COMP3710 (Class # 5176)
Special Topics in Computer Science
Computer Microarchitecture

Convener: Shoaib Akram
shoaib.akram@anu.edu.au

Australian
2= National
5228 University

Plan

Week 5: In-order to out-of-order (OOO) transformation

Week 6: OO0 v.1 (CDC 6600 Scoreboard) and OO0 v.2 (IBM 360/91)
Week 7: OOO v.3 a.k.a. Physical Register File (PRF) microarchitecture
Week 7: Load/Store queue and the load/store execution lane

Week 8+9: Cache design/implementation (assignment # 2)

Remaining topics: % Virtual memory, SMT, Multicores, DRAM, NVM

In-order to Out-of-Order

Fetch

mEEEEEEEEEEN - Ll
-----.--.----.---
"EEmag
LT
"

Decode

‘e
-
.
LY -

Decode
Rename

Execute

+

Big

agen

Tiny, ALU

ALU

DS

Mem

Writeback

Issue

Expanded Register File:
ARF (committed state) + ROB (speculative state)
L Provides for recovery and eliminated WAR/WAW

~ Insert instructions in order

Issue Queue (1Q)

Remove instructions out of order

Tiny,

ALU

Big
ALU

agen

DS

Commit instructions in-order from ROB to ARF

Revision: Main Concepts

Register renaming
= Rename logical registers to an extended set of physical registers
= Avoid WAR and WAW hazards (main structure: ROB or RS/1Q)
Dynamic scheduling
= Send instructions to the functional units out of the original program order (1Q)
Speculation
= Predict branch outcomes and execute instructions before branches are resolved +
have the ability to recover from mis-speculation (main structure: BPU/BTB/ROB)
Hardware speculation
= Dynamic branch prediction + dynamic scheduling + speculation
Precise interrupts
= On an exception, the architectural state must correspond to the sequential
architectural model (main structure: ROB)

Some Notes

Precise interrupts
= Must deal with this problem with or without speculation
= Dynamic scheduling alone makes precise interrupts challenging
= |BM 360/91 had dynamic scheduling but no precise interrupts (no ROB)
Speculation
= Recovery and repair mechanisms are a must have
= Cannot have branch prediction but no recovery
= |BM 360/91 had no speculation (i.e., no ROB and stall-on-branch)
Hardware speculation (dynamic scheduling + renaming + speculation)
= Dynamic scheduling + speculation: a very happy marriage
= |n contrast, dynamic scheduling alone only partially overlaps instructions (limited ILP)
= Without speculation, OO0 cannot schedule past a single basic block
= Basic block: Straight-line piece of code with no branches in except at the entry and
no branches out except at the exit

Quiz

Which of the following features were present in CDC 6600 scoreboard?
= Dynamic scheduling
= Register renaming
= Speculation
= Precise interrupts
= Hardware speculation

Scoreboard Register File
value

:
rof 1 ro #10
r2(1 r2| #666
rd| 1 r4| #667
re| 1 ré #17
r7(1 r7 #20
Issue Queue (1Q)

tag (wakeup) v | dst |rsl rsl rs2 rs2
-------------- > tag |rdy|tag/value |rdy|tag/value

+ | Bi Jeen 0 r7 1 #17 1 #3
r|blg | 0| 4 |1 | #e66 | 1| #1
Tinyl ALU | D$ o r6 | 1| #15 1 #2
ALU
Mem
Writeback
data Common Data Bus (CDB)

1112 /3]4]/5]617]8]9]10[11]12]13]14]15]16]17]
WB

il: load r2, #0(r1) FE DE RR DI IS EXe EXps ... Miss ...
i2: add r4, r2, #1 FE DE RR DI IS IS IS IS IS IS EX WB

i3: add r6, r5, #2 FE DE RR DI IS EX WB
i4: add r7, re, #3 FE DE RR DI IS EX WB

Quiz

Which of the following features were present in CDC 6600 scoreboard?
= Dynamic scheduling
= Register renaming
= Speculation
= Precise interrupts
= Hardware speculation

Quiz

Which of the following features were present in the initial IBM 360/917?
= Dynamic scheduling
= Register renaming
= Speculation
= Precise interrupts
= Hardware speculation

Register Read

Fetch

Decode

Rename

Dispatch

+

Tiny,
ALU

Big

ALU | DS

Mem

Writeback

Retire

ta

RS
Y Tag
rol] O -
ri| O -
r2] 1 | Loadl
r3| O -
r4| 1 Add2
r5| O -
re| O -
r7| O -

Rename

Map Table

(RMT)

Reservation Stations

dst |[rs1 rsl rs2 rs2 Station
---------- > tag |rdy|tag/value|rdy|tag/value| ID
g (wakeup) " Loadl
Add2
_ Add1 |

ro
rl
r2
r3
rd
r5
ré
r7

value

#10

#44

#11

#33

#7

#15

H-7

#345

Architectural
Register File
(ARF)

v

Common Data Bus (CDB)

Removing ROB to Mimic 360/91

Quiz

Which of the following features were present in the initial IBM 360/917?
= Dynamic scheduling
= Register renaming
= Speculation
= Precise interrupts
= Hardware speculation

Drawbacks of ARF+ROB Design

= Register Read stage before Issue stage
= Can’t be after
= |f value is available at time of renaming, must grab it and “capture”
it in the issue queue
= |ssue queue (IQ) needs to store values while waiting for all
operands to be available
= |f IQ only kept pointer to value (ROB tag), value could move from
ROB to ARF before instruction issues and then pointer is stale
= Committing register values requires data movement
= Data movement (ROB to ARF) takes extra cycles and consumes
energy

Fetch ROB #10
v Tag #a4 Architectural
rl -

— 3l o - Map Table #37

Register Read al o - (RMT) IS5
#-7

Dispatch > 9 - #20

—— r6| O ‘ {}
r7| O -
value d rdy exc misp
Issue /Eb’e Queue (/@\ //
tag (wakeup) dst [rsl rsl rs2 rs2 p

""""" " \| tag |rdy|tag/value|rdy|tag/val e r— :

- 0 |ropt] 417 0 #0 2] 1101011
* | Big | aeen 0 [roba| 1] #0_ [1] #0 : 1110101
Tiny| ALU | D$ 0 [rob5| 1| #15 | 1| 17 21 1101018
ALU Mem #20 r7 1 0 0 i4

: #37 r4 1 0 0 i5
Writeback >

Common Data Bus (CDB)

PRF Style

PO Rename Map Table
Phys. Reg. T
o pro v TeE. T8
rll p67
2| pil Compared to ARF + ROB
r3|_ p33 = A monolithic physical register file (PRF)
:: p4b provides an extended set of registers for
renaming
r31] p2 = A subset of registers represent the

architectural state

= RMT provides the mapping between
architectural and physical registers

= (pro) Committing & freeing registers does
not require data movement

= (con) Restoring RMT is not a simple flash-

p159 clear of bits (still conceptually similar)
PRF values PRF ready bits

PRF Style Pipeline

Compared to ARF + ROB
= “Register Read” stage after “issue” stage
= |ssue Queue (IQ) contains no values, just
tags

Rename

Dispatch

Register Read

Writeback

tag = RMT([r]

|IQ[x].ready = PRF[tag].ready
1Q[x].tag = tag

value = PRF[tag].value

Logical and Physical Registers

Logical registers
= Also called program (architectural) registers
= MIPS:32
= Alpha: 32
= 8080:8
= x86-64: 16 (without AVX)

Physical registers
= Also called hardware (microarchitectural) registers
= |ntel Sandybridge: 160
= Apple A14 (Firestorm): 300+

https://www.anandtech.com/show/16226/apple-silicon-ml-al4-deep-dive/2
https://www.anandtech.com/show/3922/intels-sandy-bridge-architecture-exposed/3

https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2
https://www.anandtech.com/show/3922/intels-sandy-bridge-architecture-exposed/3

Renaming

= The renaming problem
= Assign a unique physical register to a logical register
= Assign multiple definitions of a logical register a
unique physical register

= Structures for renaming
= Physical Register File (PRF)
= Rename Map Table (RMT)
= Free list (list of unused registers in PRF)
= We will see in a few slides how free list is built
= First, let’s understand the renaming process
assuming RMT and free list are in a specific state

Renaming Example

load r1, 16(r2)
add r3, r1, #1
load r1, 20(r2)
sub r4, r1, #1

Logical source registers
= Obtain mapping from RMT

Logical destination registers
= Pop a free physical register from the free list
= Assign the physical register to the logical destination register
= Update RMT to reflect the new mapping

Renaming Example

RMT (before RMT (after
load r1, 16(r2) (before) (after)
r0]_pl0 o] plo
‘ 1 p8 »rl| p67
> r2| pll —>p11 2 011
r3|_p33 3| p33
r4_pab6 4| pa6
r5 5
r31 p2 r31 p2
I\g 6/, 16(p11
oF:|] |
p (p) head tT” helad tTII
(067 | p19 | p27 | p28 | ... | 5 | .. p67 | p19 | p27 [p28 | . [p5 | ..
p67| Free List (before) Free List (after)

Renaming Example

RMT (before) RMT (after)
add r3, r1, #1
| rOl plo rof pl0
» rl| p67 —>p67 rll p67
r2| pll r2l pll
r3| p33 »r3| pl9
r4d| p46 rd| p46
r5 r5
r31 p2 r31 p2
add p19, p67, #1 . .
head tail head tail
pc7 |19 927|528 .. | o5 | . SN 67 o5 527 |28 . | ps | .. |
p19 |Free List (before) Free List (after)

Renaming Example

RMT (before RMT (after
oad 1, 20(r2) (before) (after
rOl plo rof pl0
‘ rll p67 »rl| p27
»r2| p11 ———pll r2| pll
r3| plo r3| pl9
r4| p46 rd| paéb
r5 r5
r31 p2 r31 p2
load p27, 20(p11
oF| \
P (P) head telail helad tTiI
067 | p19 | p27 |28 | .. | p5 | .. | p67 | p19 | p27 [p28| .. | P5 | .
Free List (before) p27 Free List (after)

Renaming Example

RMT (before RMT (after

sub rd, r1, #1 () (after)
| rOl pl0 rOl pl0

> r1| p27 ———p27 rll p27

r2| pll r2l pll

r3| plo r3| pl9

r4| p46 >r4] p28

r5 r5

r3lf p2 r31f p2
sub p28, p27, #1

head tail head tail

067 519 527 1028 | oo | o5 | . NN 67 | pio | o27 p2s | oo |5 | ..

Free List (before) p28 Free List (after)

Renaming Example

load r1, 16(r2) load , 16(p11)

add r3, r1, #1 > add p19, , H1

load r1, 20(r2) load p27, 20(p11)

sub r4, ri, #1 sub p28, p27, #1
N

oad p67, 16(p11) load p27, 20(p11)
add p19,°p67, #1 add p28, p27, #1

Questions

= How/when to free registers?
= How to recover from exceptions and mispredictions?
" How to maintain the architectural state?
= Subset of registers in PRF corresponding to the
architectural state

Active List

= Active list
= Contains the active instructions in program order
= Active Instruction: Instruction that has been dispatched but
not yet retired
= Equivalent to the reorder buffer (ROB)
= Other names: active window or instruction window

Active List Contents

Taill—— 7

Active List

Current Mapping

Logical | Physical Mispre-

Dest. Dest. Completed | diction | Exception PC
rl p67 0 0 0 A
r3 p19 0 0 0 B
rl p27 0 0 0 C
r4 p28 0 0 0 D

Note: Do not confuse active list with the issue queue

Active List Operation

= |nstruction dispatch
= Reserve entry at tail
= |nitialize the entry
= Write the instruction’s “current mapping” (logical and
physical reg specifiers) and PC
= Clear the completed, misprediction, and exception flags
" |ncrement tail pointer

Active List Operation

= |nstruction retirement
= |nstruction retirement frees the previously held “physical
register” by the destination logical register
= Retirement also commits the new value (the physical register
specifier) of the instruction’s logical (destination) register
= Need a new structure to store the committed mappings
= Architectural Map Table (AMT)
= Intel calls it Retirement Register Alias Table (RRAT)

Architectural Map Table (AMT)

= Architectural Map Table (AMT)

Contains the “committed” mapping of logical registers to
physical registers

Note: In contrast with AMT, RMT contains the “speculative”
mappings of logical to physical register identifiers

RMT is messy and dirty and should be discarded on mis-
speculation

AMT is clean and must be preserved on an “exceptiona
outcome

AMT or RRAT enables possible recovery from mis-speculation
and exceptions

III

Committing & Freeing Registers

Architectural Map Table

ro

“commit”
Active List
Current Mapping
Logical | Physical M.ls;?re- -
Dest. Dest. Completed | diction | Exception PC

»rl
r2
r3
r4
r5

r31

pl0

p67 p8

pll

p33

p46

p2

|

head

“free”

|

tail

Is AMT really needed?

= Having an RMT and AMT is costly
= We will see a redesign of PRF-style pipeline without AMT

Active List Operation (with AMT)

= Retire
= Wait for instruction to reach the head (and complete)
= |ndex the AMT using the head instruction’s logical destination
register specifier
= Free the “previous mapping” that is contained in the AMT
= Push the previous mapping onto the free list
= Committing a new version implicitly means the old committed
version is no longer needed for (potential) recovery
= Physical register indicated by “current mapping” is committed
by rewriting the AMT with the current mapping
®" |ncrement head pointer to commit younger instructions in the
active list (deplete the instruction window)

Handling Exception and Mis-speculation

= Offending instruction sets its exception/misprediction bit in the active
list

= When offending instruction reaches the head of the active list
= Squash active list: Set Head = Tail
= Squash/flush pipeline: Squash all instructions in front-end stages,
|1Q, functional units, etc.
= Restore RMT to committed state: Copy AMT to RMT
= Restore free list: Push mappings of all instructions after the
offending one back onto the free list
= Save PC of offending instruction (get it from the head of active list)
= EPCin MIPS ISA where handler will return to
= EPC=AL[al _head].PC
= Trap to exception handler
= PC = address of exception handler

Implementation Challenge 1: Pipeline Squash

= Squashing instructions in the pipleine

= Global squash signal a cycle time bottleneck
= Physical VLSI design-level details (interconnects)
= Extending to multiple cycles provides some relief

= Alternative (no global squash signal)
= What if we allow all in-flight instructions to complete?
= A.k.a.draining the pipleine
= Do not accept (fetch) new instructions
= Guard the AMT (i.e., set write enable to zero)
= Can overlap some cycles with restoring RMT from AMT if it

takes multiple cycles to copy

Challenge 2: Restoring RMT from AMT

= Solution#1
= Flash copy: Customized circuit that enables sing
= Requires sophisticated SRAM design
= Solution # 2
= Serial copy: Conventional SRAM design
= Speed limited by # read and # write ports
= # cycles to restore RMT =

cycles to restore RMT = # logical registers/ i AMT . o RMT wri)
min read ports, write ports

le-cycle copying

Free List Example

Logical registers: r1
Physical registers: p1-p5
AMT entries: 1

pl p2
p3 p4

PS5

initial pool of
free registers

Scenario: Dispatch five instructions each
redefining r1 by grabbing a free register
from the initial pool. Then committ
instructions from the head of the active
list one by one

Before the first

commit

commit# 1

commit # 2

commit# 3

commit# 4

commit#5

H,T

Free List

H,T

Free List

AMT

ri

AMT

rl | pl

Free List

AMT

ri

Pt p2

Free List

p2

Free List

Free List

p2

p3

p4

AMT

rl | p3

AMT

rl | pd

AMT

rl | p5

Active list (not shown) is now empty

Backup: AL snapshot before first commit

Active List

Current Mapping
Logical | Physical Mispre-
Entry | Dest. Dest. Completed | diction | Exception PC
1
head——2| n pl 0 0 0 A
3 rl p2 0 0 0 B
4 rl p3 0 0 0 C
5 rl p4 0 0 0 D
6 rl p5 0 0 0 E
Tail——7

Free List Example

Note: The implementation must
distinguish b/w empty and full free list
(circular FIFO)

Question: What is between head and
tail?
Answer: Speculative, free registers

Before the first
commit

commit# 1

commit # 2

commit# 3

commit# 4

commit#5

H,T

Free List

AMT

H,T

ri

Free List

AMT

rl | pl

Free List

AMT

rl | p2

Free List

AMT

rl | p3

Free List

AMT

H

rl | pd

Free List

pl

p2

p3

p4

AMT

rl | p5

Active list (not shown) is now empty

Free List Example

New Scenario: After commit # 5, Before the first

dispatch two instructions each renaming ™"
;’1 by grabbing a free register from the commit # 1
Ist.
T H AMT |
Free List | p1 | p2 |p3 |p4 rl | p5 commit & 2
Question: What is between tail and commit # 3
head?
Answer: speculative registers, allocated _
(dispatched) but not committed commit
commit#5

H,T

Free List

AMT

H,T

ri

Free List

AMT

rl | pl

Free List

AMT

rl | p2

Free List

AMT

rl | p3

Free List

AMT

H

rl | pd

Free List

pl

p2

p3

p4

AMT

rl | p5

Active list (not shown) is now empty

Restoring Free List

Question: What is between head and Question: What is between tail and
tail? head?
Answer: Speculative, free registers Answer: speculative registers, allocated

(dispatched) but not committed

Free List speculative, allocated to active insts speculative, free

tail head
Active List [RN
head tail

Question: Is there a simple way to restore/repair the free
list?

Challenge 3: Restoring Free List

= Solution#1
= Slow and complex: Scan active list between head and tail, pusing each instruction’s
current mapping onto the free list

= Solution # 2
= Fast and simple
= QObservations about free list contents
= Between H and T: List of free physical registers
= Between T and H: List of physical registers allocated to instructions between active
listHand T
= Restoring free list simply by rolling back head pointer to tail pointer and noting that free
list is full
= Head = Tail and freelist_full = true
= Circular FIFO must distinguish b/w empty and full cases

Challenge 3: Restoring Free List

advancing the head means these registers
are now allocated to the active list

Sidenote: AL has
current logic to
physical mappings

AL tail at position 1 >
Free List speculative, allocated to AL speculative, free

tail headl
Active List [N

head taill

AL tail at position 2

Free List speculative, allocated to AL allocated to AL

tail headl head2
. - —
Active List []
head taill tail2
<t /

squash the pipeline, set AL tail to head

Challenge 3: Restoring Free List

AMT

Comitted

Registers

Before Recovery

Free List speculative, allocated to active insts speculative, free

tail head
Active List [N
head tail
After Recovery
rreelist NN
tail
head
Active List
head

tail

Contemporary Superscalar Microarchitecture

tail

exception
recovery

AMT

A

head

1

--

Rename

Dispatch

Schedule

Register Read

Writeback

Issue

Queue

(1Q)

‘---‘—--

+ | Big

ALU

Physical
Register

File
(PRF)

Remember the different names

= Architectural Register File (ARF)
= Retirement Register File (RRF)
= Rename Map Table (RMT)
= Register Alias Table (RAT)
= Front-End Map Table (when used in PRF)
= Architectural Map Table (AMT)
= Reteirement Register Alias Table (RRAT)
= Backend Map Table

= Used only in PRF for fast recovery

Remember the different names

= Reservation Stations
= |nstruction Queue
= Scheduling Window

= Active List (AL) or Reorder Buffer (ROB)
= |nstruction window

= Active window

State-of-affairs: PRF

= ARF+ROB
= P6 through Core 2 Duo (Merom), Nehalem
= PRF (nearly every high-performance processor today)
= Pentium 4 (P68), Sandybridge, and later
= AMD Bulldozer, Bobcat
= MIPS R10000 (basis of today’s lecture slides)
= |BM Power4, Power5, Power_6,7,8,9 ?
= Alpha 21264
= Recent regression
= |ntel Silvermont, ARM Cortex A15

Intel Yonah
2006

Core 2

128 Entry | 32 KB Instruction Cache
ITLB (8 way) Shared Bu
i T 12380 Interface
! Unit
32 Byte Pre-Decode,
: Fetch Buffer
|I'lﬁludl)!'l 6 rEructons
Fetch Unit 18 Entry
i Instruction Queue _
9 1
cocke Decoder | Decoder | Decoder | | Decoder
I—.\‘h"l[.xps + 1pop ;'slw + 1pop
7+ Entry yop Buffer Shared
‘i 4 poprs » L2 Cache
Register Alias Table (16 way)
and Allocator
4pq;n 4}!:1:5
96 Entry Reorder Buffer (ROB)+_ "I’_gﬁoﬁ"g
— 32 Entry Reservation Station |
Port0 Portl Port S Port 3 Port 4 Port 2
L - ¥y) Y
e == ALY Loadd
aw ||| srume | | acy ||| s || groren | | 205 | |awens | | o | |Acwess
Y
. s ’_Qmmy Ordering Buffer,
Fon (MOB
T v 2R 2R Store Load
Irternal Resufts Bus 12aER | Jze
T 12380 L Bit
32 KB Dual Ported Data Cache| 16 Entry |_ |
(8 way) DTLB

Intel Core 2 Architecture

Intel Nehalem
2008

Core i5, 17

Intel Nehalem microarchitecture

Quadruple associative instruction cache 32 KB,
128-entry TLB-4K, 7 TLB-2/4M per thread

128 I

. 4

‘ Prefetch buffer (16 bytes) ‘ Bralnclh
prediction
global/bimodal,
Predecode & loop, indirect
instruction length decoder imp
111111 [
Instruction queue
18 x86 instructions
alignment
macro-op fusion
Complex Simple Simple Simple
decoder decoder decoder| decoder
w (LWL L1 1

stream || Decoded instruction queue (28 p-op entries) |« Micro

TeeoeeT 4 4 4 i B N instruction

micro-op fusion sequencer

|
2x I 1 1 1

RetirgTent 2 x register allocation table (RAT)
register |
gf;ile = Reorder buffer (128-entry) fused

Uncore

Quick Path
Inter-
connect

\/

DDR3
memory
controller

4x20 Bit
6,4 GT/s

yvy

Common
L3-cache
8 MB

3 x 64 Bit
1,33 GT/s

4 & 2 &

Reservation station (128-entry) fused

256 KB
8-way,
\| 64 bytes

Integer/
MMX

Result Bus

Octuple associative data cache 32 KB,]
64-entry TLB-4K, 32-entry TLB-2/4M A

GT/s: gigatransfers per second

256

"| cacheline,
private
L2-cache

512-entry

L2-TLB-4K

Intel Sandy Bridge

2010
Core i5, 17

https://en.wikichip.org/wiki/intel/microarchitectures/sandy_bridge_(client) "

(580D) S5ng e18Q UOWWOD

Front End Instruction)
Cache Tag| L1 Instruction Cache
HOP Cache 32KiB 8-Way Instruction
Tag TLB
16 Bytes/cycle
Branch
Predictor ’ Instruction Fetch & PreDecode |
(BPU) (16 B window) w
MOP MOP MOP MOP MOP MOP N
=)
Instruction Queue S
| (40, 2x20 entries) | Q \
MopP MoP MOP MoP MoP %
MicroCode 4-Way Decode
Sequencer
ROM ICompIexI | Simple I I Simple | I Simple I
(MS ROM) Decoder | | Decoder | | Decoder | | Decoder
1-4 HOPs uopP nop nop
4 pops Stack Engine
e s 4 poPs (SE)
Decoded Stream Buffer (DSB! [Rdd] [Add=] [Add=]
(LOP Cache) 4 HoPs
(1.5k LOPs; 8-Way)
(32 B window) MUX

m
Allocation Queue (IDQ) (2x28 pOPs)

oP oP
Register Alias Table (RAT) q"O,o . H

HoP HOP [granch order Buffer
(BOB) (48-entry)

Execution
Engine

16Blcycle

Load
. Rename / Allocate / Retlrement |0nes THEmE | |2eroing ldioms|
ReOrder Buffer (168 entries)
3 porP HoP HOP HOP HOP HOP
<
N
3
. .) Scheduler . . y N
Integer Physical Register File " " . Vector Physical Register File w
] |8 Regr | Unifed Regeiaton Staten (3 sl 2%
SOtrce % ~ N 32Bicycle
[Poto | [Pot1]| [Ports | [Port2 | [Port3 | [Portd | 3 mn("]
HoP HorP HorP porP porP HorP (ﬂ @ g To L3
=
Bl 20
paxeis) AGU @
LoadData| [Load Data <
128biveycle

Store Buffer & Forwarding
(36 entries)

16B/cycle

L1 Data Cache | DataTLB

o12Ad/aze

32KiB 8-Way

Line Fill Buffers (LFB)
Memory Subsystem (10 entries)

Intel Sandy Bridge

https://www.anandtech.com/show/3922/intels-sandy-bridge-architecture-exposed/3

A Physical Register File (Copying from the link here for your benefit)

Just like AMD announced in its Bobcat and Bulldozer architectures, in Sandy Bridge Intel moves to a physical register
file. In Core 2 and Nehalem, every micro-op had a copy of every operand that it needed. This meant the out-of-order
execution hardware (scheduler/reorder buffer/associated queues) had to be much larger as it needed to accommodate
the micro-ops as well as their associated data. Back in the Core Duo days that was 80-bits of data. When Intel
implemented SSE, the burden grew to 128-bits. With AVX however we now have potentially 256-bit operands associated
with each instruction, and the amount that the scheduling/reordering hardware would have to grow to support the AVX
execution hardware Intel wanted to enable was too much.

A physical register file stores micro-op operands in the register file; as the micro-op travels down the 000 engine it only
carries pointers to its operands and not the data itself. This significantly reduces the power of the out of order execution
hardware (moving large amounts of data around a chip eats tons of power), it also reduces die area further down the
pipe. The die savings are translated into a larger out of order window.

The die area savings are key as they enable one of Sandy Bridge’s major innovations: AVX performance.

http://www.anandtech.com/show/3863/amd-discloses-bobcat-bulldozer-architectures-at-hot-chips-2010

Alternative Design: No AMT

Instead of the current logical-physical mapping, remember the previous mapping
in the active list

Active List
*
Previous Mapping
Logical | Physical M.|5|c.>re- _
Entry | Dest. Dest. Completed | diction | Exception PC
1
2
Head——3| n P67 0 0 0 A
4 r3 p33 0 0 0 B
5 rl p8 0 0 0 C
6 r4 p46 0 0 0 D
Tail——7

Key Idea: On a misspeculation we can rollback the state of the RMT by walking the AL
from tail to head

Active List Operation (No AMT)

Rename
= Read out the previous mapping (from the RMT) for the
logical destination register (extra read port)
= Update the RMT with the new mapping

Approach # 1 (with AMT)

phys. src. reg. 1 = RMT[logical src. reg. 1] //RMT read port
phys. src. reg. 2 = RMT[logical src. reg. 2] //RMT read port

phys. dest. reg. = pop new mapping from free list
RMT[logical dest. reg.] = phys. dest. reg. //RMT write port

Approach # 2 (without AMT)

phys. src. reg. 1 = RMT[logical src. reg. 1] //RMT read port
phys. src. reg. 2 = RMT[logical src. reg. 2] //RMT read port
previous mapping = RMT[logical dest. reg.] //extra RMT read port

phys. dest. reg. = pop new mapping from free list
RMT([logical dest. reg.] = phys. dest. reg. //RMT write port

Active List Operation (No AMT)

Instruction dispatch
= Reserve entry at tail
= |nitialize the entry
= Write the instruction’s “previous mapping” (logical
destination register specifier and the previous mapping
on that logical register) and PC
= Reset the completed, misprediction, and exception flags
= Increment tail pointer

Active List Operation (No AMT)

= |nstruction retirement
= Wait for the head instruction to complete
= Push its previous mapping onto the free list. This has two
implicit effects:
= The prior committed version of the instruction’s logical
destination register is freed
= The instruction’s physical destination register is
committed (implicitly)
= |ncrement head pointer

Committing & Freeing Registers

“commit”: This action implicitly

commits the head instruction’s “free”
version of r1 (p8)
Active List
Previous Mapping
Logical | Physical Mispre-
Entry Dest. Dest. Completed | diction | Exception PC
1
z -T--m--
Head——3|| r1 067 0 0 0 A I
4 r3 p33 0 0 0 B head
5 rl p8 0 0 0 C
6 r4 p46 0 0 0 D
Tail——7

tail

Freeing Registers in No-AMT Design

Background Active List
= No map table in the backend _ Head
= Active list contains the
previous logical-> physical
mappings

= Committing implicitly means
freeing regs

RMT

1 p67 p8 most speculative
mapping at time of

dispatch

<rl,p67>

These insts. =
should see V
<rl,p8>

Freeing Registers in No-AMT Design

Retirement of <r1,p67> from head
= p8 busy bit in the busy table is
O (if the instruction is
complete)
= All subsequent insts observe
<rl,p8> (unless another inst.
renames rl)

RMT

1 p67 p8 most speculative
mapping at time of

dispatch

Active List

Head <rl,p67>

ﬁ

previous
mapping freed at
retirement time

Freeing p67 implicitly
commits p8
= Subsequent
instructions should see
p8 for rl because p67
is dead
= |t was kept in the
active list for recovery

Tail

Committing & Freeing Registers

“commit”: This action implicitly
commits the head instruction’s
version of r1 (p67)

= This is how you should look at it:

= RMT had the non-sepculative mapping (rl, p67)

= Aninstruction K redefines the mapping to (r1, p8), RMT now contains (r1,p8)
= (r1, p8) is the speculative version of mapping

= The instruction K stores the previous mapping (rl, p67) in AL

= Now, think, what is the meaning of freeing (committing) p67 at retirement
= That rlis no longer mapped to p67 (r1—=>p67 is dead)
= That subsequent instructions in program order should see r1->p8
= And if there is an exception, we need to restore RMT to r1—2>p8
= |nstruction with (r1, p8) is committing so it is no longer speculative

Rollback-Based Recovery (Scenario # 1)

= Handling exceptions and misspeculation
= To repair RMT without AMT, we need rollback-based recovery

No map table in the backend so can’t flash copy AMT into RMT
But, active list contains the previous logical=> physical mappings
Remember: Committing implicitly updates the arch. state/mapping
Misspeculation means we are not going to commit instructions so
RMT needs to be brought into a precise state

= We will need rollback-based recovery in other scenarios
= Try to grasp the general concept
= You will apply the concept to solve some interesting problems

Rollback-Based Recovery

Active List

RMT (before)

misprediction
Physical P RMT after
Recovery
current architectural . .
1 s61p77 Mostspeculative e mapping Physical
Sso mapping
Sso srollback
\\ ito here rl p8
\\\ “
\\
\\
\\
\\\
\\
\\
Committing <r1,p8> will make
p101 as the architectural mapping most speculative
= Butinstruction holding —_— mapping in AL
<rl,p8> never commits : 077 Rollback: Start putting previous
= So we want RMT to reflect : mappings for rl into RMT starting
the correct architectural state v from tail and incrementally moving

= Rollback from Tail to Head upwards

Handling Exception and Mis-speculation

= Offending instruction sets its exception/misprediction bit in the active list

= When offending instruction reaches the head of the active list

Squash active list: Set Head = Tail

Squash/flush pipeline: Squash all instructions in front-end stages, 1Q,
functional units, etc.

Restore RMT to committed state: Scan the active list backward from tail
to head, restore previous mappings into RMT

Restore free list: (1) Head = Tail (easy) or (2) While restoring RMT,
“undone” current mappings are pushed back onto free list

Save PC of offending instruction (get it from the head of active list)

Trap to exception handler

Branch Misprediction Recovery

= Drawback of approaches we have discussed so far
= Wait for the mispredicted branch to reach the head of the active
list before initiating recovery
= Do not discriminate between exceptions and mispredictions
= Today: Approaches that initiate recovery as soon as the
misprediction is discovered (as soon as the branch instruction
executes), from the middle of the active list

Recovery from the middle of AL

The next two approaches initiate recovery from branch mispredictions as
soon as the misprediction is discovered (as soon as the branch instruction
executes), from the middle of the active list

head

Assuming there are
no unresolved branches

b/w head and mispredicted

branch

tail

branch/misp

By waiting for the branch to reach the head,
and then initiate recovery, we miss an
opportunity to exploit parallelism: execute
instructions b/w head and branch and recover
from branch misprediction in parallel

Note: Instructions b/w branch and head are
already dispatched, do not care about
changes to RMT and free list

Recovery from the middle of AL

The next two approaches initiate recovery from branch mispredictions as
soon as the misprediction is discovered (as soon as the branch instruction
executes), from the middle of the active list

Free List: For both approaches, checkpoint the free list head pointer
when the branch is renamed. Restoring the checkpointed free list head
pointer associated with the mispredicted branch frees the mappings of
instructions after the branch in bulk (bulk-free)

Rename Map Table: The main problem is restoring the RMT to the point
of the branch

Restoring the RMT

1. Copy AMT to RMT right away (the head’s version)
2. Fast forward the RMT to the point of the branch
1. Walk the AL from head to branch
2. There maybe multiple mappings of a logical register between head and
branch. We want the one closest to the branch. In the below, we care
about restoring RMT to <r1,p8>
<rl,p67>
<rl,p8>

branch/misp

head

tail

Restoring RMT

Recall that the active list contains current mappings, which are used to
update the AMT (and free up prevoius register mappings stored in AMT)

When misprediction is detected:
= Restore RMT (RAT) from AMT (RRAT) right away (flash or serial copy)
= fast forward the RMT to the point of the branch in the active list, by
walking the active list from head to branch and incrementally
updating the RMT with the current mappings in the active list

Contrast to the earlier approach with AMT
= Copy AMT into RMT when the branch reaches the head (lazy recovery)
= Lazy recovery has a serious drawback: All branches prior to the branch must retire
before recovery kicks in (think a long-latency memory operation at head of AL)
= The latency of lazy recovery is proportional to the time it takes to execute the
instructions prior to the branch. The latency of eager recovery is proportional to the
instructions before the branch (and not on the time it takes to execute them)

Rollback-Based Recovery (Scenario # 2)

= Scenario is as follows
= AMT in the backend
= Active list contains the current logical-> physical mappings
= Eager recovery: As soon as branch misprediction is discovered,
initiate recovery
= Note: Multiple branches are a complication everywhere
= Real-life example: Cyrix lll, VIA Technologies

Early Misprediction Recovery (+AMT)

RMT (speculative)

ri

r2

Active List

Head

least speculative (head)

mapping in AL
. AMT (Head
P77 most §peculat|ve version]
S mapping - -
\\ misprediction Physical
p10 “~\\
~
*\ current arch r1 p21
x\\\ mapping
\\\
o r2 p98
~\
~\
Tail most speculative
— mapping in AL

Early Misprediction Recovery (+AMT)

RMT (speculative) Active List

Head

least speculative (head)

mapping in AL
AMT (Head
1 077 most speculative version)
S mapping
~ o o
“~\\ misprediction Physical
r2 pl10 s ’
S Pid
S // current arch rl p21
What we want in RMT \~\\ /’ mapping
when branch reaches the head ,}<\
~
RMT (precise) /' Sso r2 P98
. . ’ S
Physical /’ h
/’ . most speculative
, Tail o
. 018 2 —_— mapping in AL
"

r2 p98

Early Misprediction Recovery (+AMT)

RMT (speculative) Active List

Head

least speculative (head)

mapping in AL From Here
. AMT (Head
1 \p77 most §peculat|ve version)
N mapping
\\‘~\ misprediction Physical
r2 pl0 \~\ JRY
\\ 2/
S // current arch rl p21
What we want in RMT \~\\ /’ mapping
when branch reaches the head ,}<\
~
RMT (precise) /' Sso r2 P98
~
physical [~
/’ . most speculative Repairing RMT
1 1 A’, _'I'ml» mapping in AL = Copy AMT into RMT
' p18 = Fast-forward the RMT
by walking the AL
r2 p98 To Here from Head to the

mispredicted branch

'\

Shadow Map Tables

= Checkpoint (create a copy) the RMT at every predicted branch
= After the branch is renamed, the state of RMT reflects the
renaming of all instructions up to and including the branch

When branch executes (“resolves”)

= Misprediction
= Restore RMT from mispredicted branch’s shadow map table (SMT)
= Reclaim (free) the mispredicted branch’s SMT
= Reclaims the shadow maps of all later branches for use by new predicted

branches in program order

= Correct predicton

= Reclaim the branch’s shadow map table, for use by new predicted branches

Checkpoints vs. Rollback Recovery

= Rollback-based recovery
= Slow, can’t undo all instructions in one cycle (only 4 to 8)
= Checkpointing
= Take a snapshot of the RMT when the branch is renamed
= Structures: Shadow maps, shadow registers, branch stack
= Branch stack in MIPS R10K (4 entries)
= Hal PM1 (SPARC64) had 16 shadow registers
= ALPHA 21264 had 80 snapshopts (one for each ROB instruction)
= Complications and opportunities
= Multiple branches
= Selective squash (branch masks in MIPS R10K)

Overall Branch Misprediction Recovery

Pipeline
= |nstruction fetch unit
= PC = Correct branch target
= Repair the BHR if applicable
= Frontend stages: fetch, decode, rename, dispatch
= Squash all instructions in the frontend stages since these are after the resolved
branch (by definition)
= Backend stages: schedule (issue), register read, execute, writeback
= Selectively squash only those instructions in these stages that come after the
mispredicted branch in program order (with eager recovery)
= Each instruction inherits a vector of unresolved branch identifiers in the rename

stage, indicating which unresolved branches are before the instruction in program
order

Overall Branch Misprediction Recovery

Active List
= Set tail pointer to entry just after the mispredicted branch
" Free List
= lazy approaches (Head = Tail), Eager approaches (checkpoint)
= RMT
= Copy from AMT or shadow maps, or copy plus walk the AL
= Shadow map tables
= Reclaim the shadow maps of mispredicted branch and all later branches

Readings

Microarchitecture of Hal's CPU
The Mips R10000 superscalar microprocessor
The Alpha 21264 microprocessor architecture

by John L Hennessy (Author), David A Patterson

COMPUTER
ARCHITECTURE

A Quantitative Approach

https://www.amazon.com.au/John-L-Hennessy/e/B07HGVSXYN/ref=dp_byline_cont_book_1
https://www.amazon.com.au/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=David+A+Patterson&text=David+A+Patterson&sort=relevancerank&search-alias=books-single-index

Contemporary Superscalar Microarchitecture

tail : exception head

recovery __y

AMT

A

: %hdw
head mais I tail

complete

--

T RT :

Rename

Dispatch

Schedule

Register Read

Writeback

Issue
Queue
(1Q)
¢ == ===
+ | Big ag"en
ALU | Ds

Physical
Register

File
(PRF)

Exercise (Sample Exam Q)

= Can we use no-data-capture in ARF+ROB without using tags, free
list, and AMT?

What information do we need to maintain next to each entry

in the ROB?

Think: Each register (value, rob_entry) is alive for a window of
time

When the value is dead we can safely commit the value from

the head of ROB?

How do we maintain lifetime information in ROB?

Superscalar Complexity A

Superscalar and complexity superscalar
= Fetch, rename, dispatch, issue, and commit Fetch [|

multiple instructions per cycle ! ! ! !
v v

Decode |

= Use dynamic scheduling, renaming, and I
hardware speculation Rename/ frRr RR EE——

= Goal: IPC>1 (ideal = issue width) e ‘w v; v; W‘

= Complexity increases with (issue) width Dispatch | |

= Beyond 6-8 issue, the industry moved to ! ! ! '
multicores (?) Schedule S AR AR |

= Complexity of very wide issue !Ji It} I3 ,Ji |
superscalar is not worth the increase in - B Rl . Reg. File

IPC. Better to exploit thread-level
parallelism (TLP)

= So, after many decades of sustained Execute -
performance increases, L R
multicores(2005 =) shifted the burden of
perf. on software (how is that going?)

ac

}Rw LQ, SQ, D$

Writeback

Superscalar Complexity

Fetch | || Limitations & complexity of fetching
Y l‘ v v *l = Frquent taken bra nc'he-s
I I I I = Multiple branch prediction
Reqame/ R R R R R R RRl RMT,
R " " " " Dependences within the rename
Dl |‘ ' ! ‘l packet/bundle
T ‘ ‘ ‘ * & Large # ports (RMT)
e 1 sel el 't el il sel s = Ports scale linearly with width of superscalar
| Ii IH_ = Sizes scale super-linearly with width to
Reg. Read RwR RwR RWR RwR RwR RwR Phys. Reg. File exploit ILP
= |Q, LQ, and SQ are CAMs (associative
R e e s e - structures)
Exscote CREREIREANGEIRG: = Specialized logic (wake-up/select)

rw| |RWw| LQ, SQ, D$

Bypass network complexity

Writeback

Superscalar Complexity:

Renaming

= Consider a 6-wide superscalar

= All of the renaming in this instruction sequence (leftmost column) must

happen in a single cycle

= |ncreasing IPC (by issuing 6 instructions in one cycle) at the expense of

increased cycle time likely leads to poor energy efficiency

Instr. # Instruction Physical Reg. Renamed Inst. RMT Change
1 add r1, r2, r3 add , p2, p3 rl->p32
2 sub r1, r1, r2 sub : , p2 rl->p33
3 add r2, r1, r2 add : , p2 r2->p34
4 sub r1, r3, r2 sub , P3, rl->p35
5 add r1, r1, r2 add : : rl->p36
6 sub r1, r3, ri sub , P3, rl->p37

What does
the digital
logic circuit
looks like?

