
Convener: Shoaib Akram
shoaib.akram@anu.edu.au

Plan

Week 5: In-order to out-of-order (OOO) transformation

Week 6: OOO v.1 (CDC 6600 Scoreboard) and OOO v.2 (IBM 360/91)

Week 7: OOO v.3 a.k.a. Physical Register File (PRF) microarchitecture

Week 7: Load/Store queue and the load/store execution lane

Week 8+9: Cache design/implementation (assignment # 2)

Remaining topics: ★Virtual memory★, SMT, Multicores, DRAM, NVM

In-order to Out-of-Order
Fetch

Decode

RF Read/Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$
Mem

Issue Queue (IQ)

Insert instructions in order

Expanded Register File:
ARF (committed state) + ROB (speculative state)
Provides for recovery and eliminated WAR/WAW

Remove instructions out of order

Commit instructions in-order from ROB to ARF

Revision: Main Concepts
Register renaming

§ Rename logical registers to an extended set of physical registers
§ Avoid WAR and WAW hazards (main structure: ROB or RS/IQ)

Dynamic scheduling
§ Send instructions to the functional units out of the original program order (IQ)

Speculation
§ Predict branch outcomes and execute instructions before branches are resolved +

have the ability to recover from mis-speculation (main structure: BPU/BTB/ROB)
Hardware speculation

§ Dynamic branch prediction + dynamic scheduling + speculation
Precise interrupts

§ On an exception, the architectural state must correspond to the sequential
architectural model (main structure: ROB)

Some Notes
Precise interrupts

§ Must deal with this problem with or without speculation
§ Dynamic scheduling alone makes precise interrupts challenging
§ IBM 360/91 had dynamic scheduling but no precise interrupts (no ROB)

Speculation
§ Recovery and repair mechanisms are a must have
§ Cannot have branch prediction but no recovery
§ IBM 360/91 had no speculation (i.e., no ROB and stall-on-branch)

Hardware speculation (dynamic scheduling + renaming + speculation)
§ Dynamic scheduling + speculation: a very happy marriage
§ In contrast, dynamic scheduling alone only partially overlaps instructions (limited ILP)
§ Without speculation, OOO cannot schedule past a single basic block

§ Basic block: Straight-line piece of code with no branches in except at the entry and
no branches out except at the exit

Quiz
Which of the following features were present in CDC 6600 scoreboard?

§ Dynamic scheduling
§ Register renaming
§ Speculation
§ Precise interrupts
§ Hardware speculation

Register File
Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$

value
r0 #10
r1 #44
r2 #666
r3 #33
r4 #667
r5 #15
r6 #17
r7 #20

Scoreboard
v

r0 1
r1 1
r2 1
r3 1
r4 1
r5 1
r6 1
r7 1

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 r7 1 #17 1 #3
0 r4 1 #666 1 #1
0 r6 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

tag (wakeup)

data

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE DE RR DI IS EX@ EXD$ … miss … WB
i2: add r4, r2, #1 FE DE RR DI IS IS IS IS IS IS EX WB
i3: add r6, r5, #2 FE DE RR DI IS EX WB
i4: add r7, r6, #3 FE DE RR DI IS EX WB

Quiz
Which of the following features were present in CDC 6600 scoreboard?

§ Dynamic scheduling
§ Register renaming
§ Speculation
§ Precise interrupts
§ Hardware speculation

Quiz
Which of the following features were present in the initial IBM 360/91?

§ Dynamic scheduling
§ Register renaming
§ Speculation
§ Precise interrupts
§ Hardware speculation

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

Station
ID

Load1
Add2
Add1

Reservation Stations

Common Data Bus (CDB)

Mem

Rename
Map Table
(RMT)

v
RS
Tag

r0 0 -
r1 0 -
r2 1 Load1
r3 0 -
r4 1 Add2
r5 0 -
r6 0 -
r7 0 -

tag (wakeup)

Removing ROB to Mimic 360/91

Quiz
Which of the following features were present in the initial IBM 360/91?

§ Dynamic scheduling
§ Register renaming
§ Speculation
§ Precise interrupts
§ Hardware speculation

Drawbacks of ARF+ROB Design
§ Register Read stage before Issue stage

§ Can’t be after
§ If value is available at time of renaming, must grab it and “capture”

it in the issue queue
§ Issue queue (IQ) needs to store values while waiting for all

operands to be available
§ If IQ only kept pointer to value (ROB tag), value could move from

ROB to ARF before instruction issues and then pointer is stale
§ Committing register values requires data movement

§ Data movement (ROB to ARF) takes extra cycles and consumes
energy

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 1 0 0 i1
- 1 0 0 i2

r2 1 0 0 i3
r7 1 0 0 i4
r4 1 0 0 i5

value
rob0
rob1
rob2
rob3 #0
rob4 -
rob5 #17
rob6 #20
rob7 #37

…
rob31

value
r0 #10
r1 #44
r2 #17
r3 #33
r4 #37
r5 #15
r6 #-7
r7 #20

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 rob7 1 #17 1 #20
0 rob4 1 #0 1 #0
0 rob5 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

HT

tag (wakeup)

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 0 -
r3 0 -
r4 0 -
r5 0 -
r6 0 -
r7 0 -

PRF Style
p0

p159
PRF values PRF ready bits

r0 p10
r1 p67
r2 p11
r3 p33
r4 p46
r5
…

r31 p2

Rename Map Table
Phys. Reg. Tag

Compared to ARF + ROB
§ A monolithic physical register file (PRF)

provides an extended set of registers for
renaming

§ A subset of registers represent the
architectural state

§ RMT provides the mapping between
architectural and physical registers

§ (pro) Committing & freeing registers does
not require data movement

§ (con) Restoring RMT is not a simple flash-
clear of bits (still conceptually similar)

PRF Style Pipeline

Fetch

Decode

Rename

Dispatch

Issue

Register Read

Execute

Writeback

tag = RMT[r]

IQ[x].ready = PRF[tag].ready
IQ[x].tag = tag

value = PRF[tag].value

Compared to ARF + ROB
§ “Register Read” stage after “issue” stage
§ Issue Queue (IQ) contains no values, just

tags

Logical and Physical Registers
Logical registers

§ Also called program (architectural) registers
§ MIPS : 32
§ Alpha: 32
§ 8080: 8
§ x86-64: 16 (without AVX)

Physical registers
§ Also called hardware (microarchitectural) registers
§ Intel Sandybridge: 160
§ Apple A14 (Firestorm): 300+

https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2
https://www.anandtech.com/show/3922/intels-sandy-bridge-architecture-exposed/3

https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2
https://www.anandtech.com/show/3922/intels-sandy-bridge-architecture-exposed/3

Renaming
§ The renaming problem

§ Assign a unique physical register to a logical register
§ Assign multiple definitions of a logical register a

unique physical register

§ Structures for renaming
§ Physical Register File (PRF)
§ Rename Map Table (RMT)
§ Free list (list of unused registers in PRF)

§ We will see in a few slides how free list is built
§ First, let’s understand the renaming process

assuming RMT and free list are in a specific state

Renaming Example
load r1, 16(r2)
add r3, r1, #1
load r1, 20(r2)
sub r4, r1, #1

Logical source registers
§ Obtain mapping from RMT

Logical destination registers
§ Pop a free physical register from the free list
§ Assign the physical register to the logical destination register
§ Update RMT to reflect the new mapping

Renaming Example
load r1, 16(r2)

load p67, 16(p11)

p67 p19 p27 p28 … p5 … p67 p19 p27 p28 … p5 …

r0 p10
r1 p8
r2 p11
r3 p33
r4 p46
r5
…

r31 p2

p11

Free List (before)

r0 p10
r1 p67
r2 p11
r3 p33
r4 p46
r5
…

r31 p2

Free List (after)

RMT (before) RMT (after)

head tail tailhead

p67

Renaming Example
add r3, r1, #1

add p19, p67, #1

p67 p19 p27 p28 … p5 … p67 p19 p27 p28 … p5 …

r0 p10
r1 p67
r2 p11
r3 p33
r4 p46
r5
…

r31 p2

p67

Free List (before)

r0 p10
r1 p67
r2 p11
r3 p19
r4 p46
r5
…

r31 p2

Free List (after)

RMT (before) RMT (after)

head tail tailhead

p19

Renaming Example
load r1, 20(r2)

load p27, 20(p11)

p67 p19 p27 p28 … p5 … p67 p19 p27 p28 … p5 …

r0 p10
r1 p67
r2 p11
r3 p19
r4 p46
r5
…

r31 p2

p11

r0 p10
r1 p27
r2 p11
r3 p19
r4 p46
r5
…

r31 p2

Free List (after)

RMT (before) RMT (after)

head tail tailhead

p27Free List (before)

Renaming Example
sub r4, r1, #1

sub p28, p27, #1

p67 p19 p27 p28 … p5 … p67 p19 p27 p28 … p5 …

r0 p10
r1 p27
r2 p11
r3 p19
r4 p46
r5
…

r31 p2

p27
r0 p10
r1 p27
r2 p11
r3 p19
r4 p28
r5
…

r31 p2

Free List (after)

RMT (before) RMT (after)

head tail tailhead

p28Free List (before)

Renaming Example
load r1, 16(r2)
add r3, r1, #1
load r1, 20(r2)
sub r4, r1, #1

load p67, 16(p11)
add p19, p67, #1
load p27, 20(p11)
sub p28, p27, #1

load p67, 16(p11)
add p19, p67, #1

load p27, 20(p11)
add p28, p27, #1

Questions
§ How/when to free registers?
§ How to recover from exceptions and mispredictions?
§ How to maintain the architectural state?

§ Subset of registers in PRF corresponding to the
architectural state

Active List
§ Active list

§ Contains the active instructions in program order
§ Active Instruction: Instruction that has been dispatched but

not yet retired
§ Equivalent to the reorder buffer (ROB)
§ Other names: active window or instruction window

Active List Contents

Current Mapping

Completed
Mispre-
diction Exception PCEntry

Logical
Dest.

Physical
Dest.

1

2

3 r1 p67 0 0 0 A

4 r3 p19 0 0 0 B

5 r1 p27 0 0 0 C

6 r4 p28 0 0 0 D

7

…

Head

Tail

Active List

Note: Do not confuse active list with the issue queue

Active List Operation
§ Instruction dispatch

§ Reserve entry at tail
§ Initialize the entry

§ Write the instruction’s “current mapping” (logical and
physical reg specifiers) and PC

§ Clear the completed, misprediction, and exception flags
§ Increment tail pointer

Active List Operation
§ Instruction retirement

§ Instruction retirement frees the previously held “physical
register” by the destination logical register

§ Retirement also commits the new value (the physical register
specifier) of the instruction’s logical (destination) register
§ Need a new structure to store the committed mappings
§ Architectural Map Table (AMT)
§ Intel calls it Retirement Register Alias Table (RRAT)

Architectural Map Table (AMT)
§ Architectural Map Table (AMT)

§ Contains the “committed” mapping of logical registers to
physical registers

§ Note: In contrast with AMT, RMT contains the “speculative”
mappings of logical to physical register identifiers

§ RMT is messy and dirty and should be discarded on mis-
speculation

§ AMT is clean and must be preserved on an “exceptional”
outcome

§ AMT or RRAT enables possible recovery from mis-speculation
and exceptions

Current Mapping

Completed
Mispre-
diction Exception PCEntry

Logical
Dest.

Physical
Dest.

1

2

3 r1 p67 0 0 0 A

4 r3 p19 0 0 0 B

5 r1 p27 0 0 0 C

6 r4 p28 0 0 0 D

7

…

Head

Tail

Active List

r0 p10
r1 p67 p8
r2 p11
r3 p33
r4 p46
r5
…

r31 p2

p8

head tail

“free”

Committing & Freeing Registers
Architectural Map Table

“commit”

Is AMT really needed?
§ Having an RMT and AMT is costly
§ We will see a redesign of PRF-style pipeline without AMT

Active List Operation (with AMT)
§ Retire

§ Wait for instruction to reach the head (and complete)
§ Index the AMT using the head instruction’s logical destination

register specifier
§ Free the “previous mapping” that is contained in the AMT
§ Push the previous mapping onto the free list
§ Committing a new version implicitly means the old committed

version is no longer needed for (potential) recovery
§ Physical register indicated by “current mapping” is committed

by rewriting the AMT with the current mapping
§ Increment head pointer to commit younger instructions in the

active list (deplete the instruction window)

Handling Exception and Mis-speculation
§ Offending instruction sets its exception/misprediction bit in the active

list

§ When offending instruction reaches the head of the active list
§ Squash active list: Set Head = Tail
§ Squash/flush pipeline: Squash all instructions in front-end stages,

IQ, functional units, etc.
§ Restore RMT to committed state: Copy AMT to RMT
§ Restore free list: Push mappings of all instructions after the

offending one back onto the free list
§ Save PC of offending instruction (get it from the head of active list)

§ EPC in MIPS ISA where handler will return to
§ EPC = AL[al_head].PC

§ Trap to exception handler
§ PC = address of exception handler

Implementation Challenge 1: Pipeline Squash
§ Squashing instructions in the pipleine

§ Global squash signal a cycle time bottleneck
§ Physical VLSI design-level details (interconnects)
§ Extending to multiple cycles provides some relief

§ Alternative (no global squash signal)
§ What if we allow all in-flight instructions to complete?
§ A.k.a. draining the pipleine
§ Do not accept (fetch) new instructions
§ Guard the AMT (i.e., set write enable to zero)
§ Can overlap some cycles with restoring RMT from AMT if it

takes multiple cycles to copy

Challenge 2: Restoring RMT from AMT
§ Solution # 1

§ Flash copy: Customized circuit that enables single-cycle copying
§ Requires sophisticated SRAM design

§ Solution # 2
§ Serial copy: Conventional SRAM design
§ Speed limited by # read and # write ports
§ # cycles to restore RMT =

!# 𝑐𝑦𝑐𝑙𝑒𝑠 𝑡𝑜 𝑟𝑒𝑠𝑡𝑜𝑟𝑒 𝑅𝑀𝑇 = # 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑠
min(# 𝐴𝑀𝑇 𝑟𝑒𝑎𝑑 𝑝𝑜𝑟𝑡𝑠, # 𝑅𝑀𝑇 𝑤𝑟𝑖𝑡𝑒 𝑝𝑜𝑟𝑡𝑠)

Free List Example
Logical registers: r1

Physical registers: p1-p5

AMT entries: 1

p1

p5
p4
p2

p3
initial pool of
free registers

Scenario: Dispatch five instructions each
redefining r1 by grabbing a free register
from the initial pool. Then committ
instructions from the head of the active
list one by one

H,T

Free List

Before the first
commit

AMT

r1

AMT

r1 p1

AMT

r1 p1 p2

AMT

r1 p3

AMT

r1 p4

AMT

r1 p5

commit # 1

commit # 2

commit # 3

commit # 4

commit # 5

H,T

Free List

H T

Free List p1

H T

Free List p1 p2

H T

Free List p1 p2 p3

H

Free List p1 p2 p3 p4

Active list (not shown) is now empty

T

Backup: AL snapshot before first commit

Current Mapping

Completed
Mispre-
diction Exception PCEntry

Logical
Dest.

Physical
Dest.

1

2 r1 p1 0 0 0 A

3 r1 p2 0 0 0 B

4 r1 p3 0 0 0 C

5 r1 p4 0 0 0 D

6 r1 p5 0 0 0 E

7

…

Tail

Active List

head

Free List Example

Note: The implementation must
distinguish b/w empty and full free list
(circular FIFO)

Question: What is between head and
tail?
Answer: Speculative, free registers

H,T

Free List

Before the first
commit

AMT

r1

AMT

r1 p1

AMT

r1 p2

AMT

r1 p3

AMT

r1 p4

AMT

r1 p5

commit # 1

commit # 2

commit # 3

commit # 4

commit # 5

H,T

Free List

H T

Free List p1

H T

Free List p1 p2

H T

Free List p1 p2 p3

H

Free List p1 p2 p3 p4

Active list (not shown) is now empty

T

Free List Example
New Scenario: After commit # 5,
dispatch two instructions each renaming
r1 by grabbing a free register from the
list.

H,T

Free List

Before the first
commit

AMT

r1

AMT

r1 p1

AMT

r1 p2

AMT

r1 p3

AMT

r1 p4

AMT

r1 p5

commit # 1

commit # 2

commit # 3

commit # 4

commit # 5

H,T

Free List

H T

Free List p1

H T

Free List p1 p2

H T

Free List p1 p2 p3

H

Free List p1 p2 p3 p4

Active list (not shown) is now empty

AMT

r1 p5

T H

Free List p1 p2 p3 p4

Question: What is between tail and
head?
Answer: speculative registers, allocated
(dispatched) but not committed

T

Restoring Free List

Question: What is between tail and
head?
Answer: speculative registers, allocated
(dispatched) but not committed

Question: What is between head and
tail?
Answer: Speculative, free registers

speculative, allocated to active insts speculative, freeFree List

Active List

tail head

head tail

Question: Is there a simple way to restore/repair the free
list?

Challenge 3: Restoring Free List
§ Solution # 1

§ Slow and complex: Scan active list between head and tail, pusing each instruction’s
current mapping onto the free list

§ Solution # 2
§ Fast and simple
§ Observations about free list contents

§ Between H and T: List of free physical registers
§ Between T and H: List of physical registers allocated to instructions between active

list H and T
§ Restoring free list simply by rolling back head pointer to tail pointer and noting that free

list is full
§ Head = Tail and freelist_full = true
§ Circular FIFO must distinguish b/w empty and full cases

Challenge 3: Restoring Free List

speculative, allocated to AL speculative, freeFree List

Active List

AL tail at position 1

tail head1

head tail1

advancing the head means these registers
are now allocated to the active list

speculative, allocated to AL allocated to AL speculative, freeFree List

Active List
head tail1 tail2

tail head1 head2

AL tail at position 2

squash the pipeline, set AL tail to head

Sidenote: AL has
current logic to
physical mappings

Challenge 3: Restoring Free List

speculative, allocated to active insts speculative, freeFree List

Active List

Before Recovery

Free List

Active List

After Recovery

tail head

head tail

tail
head

head
tail

Comitted
Registers

AMT

Fetch

Decode

Rename

Dispatch

Schedule

Register Read

Execute

Writeback

Contemporary Superscalar Microarchitecture

Free List

Issue

Queue

(IQ)

+ Big
ALU

agen

D$

Physical
Register

File
(PRF)

Active List

AMT RMT

exception
recovery

tail

head tail

head

Retire

complete

Remember the different names
§ Architectural Register File (ARF)

§ Retirement Register File (RRF)

§ Rename Map Table (RMT)

§ Register Alias Table (RAT)

§ Front-End Map Table (when used in PRF)

§ Architectural Map Table (AMT)

§ Reteirement Register Alias Table (RRAT)

§ Backend Map Table

§ Used only in PRF for fast recovery

Remember the different names
§ Reservation Stations

§ Instruction Queue

§ Scheduling Window

§ Active List (AL) or Reorder Buffer (ROB)

§ Instruction window

§ Active window

State-of-affairs: PRF
§ ARF+ROB

§ P6 through Core 2 Duo (Merom), Nehalem
§ PRF (nearly every high-performance processor today)

§ Pentium 4 (P68), Sandybridge, and later
§ AMD Bulldozer, Bobcat
§ MIPS R10000 (basis of today’s lecture slides)
§ IBM Power4, Power5, Power_6,7,8,9_?
§ Alpha 21264

§ Recent regression
§ Intel Silvermont, ARM Cortex A15

Intel Yonah
2006
Core 2

Intel Nehalem
2008
Core i5, i7

Intel Sandy Bridge
2010
Core i5, i7

https://en.wikichip.org/wiki/intel/microarchitectures/sandy_bridge_(client)

Intel Sandy Bridge
https://www.anandtech.com/show/3922/intels-sandy-bridge-architecture-exposed/3

A Physical Register File (Copying from the link here for your benefit)
Just like AMD announced in its Bobcat and Bulldozer architectures, in Sandy Bridge Intel moves to a physical register
file. In Core 2 and Nehalem, every micro-op had a copy of every operand that it needed. This meant the out-of-order
execution hardware (scheduler/reorder buffer/associated queues) had to be much larger as it needed to accommodate
the micro-ops as well as their associated data. Back in the Core Duo days that was 80-bits of data. When Intel
implemented SSE, the burden grew to 128-bits. With AVX however we now have potentially 256-bit operands associated
with each instruction, and the amount that the scheduling/reordering hardware would have to grow to support the AVX
execution hardware Intel wanted to enable was too much.

A physical register file stores micro-op operands in the register file; as the micro-op travels down the OoO engine it only
carries pointers to its operands and not the data itself. This significantly reduces the power of the out of order execution
hardware (moving large amounts of data around a chip eats tons of power), it also reduces die area further down the
pipe. The die savings are translated into a larger out of order window.

The die area savings are key as they enable one of Sandy Bridge’s major innovations: AVX performance.

http://www.anandtech.com/show/3863/amd-discloses-bobcat-bulldozer-architectures-at-hot-chips-2010

Alternative Design: No AMT

Previous Mapping

Completed
Mispre-
diction Exception PCEntry

Logical
Dest.

Physical
Dest.

1

2

3 r1 p67 0 0 0 A

4 r3 p33 0 0 0 B

5 r1 p8 0 0 0 C

6 r4 p46 0 0 0 D

7

…

Head

Tail

Active List★

Instead of the current logical-physical mapping, remember the previous mapping
in the active list

Key Idea: On a misspeculation we can rollback the state of the RMT by walking the AL
from tail to head

Active List Operation (No AMT)
Rename

§ Read out the previous mapping (from the RMT) for the
logical destination register (extra read port)

§ Update the RMT with the new mapping

phys. src. reg. 1 = RMT[logical src. reg. 1] //RMT read port
phys. src. reg. 2 = RMT[logical src. reg. 2] //RMT read port

phys. dest. reg. = pop new mapping from free list
RMT[logical dest. reg.] = phys. dest. reg. //RMT write port

Approach # 1 (with AMT)

phys. src. reg. 1 = RMT[logical src. reg. 1] //RMT read port
phys. src. reg. 2 = RMT[logical src. reg. 2] //RMT read port
previous mapping = RMT[logical dest. reg.] //extra RMT read port

phys. dest. reg. = pop new mapping from free list
RMT[logical dest. reg.] = phys. dest. reg. //RMT write port

Approach # 2 (without AMT)

Active List Operation (No AMT)
Instruction dispatch

§ Reserve entry at tail
§ Initialize the entry

§ Write the instruction’s “previous mapping” (logical
destination register specifier and the previous mapping
on that logical register) and PC

§ Reset the completed, misprediction, and exception flags
§ Increment tail pointer

Active List Operation (No AMT)
§ Instruction retirement

§ Wait for the head instruction to complete
§ Push its previous mapping onto the free list. This has two

implicit effects:
§ The prior committed version of the instruction’s logical

destination register is freed
§ The instruction’s physical destination register is

committed (implicitly)
§ Increment head pointer

Committing & Freeing Registers

Previous Mapping

Completed
Mispre-
diction Exception PCEntry

Logical
Dest.

Physical
Dest.

1

2

3 r1 p67 0 0 0 A

4 r3 p33 0 0 0 B

5 r1 p8 0 0 0 C

6 r4 p46 0 0 0 D

7

…

Head

Tail

Active List

p67

head tail

“free”
“commit”: This action implicitly
commits the head instruction’s
version of r1 (p8)

Freeing Registers in No-AMT Design
Background

§ No map table in the backend
§ Active list contains the

previous logicalàphysical
mappings

§ Committing implicitly means
freeing regs

Logical Physical

r1 p67 p8

RMT

most speculative
mapping at time of
dispatch

Active List
Head

Tail
<r1,p67>

These insts.
should see
<r1,p67>

These insts.
should see
<r1,p8>

Freeing Registers in No-AMT Design
Retirement of <r1,p67> from head

§ p8 busy bit in the busy table is
0 (if the instruction is
complete)

§ All subsequent insts observe
<r1,p8> (unless another inst.
renames r1)

Logical Physical

r1 p67 p8

RMT

most speculative
mapping at time of
dispatch

Active List
Head

Tail

<r1,p67>
These insts.
should see
<r1,p8>

previous
mapping freed at
retirement time

Freeing p67 implicitly
commits p8

§ Subsequent
instructions should see
p8 for r1 because p67
is dead

§ It was kept in the
active list for recovery

Committing & Freeing Registers
“commit”: This action implicitly
commits the head instruction’s
version of r1 (p67)

§ This is how you should look at it:
§ RMT had the non-sepculative mapping (r1, p67)
§ An instruction K redefines the mapping to (r1, p8), RMT now contains (r1,p8)

§ (r1, p8) is the speculative version of mapping
§ The instruction K stores the previous mapping (r1, p67) in AL
§ Now, think, what is the meaning of freeing (committing) p67 at retirement

§ That r1 is no longer mapped to p67 (r1àp67 is dead)
§ That subsequent instructions in program order should see r1àp8
§ And if there is an exception, we need to restore RMT to r1àp8
§ Instruction with (r1, p8) is committing so it is no longer speculative

Rollback-Based Recovery (Scenario # 1)
§ Handling exceptions and misspeculation

§ To repair RMT without AMT, we need rollback-based recovery
§ No map table in the backend so can’t flash copy AMT into RMT
§ But, active list contains the previous logicalàphysical mappings
§ Remember: Committing implicitly updates the arch. state/mapping
§ Misspeculation means we are not going to commit instructions so

RMT needs to be brought into a precise state

§ We will need rollback-based recovery in other scenarios
§ Try to grasp the general concept
§ You will apply the concept to solve some interesting problems

Rollback-Based Recovery
Active List

rollback
to here

Tail

<r1,p8>

<r1,p61>

Logical Physical

r1 p61 p77

RMT (before)

most speculative
mapping in AL

current architectural
mapping

misprediction

<r1,p101><r1,p101>

most speculative
mapping

Logical Physical

r1 p8

RMT after
Recovery

Committing <r1,p8> will make
p101 as the architectural mapping

§ But instruction holding
<r1,p8> never commits

§ So we want RMT to reflect
the correct architectural state

§ Rollback from Tail to Head

p101

61

i

j

k

p77 Rollback: Start putting previous
mappings for r1 into RMT starting
from tail and incrementally moving
upwards

Handling Exception and Mis-speculation
§ Offending instruction sets its exception/misprediction bit in the active list

§ When offending instruction reaches the head of the active list
§ Squash active list: Set Head = Tail
§ Squash/flush pipeline: Squash all instructions in front-end stages, IQ,

functional units, etc.
§ Restore RMT to committed state: Scan the active list backward from tail

to head, restore previous mappings into RMT
§ Restore free list: (1) Head = Tail (easy) or (2) While restoring RMT,

“undone” current mappings are pushed back onto free list
§ Save PC of offending instruction (get it from the head of active list)
§ Trap to exception handler

Branch Misprediction Recovery
§ Drawback of approaches we have discussed so far

§ Wait for the mispredicted branch to reach the head of the active
list before initiating recovery

§ Do not discriminate between exceptions and mispredictions
§ Today: Approaches that initiate recovery as soon as the

misprediction is discovered (as soon as the branch instruction
executes), from the middle of the active list

Recovery from the middle of AL
The next two approaches initiate recovery from branch mispredictions as
soon as the misprediction is discovered (as soon as the branch instruction
executes), from the middle of the active list

head

branch/misp

tail

By waiting for the branch to reach the head,
and then initiate recovery, we miss an
opportunity to exploit parallelism: execute
instructions b/w head and branch and recover
from branch misprediction in parallel

Note: Instructions b/w branch and head are
already dispatched, do not care about
changes to RMT and free list

Assuming there are
no unresolved branches
b/w head and mispredicted
branch

The next two approaches initiate recovery from branch mispredictions as
soon as the misprediction is discovered (as soon as the branch instruction
executes), from the middle of the active list

Free List: For both approaches, checkpoint the free list head pointer
when the branch is renamed. Restoring the checkpointed free list head
pointer associated with the mispredicted branch frees the mappings of
instructions after the branch in bulk (bulk-free)

Rename Map Table: The main problem is restoring the RMT to the point
of the branch

Recovery from the middle of AL

Restoring the RMT

head

branch/misp

tail

<r1,p67>

<r1,p8>

1. Copy AMT to RMT right away (the head’s version)
2. Fast forward the RMT to the point of the branch

1. Walk the AL from head to branch
2. There maybe multiple mappings of a logical register between head and

branch. We want the one closest to the branch. In the below, we care
about restoring RMT to <r1,p8>

Restoring RMT
Recall that the active list contains current mappings, which are used to
update the AMT (and free up prevoius register mappings stored in AMT)

When misprediction is detected:
§ Restore RMT (RAT) from AMT (RRAT) right away (flash or serial copy)
§ Fast forward the RMT to the point of the branch in the active list, by

walking the active list from head to branch and incrementally
updating the RMT with the current mappings in the active list

Contrast to the earlier approach with AMT
§ Copy AMT into RMT when the branch reaches the head (lazy recovery)
§ Lazy recovery has a serious drawback: All branches prior to the branch must retire

before recovery kicks in (think a long-latency memory operation at head of AL)
§ The latency of lazy recovery is proportional to the time it takes to execute the

instructions prior to the branch. The latency of eager recovery is proportional to the
instructions before the branch (and not on the time it takes to execute them)

§ Scenario is as follows
§ AMT in the backend
§ Active list contains the current logicalàphysical mappings
§ Eager recovery: As soon as branch misprediction is discovered,

initiate recovery
§ Note: Multiple branches are a complication everywhere

§ Real-life example: Cyrix III, VIA Technologies

Rollback-Based Recovery (Scenario # 2)

Early Misprediction Recovery (+AMT)
Active List

Head

Tail

<r1,p7>

<r1,p77>

Logical Physical

r1 p77

r2 p10

RMT (speculative)

most speculative
mapping in AL

current arch.
mapping

misprediction

most speculative
mapping

<r1,p18>

Logical Physical

r1 p21

r2 p98

AMT (Head
version)

least speculative (head)
mapping in AL

<r2,p10>

Early Misprediction Recovery (+AMT)
Active List

Head

Tail

<r1,p7>

<r1,p77>

Logical Physical

r1 p77

r2 p10

RMT (speculative)

most speculative
mapping in AL

current arch.
mapping

misprediction

most speculative
mapping

<r1,p18>

Logical Physical

r1 p21

r2 p98

AMT (Head
version)

Logical Physical

r1 p18

r2 p98

RMT (precise)

What we want in RMT
when branch reaches the head

least speculative (head)
mapping in AL

<r2,p10>

Early Misprediction Recovery (+AMT)
Active List

Head

Tail

<r1,p7>

<r1,p77>

Logical Physical

r1 p77

r2 p10

RMT (speculative)

most speculative
mapping in AL

current arch.
mapping

misprediction

most speculative
mapping

Repairing RMT
§ Copy AMT into RMT
§ Fast-forward the RMT

by walking the AL
from Head to the
mispredicted branch

<r1,p18>

Logical Physical

r1 p21

r2 p98

AMT (Head
version)

Logical Physical

r1 p18

r2 p98

RMT (precise)

What we want in RMT
when branch reaches the head

least speculative (head)
mapping in AL

<r2,p10>

From Here

To Here

Shadow Map Tables
§ Checkpoint (create a copy) the RMT at every predicted branch

§ After the branch is renamed, the state of RMT reflects the
renaming of all instructions up to and including the branch

When branch executes (“resolves”)
§ Misprediction

§ Restore RMT from mispredicted branch’s shadow map table (SMT)
§ Reclaim (free) the mispredicted branch’s SMT
§ Reclaims the shadow maps of all later branches for use by new predicted

branches in program order
§ Correct predicton

§ Reclaim the branch’s shadow map table, for use by new predicted branches

Checkpoints vs. Rollback Recovery
§ Rollback-based recovery

§ Slow, can’t undo all instructions in one cycle (only 4 to 8)
§ Checkpointing

§ Take a snapshot of the RMT when the branch is renamed
§ Structures: Shadow maps, shadow registers, branch stack
§ Branch stack in MIPS R10K (4 entries)
§ HaL PM1 (SPARC64) had 16 shadow registers
§ ALPHA 21264 had 80 snapshopts (one for each ROB instruction)
§ Complications and opportunities

§ Multiple branches
§ Selective squash (branch masks in MIPS R10K)

Overall Branch Misprediction Recovery
Pipeline

§ Instruction fetch unit
§ PC = Correct branch target
§ Repair the BHR if applicable

§ Frontend stages: fetch, decode, rename, dispatch
§ Squash all instructions in the frontend stages since these are after the resolved

branch (by definition)
§ Backend stages: schedule (issue), register read, execute, writeback

§ Selectively squash only those instructions in these stages that come after the
mispredicted branch in program order (with eager recovery)

§ Each instruction inherits a vector of unresolved branch identifiers in the rename
stage, indicating which unresolved branches are before the instruction in program
order

Overall Branch Misprediction Recovery
Active List

§ Set tail pointer to entry just after the mispredicted branch
§ Free List

§ Lazy approaches (Head = Tail), Eager approaches (checkpoint)
§ RMT

§ Copy from AMT or shadow maps, or copy plus walk the AL
§ Shadow map tables

§ Reclaim the shadow maps of mispredicted branch and all later branches

Readings
Microarchitecture of HaL's CPU
The Mips R10000 superscalar microprocessor
The Alpha 21264 microprocessor architecture

by John L Hennessy (Author), David A Patterson

https://www.amazon.com.au/John-L-Hennessy/e/B07HGVSXYN/ref=dp_byline_cont_book_1
https://www.amazon.com.au/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=David+A+Patterson&text=David+A+Patterson&sort=relevancerank&search-alias=books-single-index

Fetch

Decode

Rename

Dispatch

Schedule

Register Read

Execute

Writeback

Contemporary Superscalar Microarchitecture

Free List

Issue

Queue

(IQ)

+ Big
ALU

agen

D$

Physical
Register

File
(PRF)

Active List

AMT RMT
shadow
maps

exception
recovery

tail

head tail

head

Retire

complete

Exercise (Sample Exam Q)
§ Can we use no-data-capture in ARF+ROB without using tags, free

list, and AMT?
§ What information do we need to maintain next to each entry

in the ROB?
§ Think: Each register (value, rob_entry) is alive for a window of

time
§ When the value is dead we can safely commit the value from

the head of ROB?
§ How do we maintain lifetime information in ROB?

Superscalar Complexity
Superscalar and complexity

§ Fetch, rename, dispatch, issue, and commit
multiple instructions per cycle

§ Use dynamic scheduling, renaming, and
hardware speculation

§ Goal: IPC>1 (ideal = issue width)
§ Complexity increases with (issue) width
§ Beyond 6-8 issue, the industry moved to

multicores (?)
§ Complexity of very wide issue

superscalar is not worth the increase in
IPC. Better to exploit thread-level
parallelism (TLP)

§ So, after many decades of sustained
performance increases,
multicores(2005à) shifted the burden of
perf. on software (how is that going?)

4-Wide Issue
superscalar

Superscalar Complexity
Limitations & complexity of fetching

§ Frequent taken branches
§ Multiple branch prediction

Dependences within the rename
packet/bundle

Bypass network complexity

Large # ports (RMT)
§ Ports scale linearly with width of superscalar
§ Sizes scale super-linearly with width to

exploit ILP
§ IQ, LQ, and SQ are CAMs (associative

structures)
§ Specialized logic (wake-up/select)

Superscalar Complexity:
Renaming

Instr. # Instruction Physical Reg. Renamed Inst. RMT Change

1 add r1, r2, r3 p32 add p32, p2, p3 r1àp32

2 sub r1, r1, r2 p33 sub p33, p32, p2 r1àp33

3 add r2, r1, r2 p34 add p34, p33, p2 r2àp34

4 sub r1, r3, r2 p35 sub p35, p3, p34 r1àp35

5 add r1, r1, r2 p36 add p36, p35, p34 r1àp36

6 sub r1, r3, r1 p37 sub p37, p3, p36 r1àp37

§ Consider a 6-wide superscalar
§ All of the renaming in this instruction sequence (leftmost column) must

happen in a single cycle
§ Increasing IPC (by issuing 6 instructions in one cycle) at the expense of

increased cycle time likely leads to poor energy efficiency

What does
the digital
logic circuit
looks like?

