COMP3710 (Class # 5176)
Special Topics in Computer Science
Computer Microarchitecture

Convener: Shoaib Akram
shoaib.akram@anu.edu.au

Australian
2= National
5228 University

Plan

Week 4: Data and branch hazards, branch prediction
Week 4: Correlating predictors (via an example)

Week 5: Hybrid, Neural, and Tag-based predictors
Week 5: BTBs, Exception handling, Multiscalar Pipelines
Week 5: Move towards Out-of-Order

Brach Target Buffer (BTB)

= We need for conditional branches (in the fetch stage)
= Direction prediction
= Target address prediction
= Target address
= Not taken branches: PC + sizeof (instruction)
= Taken: Depends on the branch
= Two types of branch target: PC-relative and indirect (register + constant)
= |ndirect branches are frequent in OOP, C++ vtable implementation, case
statements, and dynamically linked libraries (Section 2.7 and 2.12 of PH1)
= Must also consider unconditional branches (always taken)
= BTB (also called branch target address cache or BTAC) stores the last seen target
address for a branch instruction
= Taken + hit in BTB = Fetch from predicted target
= Taken + miss in BTB > Different policies (stall until resolved, non-taken target)

Brach Target Buffer (BTB)

PC of instruction to fetch

Number of
entries
in branch-
target
buffer

Predicted PC

No: instruction is not
predicted to be a taken

branch; proceed normally

Yes: then instruction is taken branch and predicted
PC should be used as the next PC

cycle # 1

cycle # 2

cycle # 3

Send PC to memory and
branch-target buffer

IF
Entry found in
branch-target
buffer?
Send out
predicted
Is PC
instruction Yes
a taken
branch?
ID
Taken
Normal branch?
instruction
execution
!
Enter Mispredicted branch, Branch correctly
branch instruction kill fetched instruction; predicted;
EX address and next restart fetch at other continue execution

PC into branch-
target buffer

target; delete entry
from target buffer

with no stalls

Phantom Branches

A predicted-taken branch that has no corresponding branch instruction
= At fetch time, the BTB can make mistakes (aliasing)
= Typically, the decode logic detects there is no branch and redirect the fetch in
the right direction

Fetch Instruction Pointer

l
cycle n Fireelict BTB predicts taken
+ BTB
: Decode detects no
cycle n +1 PBISELE P:eB‘?ri;t branch. Wrong path
: fetch
|) Fetch from correct
cycle n +

path

Return Address Stack (RAS)

Function call
= Jump into a function
= Return from a function
= Return target harder to detect (e.g., always jump from the same point to
but can be called from many program locations)

ISA support
= Store the return address in a register
= Push it on to the stack (programmer)
= Return instruction (explicit return instruction or jump register)

RAS is a branch target predictor that provide target addresses for function returns

Return Address Stack (RAS)

RAS operation
= On afunction call, push the return address on top of the RAS
= Pop the entry on a function return and use it as a prediction
= Multiple entries in the RAS to support nested functions

How do we know if an instruction is a return in the fetch stage?

= \We do not. BTB provides an intitial target prediction for both the jump into a
function the return from a function

= After the instruction is decoded, RAS provides the target (typically after
decode)

= Without the RAS, target misprediction is not detected until the return address
is loaded from program stack into a register and the return instruction is
executed

Return Address Stack (RAS)

Question: Why do we need RAS if we have the return address on the
method stack?
= We do not want to wait until the return address is popped from
the stack and the return instruction (or the jump and link
instruction) has executed
= |n multi-issue processors, pop and link instructions may be fetched
in the same issue packet
= So to start fetching as soon as we can, we use an RAS
= Furthermore, we use an RAS in the decode stage (or after) so we
can detect at least the branch instruction is a return
= Meanwhile in the fetch stage the BTB can give an initial prediction
for the target address

Exceptions

Exceptions (or interrupts) are a form of control flow hazard
= Disrupt the normal control flow due to an unexpected
event
= User to kernel swicth, I/O request, arithmetic overflow,
undefined instruction, malfunction

Need to do two things
= Save the address of the offending instruction in an
Exception Program Counter (EPC)
= Transfer control to the OS at some specified address
= Restart execution or terminate

Exception Handling

Two techniques
= Vectored interrupts
= Non-vectored interrupts (MIPS)

Vectored Interrupts
= The interrupting device provides enough information to switch
control to the correct target address
= The OS knows the reason for the interrupt when invoked

Non-Vectored Interrupts
= Single point of entry regardless of the exception type
= Note down the reason for the interrupt in a special cause register

Two additions to the pipeline
= 32-bit EPC register (vectored or non-vectored)
= 32-bit cause register (several bits unused)

Pipeline with Exceptions

EX.Flush

IF.Flush

ID.Flush

/ Hazard \
— detection |
unit / ¥

) overflow K;J ID/EX

lwel '

Xc =)=

— Cause

E_I—'

2w T

ignal
we 0 (EX/MEM
M — i
Control > u M '\L’I' >|WB
X X
0

Shift
left 2

Instruction
memory

80000180

Y
\ \/ \ "Q?
\/
'

point @ . "

Data
memory

| MEM/WB
WB—4

EPC

M

M

¥ - x

Registers g
—@—>|
@ :i; ALU —>

M

single entry x
/

A

u

YYVY Y

Yy

Forwarding

xc =S

Example

40, ~sub
44~ and
48, or
4C,., ~add
50,,, slt
54w
80000180, ,

80000184,

$11,
$12,
$13,

$1,
$15,
$16,

SW
SW

$2, $4
$2, $5
$2, $6
$2, $1
$6, $7
50(%7)

$26,
$27,

overflow exception!

1000($0)
1004($0)

instructions invoked on an exception

Key Ideas to Handle Overflow
Exception

Execution must be stopped in the middle of the instruction

= We must preserve the value of $1 to make the exception precise
At then end of the cycle in which the overflow is detected all Flush
signals must be asserted

= Turn addintoanop

Fetch the first instruction for the exception routine

All instructions prior to add still complete

The ALU overflow signal is an input to the control unit

Exceptions Example

lw $16, 50($7)

IF.Flush

80000180 =

Clock 6

slt $15, $6, $7 X add $1, $2, $1 ' or$13,... |
EX.Flush
ID.Flush : : :
/~ Hazard X : i
detection | : ! !
unit ! X :
EX/MEM |
— MEM/WB
1
Data
memory

Exceptions Example

sw $25, 1000($0) | bubble (nop) | bubble . bubble , or $13,
! | EX.Flush |
IF.Flush ! | : :
; ID.Flush : | |
! /~ Hazard "\ ! ! !
| detection : ! - -
it : 0 : |
00 X X
u 1 1
0 o X 1 1
W EX/MEM !
OOOCause u T M E M/WB
EPC 0(X
—
M
— U
- X
\r_ ALU >
80000180_ M
80d »nl‘lll Data
X memory
m 13
u
g . .
Clock 7 | : % .
! , unit /< :

Instruction-Level Parallelism (ILP)

= Pipelining exploits the parallelism among instructions

Two ways to increase parallelism

= |ncrease the depth of the pipeline to overlap more instructions
= Shorter clock cycle would potentially lead to greater performance

= Launch multiple instructions in every pipeline stage
= Multiple-issue pipelines
= Need replication of components to launch multiple instructions in a

single clock cycle

= CPI<landIPC>1

Multiple-Issue Pipelines

Two ways to issue multiple instruction in a cycle
= Compile-time scheduling (e.g., very long instruction word or VLIW)
= Statically pick set of instructions that issue together (called
issue packet)
= Dynamic scheduling (superscalar)

Static instruction scheduling
= Need to limit the co-executing instruction pairs (e.g., 1 ALU + 1 load)
= Question: What changes do we need to the MIPS pipeline to support

dual-issue?
= Question: How best to fill the issue packet (i.e., instruction pairs)?

= Question: Who detects hazards and inserts stalls?
= Compiler or hardware

Statically Scheduled Dual-Issue Pipeline

(xez2) (=)

Write
data

Data
memory

Address

+
N o
4
o Registers
80000180 pcil,. |Instruction | -
memory >
@gn. 7N\
\Qnoﬂd | sign- |
\extend)
__/
Instruction type Pipe stages
ALU or branch instruction IF ID EX MEM WB
Load or store instruction IF ID EX MEM WB
ALU or branch instruction IF ID EX MEM WB
Load or store instruction IF ID EX MEM WB
ALU or branch instruction IF ID EX MEM WB
Load or store instruction IF ID EX MEM WB
ALU or branch instruction IF ID EX MEM WB
Load or store instruction IF ID EX MEM WB

Static Multiple Issue + Loop Unrolling

Static multiple issue
= Compiler packs instructions into a single long instruction word
= Hardware fetches/executes issue packets: 2+ instructions
= Very Long Instruction Word (VLIW): 4 or more instructions
= Compiler picks the instruction mix
= Compiler (typically) handles data/branch hazards
= Hardware places constraints on the mix, e.g., ALU + Load

Loop unrolling
= Compilation technique for exploiting instruction level parallelism
= Make multiple copies of the loop body
= Hardware schedules instructions from different iterations

Example

Schedule this loop on a static two-issue pipeline for MIPS separate the
dependent
Loop: W $0 0($s1) loop: w510 0fsst) T
addu $t0 $t0 $s2 reordering addi $s1 $s1 -4 addi gand bne
SW $t0 0($s1) > addu $t0 $t0 $s2
addi $s1 $s1 4 bne $s1 $zero Loop
bne $s1 $zero Loop SW $t0 4(%s1)
Change the
constant
ALU or Branch Load/Store Clock Cycle
Loop: lw $t0, 0($s1) IPC(reaI) =1.25

Inefficient scheduling

1
2
- Three empty slots
addu $t0, $t0, $s2 nop 3 - Not enough ILP
4

bne $s1, $zero, Loop sw $t0, 4($s1)

addi $s1, $s1, -4 nop

- ILP is found across large
instruction windows

Example

Schedule this loop on a static two-issue pipeline for MIPS

Loop: addi $s1 $s1 -8
ALU or Branch Load/Store
Iw $t0 8($s1) Instruction Instruction

addu $t0 $t0 $s2 Loop: addi $s1, $s1, -8 lw $t0, 0($s1) 1
Sw $t0 8($S1) nop lw $t1, 4($S1) 2
Iw $t1 4($s1) addu $t0, $t0, $s2 nop 3
addu $t1 $t1 $s2 addu $t1, $t1, $s2 sw $t0, 8($s1) 4
SwW 5t 4($s1) sw $t1, 4($s1) bne $s1, $zero, Loop 5
bne $s1 $zero Loop
IPC (ideal) =2
= Register renaming: Use $t1 in addition IPC (real) =1.6
to $t0 to avoid WAR and WAW anti- Inefficient scheduling
TR eTEs. - Three empty slots
= Unrolling overhead: Subtract 8 at the = Not enough ILP

- ILP is found across large

beginning and use constants to reduce
instruction windows

unrolling overhead

Example

Schedule this loop on a static two-issue pipeline for MIPS

Loop: addi $s1 $s1 -16
ALU or Branch Load/Store Clock
Iw $t0 16($s1) Instruction Instruction Cycle

addu $t0 $t0 $s2 Loop: addi $s1, $s1,-16 lw $t0, 0($s1) 1
SwW $t0 16($s1) nop lw $t1, 12($s1) 2
Iw $t1 12($s1) addu $t0, $t0, $s2 w $t2, 8($s1) 3
addu $t1 $t1 $s2 addu $t1, $t1 $s2. .=~ |w $t3 4($s1) 4
Sw $t1 12($s1) addu $t2, $t2 $52 - oW $t0 16($s1) 5
lw $t2 8($s1) addu $t3, $t3 $52 sw $t1, 12($s1) 6
addu $t2 $t2 $s2 sw $t2, 8($s1) 7
sw $t2 8(%s1) bne $s1, $zero, Loop sw $t3, 4($s1) 8
lw $t3 4($s1)

addu $t3 $t3 $s2 IPC (ideal) = 2

- $3 4($s1) IPC (real) =14/8=1.75

bne $s1 $zero Loop

From In Order to Out of Order

A critical limitation of the 5-stage MIPS pipeline is the
blocking execute stage T
= Single universal unpipelined ALU
= Execute stage blocks for multi-cycle operations
= Cache misses block the execute stage

structural
hazards

—

The blocking execute stage hides a critical difference between the
in order and out-of-order issue policy

Structural hazards supersede data hazards
= How RAW/WAR/WAW hazards are handled is not obvious

From In Order to Out of Order

Towards a more aggressive in-order scalar pipeline

= Non-blocking execute stage (eliminate structural hazards)
= State the nature of in-order issue policy

In-order issue policy

= Younger instruction has a RAW hazard with an older instruction
(must stall and it’s ok!)

What about instructions after it? Some of the younger instructions
may be independent (this is where the problem lies)

From In Order to Out of Order

Out of order pipeline

= Aninstruction stalls if it has a RAW hazard with a previous
instruction (that’s ok)

Independent instructions after it do not stall: they may
issue out of program order

Two alternatives for handling WAR and WAW
= Stall the pipeline (in-order-style)
= Register renaming (optional optimization)

Fetch

Decode

Register Read

Execute

Big

agen

Tiny, ALU

>
=
C

DS

Mem

Writeback

Fetch

Decode

Register Read

\

Execute

Big

agen

Tiny, ALU

>
=
C

DS

Mem

Writeback

Assumptions

Scalar:

fetch 1 inst/cycle
decode 1 inst/cycle
issue 1 inst/cycle to a function unit

Fetch
Decode

Register Read

Execute Assumptions
+|Big |agen | W Execute stage:
LALU | Bs = Contains multiple functional units (FUs) to support
Mem

different instruction classes

Multi-cycle function units are pipelined (FP mul, MAC)
= May observe multiple instructions executing
concurrently, yet only 1 new instruction may begin
executing in a cycle (scalar issue)

Writeback

Fetch
Decode

: Assumptions
Register Read

Issue logic:

Execute = RAW hazard: Instruction stalls if its source registers
+ | Big | agen are not ready
gL ALY | DS " WAW hazard: Non-blocking execute stage plus

Mem

variable FU latencies introduce out-of-order
writeback. Ok if writes to different registers. Not Ok if
writes are to the same register.

= Instruction stalls if its destination register is “busy’,
i.e., conflicts with destination register of older
instruction in Execute stage

= WAR hazard: Not a problem in in-order pipelines. In-
order issue ensures read by first instruction happens
before write by second instruction

Writeback

Scenario 1: load miss followed by independent instructions

Cache Memory 101

= Spatial Locality: If you access a memory location, likely
to access a nearby location in the near future

» Temporal Locality: If you access a memory location,
likely to access it again in the near future

64 Bytes

index 64 Bytes
64 Bytes
64 Bytes

Fetch

Decode

Register Read

Execute

Big
ALU

> -
>
c2|t

agen

DS

Mem

Writeback

O,

Scenario 1: load miss followed by independent instructions
i1:load r2, #0(r1)
i2:add r4, r3, #1
i3:add r6, r5, #2
i4:add r7, r6, #3

112 /3/4]/5]/6]7]8]9]10]11]12]13]

i1
i2
i3
i4

FE

Fetch

Decode

Register Read

Execute

Big
ALU

> -
>
c2|t

agen

DS

Mem

Writeback

i1
i2
i3
i4

Scenario 1: load miss followed by independent instructions
i1:load r2, #0(r1)
i2:add r4, r3, #1
i3:add r6, r5, #2
i4:add r7, r6, #3

112 13/4/5]/6]7]8]9]10]11]12]13]
DE

FE
FE

Decode Scenario 1: load miss followed by independent instructions

i1:load r2, #0(r1)

Register Read

Execute i2: add I’4, |’3,#1
+ | Big | asen i3:add 6, r5, #2
L
oy e et 4:add 17 16, #3

112]3/4/5]/6]7]8]9]10]11]12]13]
DE RR

i1 FE
i2 FE DE
i3 FE

i4

Register Read

+ | Big | ase
Tinyl ALU | DS
ALU Mem

i1
i2
i3
i4

Scenario 1: load miss followed by independent instructions
i1:load r2, #0(r1)
i2:add r4, r3, #1
i3:add r6, 5, #2
. \
i4:add 7, r6, #3

112]3/4]/5]/6]7]8]9]10]11]12]13]
DE

FE RR EXg
FE DE RR
FE DE

FE

Decode

Scenario 1: load miss followed by independent instructions

Register Read i1:load r2, #0(r1)

Execute i2: add r4, |’3,#1
@ Big | agen i3: add r6,\‘r5, H2
Al A | D211) miss 4:add 17, 16, #3

i1 FE RR EXe@ EXpsg ..Miss..
i2 FE DE RR EX
i3 FE DE RR

i4 FE DE

Scenario 1: load miss followed by independent instructions

i1:load r2, #0(r1)
i2:add r4, r3, #1

@Big agen i3: add r6,\‘r5,#2
ALY MDfn i1) miss 4:add 17, 6, #3

T)

i1 FE RR EXe@ EXpsg ..Miss..
i2 FE DE RR EX WB
i3 FE DE RR EX

i4 FE DE RR

Scenario 1: load miss followed by independent instructions

i1:load r2, #0(r1)
i2:add r4, r3, #1

@Big agen i3: add r6,\‘r5,#2
ALY MDfn i1) miss 4:add 17, 6, #3

T)

i1 FE RR EXe@ EXpsg ..Miss..
i2 FE DE RR EX WB
i3 FE DE RR EX WB

i4 FE DE RR EX

Scenario 1: load miss followed by independent instructions

i1:load r2, #0(r1)
i2:add r4, r3, #1

i5)| Big |asen i3:add r6, r5, #2

AOLALU | Do il) miss 4:add 17, 6, #3

Mem

i1 FE RR EXe@ EXpsg ..Miss..
i2 FE DE RR EX WB
i3 FE DE RR EX WB

i4 FE DE RR EX WB

Fetch
Decode

Register Read

Execute

+ | Big | agen
Tinvf ALU | D$

Mem

Writeback

Scenario 1: load miss followed by independent instructions

i1: load
i2: add
i3: add
i4: add

r2, #0(r1)
r4, r3, #1
ro, rb, #2
r7, r6, #3

O,

112 13/4]/5]/6]7]8]9]10]11]12]13]

i1 FE DE RR EXp EXps ...miss... WB
i2 FE DE RR EX WB

i3 FE DE RR EX WB

i4 FE DE RR EX WB

Load miss followed by dependent instruction,
followed by independent instructions

Fetch

Decode

Register Read

Execute

Big
ALU

> -
>
c2|t

agen

DS

Mem

Writeback

O,

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

i1:load r2, #0(r1)
N\
i2:add r4, r2, #1
i3:add ro, r5, #2
N\
i4:add 7, ro, #3

112 /3/4]/5]/6]7]8]9]10]11]12]13]

i1
i2
i3
i4

FE

Fetch

Decode

Register Read

Execute

Big
ALU

> -
>
c2|t

agen

DS

Mem

Writeback

i1
i2
i3
i4

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

i1:load r2, #0(r1)
N\
i2:add r4, r2, #1
i3:add ro, r5, #2
N\
i4:add 7, ro, #3

112 13/4/5]/6]7]8]9]10]11]12]13]
DE

FE
FE

Decode Scenario 2: load miss followed by dependent instruction, followed by

independent instructions

i1:load r2, #0(r1)
N

Register Read

Execute i2:add r4, r2, #1
Ti:y itgu agDesn i3:add 6, 5, #2
ALU -

Mem i4: add r7, I’6, #3

112]3/4/5]/6]7]8]9]10]11]12]13]
DE RR

i1 FE
i2 FE DE
i3 FE

i4

Register Read

+ | Big | ase
Tinyl ALU | DS
ALU Mem

i1
i2
i3
i4

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

i1:load r2, #0(r1)
AW
i2:add r4, r2, #1
i3:add ro, r5, #2
N\
i4:add 7, ro, #3

112 13/4/5]/6]7]8]9]10]11]12]13
DE

FE RR EXg
FE DE RR
FE DE

FE

e (@)

Decode e Scenario 2: load miss followed by dependent instruction, followed by

_ independent instructions
@ i1:load r2, #0(r1)
2200 12,8
Ti:y itgu agDeSn(. i3: add r6,\‘r5, H2
ALU Mem@ i4:add 17, r6, #3

i1 RR EXe@ EXpsg ..Miss..
i2 FE DE RR RR
i3 FE DE DE

i4 FE FE

= rech (@)

e Scenario 2: load miss followed by dependent instruction, followed by
independent instructions
@ i1: load rZ\#O(r1)
2:add 4, 12, #1
Ti:y Big | oeen i3:add r6, 5, #2
w2 MDS@ i4: add 7\ 6, #3
em 4. d r/, ro,

i1 FE RR EXe@ EXpsg ..Miss..
i2 FE DE RR RR RR RR RR RR
i3 FE DE DE DE DE DE DE

i4 FE FE FE FE FE FE

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions
i1: load rZ\#O(r1)
2:add 4, 12, #1
@ Big | agen i3:add r6, 5, #2
™ ALU | D$ N
ALU Mem i4: add r7, r6, #3

weechaci (@)

i1 FE RR EXe@ EXpsg ..Miss..
i2 FE DE RR RR RR RR RR RR EX
i3 FE DE DE DE DE DE DE RR

i4 FE FE FE FE FE FE DE

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions
i1: load rZ\#O(r1)
2:add 4, 12, #1
@ Big | agen i3:add r6, 5, #2
™ ALU | D$ N
ALU Mem i4: add r7, r6, #3

weechaci (@)

i1 FE RR EXe@ EXpsg ..Miss..
i2 FE DE RR RR RR RR RR RR EX WB
i3 FE DE DE DE DE DE DE RR EX

i4 FE FE FE FE FE FE DE RR

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions
i1:load r2, #0(r1)

N\
2ot 4

@ Big | agen 3:add 6, r5, #2
| ALU | DS &
A Mem 4:add 17, 16, #3

wiiteback (@)

i1 RR EXe@ EXpsg ..Miss..
i2 FE DE RR RR RR RR RR RR EX WB
i3 FE DE DE DE DE DE DE RR EX WB

i4 FE FE FE FE FE FE DE RR EX

Fetch

Decode

Register Read

Execute

Big

Tiny, ALU

agen

Writeback

i1
i2
i3
i4

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

i1:load r2, #0(r1)
AW
i2:add r4, r2, #1
i3:add ro, r5, #2
N\
i4:add 7, ro, #3

112 13/4]/5]/6]7]8]9]10]11]12]13]
DE

FE RR EXe EXos ...miss... WB
FE DE RR RR RR RR RR RR EX WB
FE DE DE DE DE DE DE RR EX WB

FE FE FE FE FE FE DE RR EX WB

In-Order Issue Bottleneck

= 12 mustwaitforil
= 12 dependson il (chain of dependent instructions)
= j3,1i4 need not wait forthe i1-12 chain
= They are independent
= Butthe 13-i4 chain stalls
m Key insight: In-order issue translates into a structural hazard
" RR stage (issue stage) blocked by the stalled 12

OO0O pipeline unblocks RR (issue) using a new instruction buffer for stalled

data-dependent instructions
= A structure with many names: “Reservation stations”, “issue buffer’,

VN4

“issue queue”, “scheduler”, “scheduling window”

Issue Queue

= Stalled instructions do not impede instruction fetch

= Younger ready instructions issue and execute out of order
with respect to older non-ready instructions

= |ssue queue opens up the pipeline to future independent
instructions

= Tolerate long latencies (cache misses, floating point)
= Exploit ILP (critical for superscalar)

Out-of-Order Scalar Pipeline (v.1)

Decode

. insert instructions in order
Register Read

Issue
Execute

+ | Big
Tiny, ALU

agen

DS

ALU

Mem

— In-order fetch/dispatch engine

\Is‘sue Queue (1Q) _

Remove instructions out —
of order

— 00O issue/execute engine

Summary and Exercises

In-order to OO0 Transformation

Naive in-order suffers from structural hazards
Aggressive in-order shows the real problem with in-order
In-order issue bottleneck: RAW hazards turn into structural hazards

Independent instructions after the dependent instruction stall

OO0O pipeline unblocks RR (issue) using a new instruction buffer for stalled

data-dependent instructions
= A structure with many names: “Reservation stations”, “issue buffer’,

V{4

“issue queue”, “scheduler”, “scheduling window”

Types of In-Order

Stall on miss (simple issue policy)
= Stall the pipeline on a long-latency event such as a cache miss
= Naive, simplest, extremely low power environments
= Can still have forwarding
= MIPS 5-stage pipeline is stall-on-miss (although we avoided
structural hazards with simplified assumptions)
Stall on use (aggressive issue policy)
= Stall the pipeline on a RAW hazard (when the “use” instruction is
encountered in the register read stage = issue logic)
= Need book-keeping and hazard detection logic to track busy
registers (WAW) and outstanding events in the execute stage
= Extra care for managing pipeline registers

Fetch

Decode

Register Read

Execute

Big

agen

Tiny, ALU

>
=
C

DS

Mem

Writeback

Exercise 1

Scenario 1: load miss followed by dependent instruction,
followed by load miss and a dependent instruction

i1:load r2, #0(r1)
N\
i2:add r4, r2, #1
13:load r6, #O0(r5)
N\
i4:add r7, r6, #3

Fill the table below for stall-on-miss and stall-on-use.
[[1]2[3]a][5[6[7[8]9 [10][11]12[13]14[15] 1617 [18]19]20]
i1

i2
i3
i4

Fetch

Scenario 1: load miss followed by dependent instruction,
followed by load miss and a dependent instruction

i1:load r2, #0(r1)
N

Decode

Register Read

Execute i2:add r4, r2, #1
* Big |agen i3:load r6, #O0(rb)
Tiny ALU DS \
ALU o i4:add r7, ro, #3
Writeback

cache miss is resolved

Both scenarios e S s e g 9 120 T 11 | 12 | 13 [14 | 15 16 | 17 118 | 191 20"

i1 FE DE RR EXp EXps ...miss... WB

respond similarly FE DE RR RR RR RR RR RR| Ex B
i3 FE DE DE DE DE DE DE| RR [Xe EXos ...miss... WB
i4 (FE rE FE FE FE FE] DE RR[RR RR RR RR RR] EX WB

wasted fetch cycles wasted fetch cycles

The load-use scenario obfuscates the key distinction between stall-on-miss
and stall-on-use issue policies

Fetch

Decode

Register Read

Execute

Big agen

Tinyl ALU | D$

>
=
C

Mem

Writeback

Exercise 2

Scenario 2 (statically reordered): load miss followed by dependent
instruction, followed by load miss + dependent instruction

i1:load r2, #0(r1)
i2:load r6, #O0(rb)
i3:add r4, r2, #1
i4:add r7, r6, #3

Fill the table below for stall-on-miss and stall-on-use.
[[1]2[3]a][5[6[7[8]9 [10][11]12[13]14[15] 1617 [18]19]20]
i1

i2
i3
i4

Fetch
Decode

Register Read

Execute

+ Big agen
Tinyl ALU | DS

Mem

Writeback

>
=
C

Scenario 2 (statically reordered): load miss followed by dependent
instruction, followed by load miss + dependent instruction

i1:load r2, #0(r1)
i2:load r6, #O0(rb)
i3:add r4, r2, #1
i4:add r7, r6, #3

) miss ‘) miss ‘
| | 1/2]3[4[5]6]7|8]9[10[11]12 1314151617 (1819 |20
i1 FE DE RR EXg EXps ..Mmiss... WB
i2 FE DE RR RR RR RR RR RR EXg EXpg ...Mmiss... WB
i3 FE DE DE DE DE DE DE RR RR RR RR RR RR EX WB
i4 FE FE FE FE FE FE DE DE DE DE DE DE RR EX WB

Stall-on-miss is unable to execute the two loads simultaneously (missed
opportunity to exploit memory-level parallelism)

Fetch
Decode

Register Read

Execute

+ Big agen
Tinyl ALU | DS

Mem

Writeback

>
=
C

Scenario 2 (statically reordered): load miss followed by dependent
instruction, followed by load miss + dependent instruction

i1:load r2, #0(r1)
i2:load r6, #O0(rb)

i3:add r4, r2, #1
i4:add r7, r6, #3
) miss R

| | 1]2]3[4]5]6]7]38] | 11 | 12 | | 15 | 16 | 17 | 18 | 19 | 20 |
i FE DE RR EXgp EXpg ...miss... WB
i2 FE DE RR EXg EXpg ..miss... WB
i3 FE DE RR RR RR RR RR|EX WB
i4 FE DE DE DE DE DE\DE RR EX WB

Stall-on-use can execute the two loads simultaneously and exploit
memory-level parallelism (with a little extra book-keeping hardware)

