
© P. Höfner

Advanced Topics in Formal Methods and Prog. Languages
– Software Verification with Isabelle/HOL –

Assignment 2
ver 1.0

Submission Guidelines

• Due time: Oct 04, 2024, 6pm (Canberra Time)

• Submit via Wattle.

• Accepted formats are plain text (.txt) files, PDF (.pdf) files, and Isabelle theory (.thy) files.

• Isabelle files should be executable (a template is provided on the course webpage).

• Please read and sign the declaration on the last page and attach a copy to your submission.

• No late submission, deadline is strict.

For this assignment, all proof methods and proof automation available in the standard Isabelle distribution
is allowed. This includes, but is not limited to simp, auto, blast, force, and fastforce. However, if
you are going for full marks, you should not use “proof”-methods that bypass the inference kernel, such
as sorry. We may award partial marks for plausible proof sketches where some subgoals or lemmas are
sorried.

If you use sledgehammer, it is important to understand that the proofs suggested by sledgehammer
are just suggestions, and aren’t guaranteed to work. Make sure that the proof suggested by sledgeham-
mer actually terminates on your machine (assuming an average spec machine). If not, you can try to
reconstruct the proof yourself based on the output, or apply a few manual steps to make the subgoal
smaller before using sledgehammer. Please avoid proofs based on smt . It may useful (and necessary)
to fine control the simplifier by using simp only:, simp (no-asm-simp), etc.

Note: this document contains explanations of the problems and your assignment tasks. The full set
of definitions can be found in the associated Isabelle theory files. Some hints are provided at the end of
this document.

Exercise 1 (Binary Trees) (49 Marks)
This exercise explores binary tree. Their definition is standard:
datatype (’a :: linorder) tree =

Leaf

| Branch "’a tree" ’a "’a tree"

An example is giving by the following tree:
"Branch (Branch Leaf (3::nat) Leaf) 1 (Branch (Branch Leaf 4 Leaf) 2 Leaf)"

2 COMP3610/6361

The nodes inside the tree have the same arbitrary type ’a. For the later parts of this exercise, we
assume that these elements are taken from a linear order, i.e. we have reflexivity (x ≤ x), transitivity
(x ≤ y =⇒ y ≤ z =⇒ x ≤ z), antisymmetry (x ≤ y =⇒ y ≤ x =⇒ x = y) and linearity/totality
(x ≤ y ∨ y ≤ x).

Question 1: Height and width of a tree (8 marks)

The height of a tree can be defined by a simple recursive function.
primrec tree-height :: "(’a::linorder) tree ⇒ nat" where

"tree-height Leaf = 1"

| "tree-height (Branch l x r) = 1 + max (tree-height l) (tree-height r)"

(a) Define a function number-leaves that determines the number of leaves of a given tree.

(b) Prove a (strict) upper bound of tree height, depending on number-leaves.

Question 2: Flattening trees (5 marks)

We can create a function that flattens the tree and returns a list of nodes.
primrec lnr-list :: "’a :: linorder tree ⇒’a list" where

"lnr-list Leaf = []"

| "lnr-list (Branch l x r) = lnr-list l @ x # lnr-list r"

Isabelle automatically generates a function "set-tree :: tree ⇒’a set", which transforms a tree into
a set, listing all the nodes of a tree. For example,
set-tree (Branch (Branch Leaf (3::nat) Leaf) 1 (Branch (Branch Leaf 4 Leaf) 2 Leaf))

= {1,2,3,4}
(c) Show that lnr-list contains all elements of the tree, ignoring duplicates.

(d) Strengthen the result of Part (c) to take distinctness into account.

Question 3: Sorted trees (22 marks)

We are now making use of the linear order on nodes, and define a sorted tree.
primrec sorted-tree where

"sorted-tree Leaf = True"

| "sorted-tree (Branch l x r) =

((∀y∈set-tree l. y ≤ x) ∧ (∀y∈set-tree r. y ≥ x) ∧ sorted-tree l ∧ sorted-tree r)"

(e) Show that this function indeed characterises a sorted tree.

(f) Define insort-tree x t which inserts an element x into the (sorted) tree t such that t stays sorted.

(g) Prove the two properties of sorted trees given in the Isabelle file.

Using the insert function we can now build up trees from lists:
definition rl-tree where

"rl-tree ts ≡ foldr insort-tree ts Leaf"

Combining this with rl-tree we can sort trees:
abbreviation sort-tree where

"sort-tree t ≡ rl-tree (lnr-list t)"

P. Höfner 3

(h) Prove that "lnr-list (sort-tree t) = sort (lnr-list t)".

(i) Finally show that "sort-tree" generates a sorted tree.

Question 4: Different traversal (X marks)

The last question defines a different traversal of trees; going ‘top-down’. The definitions are similar to
the one above.
primrec nlr-list :: "’a :: linorder tree ⇒] ’a list" where

"nlr-list Leaf = []"

| "nlr-list (Branch l x r) = x # nlr-list l nlr-list r"

definition lr-tree where

"lr-tree init ts ≡ foldl (λ t x. insort-tree x t) init ts"

(j) Define a function that checks distinctness of subtrees: for any given node x, x is neither in the left
nor the right subtree of x. Some examples for trees featuring this properties are given in the Isabelle
file.

(k) Now show that any sorted tree t with distinct subtrees satisfies the property
lr-tree Leaf (nlr-list t) = t.
Please note that this is a hard exercise.

Exercise 2 (Compiler for arithmetic expressions) (51 Marks)
In this question, we define a small language of arithmetic expressions and a compiler from those expres-
sions to a simple target language for a machine that operates on registers.

Question 5 Datatypes and evaluation7 The language of arithmetic expressions is defined as type aexp

as follows, where the type vname is the type of variable names:

datatype aexp = N int | V vname | Plus aexp aexp

We give a straightforward semantics to this language as function eval which, given an expression and
a variable state (a function from variable names to value, i.e., int), computes the value of the expression:

type-synonym val = int

type-synonym vstate = vname ⇒ val

primrec eval :: aexp ⇒ vstate ⇒ val where
eval (N n) s = n

| eval (V x) s = s x

| eval (Plus e1 e2) s = eval e1 s + eval e2 s

(a) Give an example of an arithmetic expression which evaluates to 7 and uses Plus twice or more.
Prove that your example actually evaluates to 7.

The compiler then compiles the terms of type aexp to programs for a simple target machine that operates
on registers. These programs are terms of the following datatype, where registers are identified by natural
numbers:

4 COMP3610/6361

type-synonym reg = nat

datatype prog =

LoadI reg val

| Load reg vname

| Add reg reg

| Seq prog prog (- ;; - 100)

| Skip

Here, Seq p q first runs the program p, followed by q. Seq p q can also be written p ;; q. Skip can be
used to mark the end of a program.

We define our compiler as a function that, given an expression, yields a program of the target machine
that corresponds to that expression. It also takes as a second argument a register identifier, and may use
registers equal to or above that identifier for the program to be compiled. As a second return value, it
also returns the next register identifier not so far used.

primrec compile :: aexp ⇒ reg ⇒ prog × reg where
compile (N n) r = (LoadI r n, r + 1)

| compile (V x) r = (Load r x, r + 1)

| compile (Plus e1 e2) r1 =

(let (p1, r2) = compile e1 r1;

(p2, r3) = compile e2 r2

in ((Seq p1 (Seq p2 (Add r1 r2))), r3))

(b) Prove that the compiler always returns a register identifier strictly higher than the one given to it.

Question 6: Target machine big-step semantics and compiler correctness (21 marks)

The target machine for the compiler operates on machine states mstate, which are a tuple of a register
state rstate (a function from register identifiers to values), a vstate and the program prog left to be
executed:

type-synonym rstate = reg ⇒ val

type-synonym mstate = rstate × vstate × prog

We define a big-step operational semantics for our machine and write ms ⇓ rs to denote that, given an
initial machine state ms, the program after execution will terminate with a register state rs.

inductive sem :: mstate ⇒ rstate ⇒bool (- ⇓ - [0,60] 61) where
sem-LoadI: (rs, σ, LoadI r n) ⇓ rs(r := n)

| sem-Load: (rs, σ, Load r v) ⇓ rs (r := σ v)

| sem-Add: (rs, σ, Add r1 r2) ⇓ rs (r1 := rs r1 + rs r2)

| sem-Seq: [(rs, σ, p) ⇓ rs’; (rs’, σ, q) ⇓ rs’’] =⇒ (rs, σ, p ;; q) ⇓ rs’’

(c) Prove that the target machine’s semantics is deterministic.

(d) Prove that the compiler produces programs that do not modify any registers of identifier lower than
the register identifier given to it.

P. Höfner 5

(e) Prove that the compiler produces programs that, when executed, yield the value of the expression
in the register provided as the argument to compile in the final rstate according to the program’s
big-step semantics.

Question 7: Target machine small-step semantics (16 marks)

We now give a small-step semantics to the programs of our target machine. A small-step semantics
defines the state of the program after each execution step, rather than only at completion of the execution.
We write ms ⇝ ms’ to denote that given a machine state ms, the execution of one step of the machine
results in machine state ms’. This predicate is defined inductively:

inductive s-sem :: mstate ⇒ mstate ⇒ bool (- ⇝ - 100) where
(rs, σ, LoadI r n)

| (rs, σ, Load r v)

| (rs, σ,Add r1 r2)

| (rs, σ, p) ⇝ (rs’, σ, p’) =⇒ (rs, σ, p ;; q) (rs’, σ, p’ ;; q)

| (rs, σ, Skip ;; p) (rs, σ, p)

(f) Define a function s-sem-n that executes n steps of the small-step semantics.

(g) Prove that two executions of n and m steps, resp., according to s-sem-n compose into a single
execution of n + m steps if their respective final and initial machine state match.

(h) Prove that if p executes to p’ in n steps according to s-sem-n, then p ;; q will execute to p’ ;; q

in n steps with all other parts of the machine state being the same as in the original execution.

(i) Prove that if a program executes in the big-step semantics to a resulting rstate, then it executes in
the small-step semantics to a machine state with the same resulting rstate and the resulting program
Skip with no changes to the vstate.

Question 8: No universal bound on register usage (7 marks)

Finally we will prove that there is no number of registers that is large enough to bound universally the
number of registers used by any possible compiled program. Let term-with-n-Suc be a function that,
given a bound h, generates an expression that will use (at least) Suc h extra registers during evaluation.

primrec term-with-n-Suc :: nat ⇒ aexp where
term-with-n-Suc 0 = N 0

| term-with-n-Suc (Suc n) = (Plus (term-with-n-Suc n) (N 0))

(j) Prove that compiling term-with-n-Suc h will use a number of registers that is indeed strictly lower
bounded by h.

(k) Using this fact, prove that there is no universal bound on the number of registers used for any com-
piled program.

1 Hints

• Many proofs will require induction of one kind or the other. Other than inducting on datatypes
directly, you may find it useful to do an induction over a function f. For example, if f x returns a

6 COMP3610/6361

list, you can apply (induct "f x"). In that case the base case is [] = f x and the step is a # as

= f x.
You may also find it useful to do induction on inductively defined relations such as sem and s-sem.
The induction rules for these are automatically generated by Isabelle. You can apply these induc-
tion rules as elimination rules, e.g.apply (erule sem.induct), but a more convenient and flexible
alternative is

apply (induct rule: sem.induct)

which allows you to specify which variables should not be all-eliminated using e.g. apply (induct

arbitrary: x y rule: sem.induct)

• Not everything needs an induction.

• The equivalent of spec for the meta-logic universal quantifier, if you need it, is called meta-spec.

• For some exercises, you will likely need additional lemmas to make the proof go through. Part of
the assignment is figuring out which lemmas are needed.

• Make use of the find-theorems command to find library theorems. You are allowed to use all
theorems proved in the Isabelle distribution.

P. Höfner 7

Academic Integrity

I declare that this work upholds the principles of academic integrity, as defined in the University Aca-
demic Misconduct Rule; is entirely my own work, with only the exceptions listed; is produced for the
purposes of this assessment task and has not been submitted for assessment in any other context, except
where authorised in writing by the course convener; gives appropriate acknowledgement of the ideas,
scholarship and intellectual property of others insofar as these have been used; in no part involves copy-
ing, cheating, collusion, fabrication, plagiarism or recycling.

Date Signature

	Hints

