blocks for multi-cycle operations
§ Cache misses block the execute stage

structural
hazards

The blocking execute stage hides a critical difference between the
in order and out-of-order issue policy

Structural hazards supersede data hazards
§ How RAW/WAR/WAW hazards are handled is not obvious

From In Order to Out of Order
Towards a more aggressive in-order scalar pipeline

§ Non-blocking execute stage (eliminate structural hazards)
§ State the nature of in-order issue policy

In-order issue policy
§ Younger instruction has a RAW hazard with an older instruction

(must stall and it’s ok!)
§ What about instructions after it? Some of the younger instructions

may be independent (this is where the problem lies)

From In Order to Out of Order
Out of order pipeline

§ An instruction stalls if it has a RAW hazard with a previous
instruction (that’s ok)

§ Independent instructions after it do not stall: they may
issue out of program order

Two alternatives for handling WAR and WAW
§ Stall the pipeline (in-order-style)
§ Register renaming (optional optimization)

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

Assumptions
Scalar:

§ fetch 1 inst/cycle
§ decode 1 inst/cycle
§ issue 1 inst/cycle to a function unit

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

Assumptions
Execute stage:

§ Contains multiple functional units (FUs) to support
different instruction classes

§ Multi-cycle function units are pipelined (FP mul, MAC)
§ May observe multiple instructions executing

concurrently, yet only 1 new instruction may begin
executing in a cycle (scalar issue)

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

Assumptions
Issue logic:

§ RAW hazard: Instruction stalls if its source registers
are not ready

§ WAW hazard: Non-blocking execute stage plus
variable FU latencies introduce out-of-order
writeback. Ok if writes to different registers. Not Ok if
writes are to the same register.

§ Instruction stalls if its destination register is “busy”,
i.e., conflicts with destination register of older
instruction in Execute stage

§ WAR hazard: Not a problem in in-order pipelines. In-
order issue ensures read by first instruction happens
before write by second instruction

Scenario 1: load miss followed by independent instructions

Cache Memory 101
§ Spatial Locality: If you access a memory location, likely

to access a nearby location in the near future
§ Temporal Locality: If you access a memory location,

likely to access it again in the near future

64 Bytes

64 Bytes

64 Bytes

64 Bytes

index

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE
i2
i3
i4

Scenario 1: load miss followed by independent instructions

i1: load r2, #0(r1)

i2: add r4, r3, #1

i3: add r6, r5, #2

i4: add r7, r6, #3

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i1

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE
i2 FE
i3
i4

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i2

i1 Scenario 1: load miss followed by independent instructions

i1: load r2, #0(r1)

i2: add r4, r3, #1

i3: add r6, r5, #2

i4: add r7, r6, #3

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR
i2 FE DE
i3 FE
i4

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i3

i2

i1

Scenario 1: load miss followed by independent instructions

i1: load r2, #0(r1)

i2: add r4, r3, #1

i3: add r6, r5, #2

i4: add r7, r6, #3

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@
i2 FE DE RR
i3 FE DE
i4 FE

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i4

i3

i2

i1

Scenario 1: load miss followed by independent instructions

i1: load r2, #0(r1)

i2: add r4, r3, #1

i3: add r6, r5, #2

i4: add r7, r6, #3

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@ EXD$ …miss…
i2 FE DE RR EX
i3 FE DE RR
i4 FE DE

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i5

i4

i3

i1
i2

miss

Scenario 1: load miss followed by independent instructions

i1: load r2, #0(r1)

i2: add r4, r3, #1

i3: add r6, r5, #2

i4: add r7, r6, #3

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@ EXD$ …miss…
i2 FE DE RR EX WB
i3 FE DE RR EX
i4 FE DE RR

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i6

i5

i4

i1
i3

miss

i2

Scenario 1: load miss followed by independent instructions

i1: load r2, #0(r1)

i2: add r4, r3, #1

i3: add r6, r5, #2

i4: add r7, r6, #3

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@ EXD$ …miss…
i2 FE DE RR EX WB
i3 FE DE RR EX WB
i4 FE DE RR EX

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i7

i6

i5

i1
i4

i3

miss

Scenario 1: load miss followed by independent instructions

i1: load r2, #0(r1)

i2: add r4, r3, #1

i3: add r6, r5, #2

i4: add r7, r6, #3

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@ EXD$ …miss…
i2 FE DE RR EX WB
i3 FE DE RR EX WB
i4 FE DE RR EX WB

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i8

i7

i6

i1
i5

i4

miss

Scenario 1: load miss followed by independent instructions

i1: load r2, #0(r1)

i2: add r4, r3, #1

i3: add r6, r5, #2

i4: add r7, r6, #3

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@ EXD$ …miss… WB
i2 FE DE RR EX WB
i3 FE DE RR EX WB
i4 FE DE RR EX WB

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i1

Scenario 1: load miss followed by independent instructions

i1: load r2, #0(r1)

i2: add r4, r3, #1

i3: add r6, r5, #2

i4: add r7, r6, #3

Scenario 2: Load miss followed by dependent instruction,
followed by independent instructions

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE
i2
i3
i4

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

i1: load r2, #0(r1)

i2: add r4, r2, #1

i3: add r6, r5, #2

i4: add r7, r6, #3

i1

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE
i2 FE
i3
i4

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

i1: load r2, #0(r1)

i2: add r4, r2, #1

i3: add r6, r5, #2

i4: add r7, r6, #3

i2

i1

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR
i2 FE DE
i3 FE
i4

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

i1: load r2, #0(r1)

i2: add r4, r2, #1

i3: add r6, r5, #2

i4: add r7, r6, #3

i3

i2

i1

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@
i2 FE DE RR
i3 FE DE
i4 FE

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

i1: load r2, #0(r1)

i2: add r4, r2, #1

i3: add r6, r5, #2

i4: add r7, r6, #3

i4

i3

i2

i1

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@ EXD$ …miss…
i2 FE DE RR RR
i3 FE DE DE
i4 FE FE

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

i1: load r2, #0(r1)

i2: add r4, r2, #1

i3: add r6, r5, #2

i4: add r7, r6, #3

i4

i3

i2

i1

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@ EXD$ …miss…
i2 FE DE RR RR RR RR RR RR
i3 FE DE DE DE DE DE DE
i4 FE FE FE FE FE FE

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

i1: load r2, #0(r1)

i2: add r4, r2, #1

i3: add r6, r5, #2

i4: add r7, r6, #3

i4

i3

i2

i1

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@ EXD$ …miss… WB
i2 FE DE RR RR RR RR RR RR EX
i3 FE DE DE DE DE DE DE RR
i4 FE FE FE FE FE FE DE

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

i1: load r2, #0(r1)

i2: add r4, r2, #1

i3: add r6, r5, #2

i4: add r7, r6, #3

i5

i4

i3

i1

i2

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@ EXD$ …miss… WB
i2 FE DE RR RR RR RR RR RR EX WB
i3 FE DE DE DE DE DE DE RR EX
i4 FE FE FE FE FE FE DE RR

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

i1: load r2, #0(r1)

i2: add r4, r2, #1

i3: add r6, r5, #2

i4: add r7, r6, #3

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i6

i5

i4

i2

i3

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@ EXD$ …miss… WB
i2 FE DE RR RR RR RR RR RR EX WB
i3 FE DE DE DE DE DE DE RR EX WB
i4 FE FE FE FE FE FE DE RR EX

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

i1: load r2, #0(r1)

i2: add r4, r2, #1

i3: add r6, r5, #2

i4: add r7, r6, #3

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i7

i6

i5

i3

i4

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@ EXD$ …miss… WB
i2 FE DE RR RR RR RR RR RR EX WB
i3 FE DE DE DE DE DE DE RR EX WB
i4 FE FE FE FE FE FE DE RR EX WB

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

i1: load r2, #0(r1)

i2: add r4, r2, #1

i3: add r6, r5, #2

i4: add r7, r6, #3

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i4

§ i2 must wait for i1
§ i2 depends on i1 (chain of dependent instructions)

§ i3, i4 need not wait for the i1-i2 chain
§ They are independent

§ But the i3-i4 chain stalls
§ Key insight: In-order issue translates into a structural hazard
§ RR stage (issue stage) blocked by the stalled i2

In-Order Issue Bottleneck

OOO pipeline unblocks RR (issue) using a new instruction buffer for stalled
data-dependent instructions

§ A structure with many names: “Reservation stations”, “issue buffer”,
“issue queue”, “scheduler”, “scheduling window”

§ Stalled instructions do not impede instruction fetch
§ Younger ready instructions issue and execute out of order

with respect to older non-ready instructions
§ Issue queue opens up the pipeline to future independent

instructions
§ Tolerate long latencies (cache misses, floating point)
§ Exploit ILP (critical for superscalar)

Issue Queue

Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

Out-of-Order Scalar Pipeline (v.1)

In-order fetch/dispatch engine

OOO issue/execute engine

Issue Queue (IQ)

insert instructions in order

Remove instructions out
of order

Summary and Exercises

In-order to OOO Transformation
Naïve in-order suffers from structural hazards

Aggressive in-order shows the real problem with in-order

In-order issue bottleneck: RAW hazards turn into structural hazards

Independent instructions after the dependent instruction stall

OOO pipeline unblocks RR (issue) using a new instruction buffer for stalled
data-dependent instructions

§ A structure with many names: “Reservation stations”, “issue buffer”,
“issue queue”, “scheduler”, “scheduling window”

Types of In-Order
Stall on miss (simple issue policy)

§ Stall the pipeline on a long-latency event such as a cache miss
§ Naïve, simplest, extremely low power environments
§ Can still have forwarding
§ MIPS 5-stage pipeline is stall-on-miss (although we avoided

structural hazards with simplified assumptions)
Stall on use (aggressive issue policy)

§ Stall the pipeline on a RAW hazard (when the “use” instruction is
encountered in the register read stage à issue logic)

§ Need book-keeping and hazard detection logic to track busy
registers (WAW) and outstanding events in the execute stage

§ Extra care for managing pipeline registers

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
i1
i2
i3
i4

Scenario 1: load miss followed by dependent instruction,
followed by load miss and a dependent instruction

i1: load r2, #0(r1)

i2: add r4, r2, #1

i3: load r6, #0(r5)

i4: add r7, r6, #3

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

Exercise 1

Fill the table below for stall-on-miss and stall-on-use.

The load-use scenario obfuscates the key distinction between stall-on-miss
and stall-on-use issue policies

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
i1 FE DE RR EX@ EXD$ …miss… WB
i2 FE DE RR RR RR RR RR RR EX WB
i3 FE DE DE DE DE DE DE RR EX@ EXD$ …miss… WB
i4 FE FE FE FE FE FE DE RR RR RR RR RR RR EX WB

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

Scenario 1: load miss followed by dependent instruction,
followed by load miss and a dependent instruction

i1: load r2, #0(r1)

i2: add r4, r2, #1

i3: load r6, #0(r5)

i4: add r7, r6, #3

cache miss is resolved

wasted fetch cycles wasted fetch cycles

Both scenarios
respond similarly

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
i1
i2
i3
i4

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

Scenario 2 (statically reordered): load miss followed by dependent
instruction, followed by load miss + dependent instruction

i1: load r2, #0(r1)

i2: load r6, #0(r5)

i3: add r4, r2, #1

i4: add r7, r6, #3

Fill the table below for stall-on-miss and stall-on-use.

Exercise 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
i1 FE DE RR EX@ EXD$ …miss… WB
i2 FE DE RR RR RR RR RR RR EX@ EXD$ …miss… WB
i3 FE DE DE DE DE DE DE RR RR RR RR RR RR EX WB
i4 FE FE FE FE FE FE DE DE DE DE DE DE RR EX WB

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

Stall-on-miss is unable to execute the two loads simultaneously (missed
opportunity to exploit memory-level parallelism)

Scenario 2 (statically reordered): load miss followed by dependent
instruction, followed by load miss + dependent instruction

i1: load r2, #0(r1)

i2: load r6, #0(r5)

i3: add r4, r2, #1

i4: add r7, r6, #3

miss miss

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
i1 FE DE RR EX@ EXD$ …miss… WB
i2 FE DE RR EX@ EXD$ …miss… WB
i3 FE DE RR RR RR RR RR EX WB
i4 FE DE DE DE DE DE DE RR EX WB

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

Stall-on-use can execute the two loads simultaneously and exploit
memory-level parallelism (with a little extra book-keeping hardware)

Scenario 2 (statically reordered): load miss followed by dependent
instruction, followed by load miss + dependent instruction

i1: load r2, #0(r1)

i2: load r6, #0(r5)

i3: add r4, r2, #1

i4: add r7, r6, #3

miss

