Advanced Topics in Formal Methods and Prog. Languages
— Software Verification with Isabelle/HOL -

Assignment 3

ver 1.0

Submission Guidelines

* Due time: Oct 25, 2024, 6pm (Canberra Time)

* Submit via Wattle.

* Accepted formats are plain text (.txt) files, PDF (.pdf) files, and Isabelle theory (.thy) files.
* Isabelle files should be executable (a template is provided on the course webpage).

* Please read and sign the declaration on the last page and attach a copy to your submission.

¢ No late submission, deadline is strict.

For this assignment, all proof methods and proof automation available in the standard Isabelle distribution
is allowed. This includes, but is not limited to simp, auto, blast, force, and fastforce. However, if
you are going for full marks, you should not use “proof”-methods that bypass the inference kernel, such
as sorry. We may award partial marks for plausible proof sketches where some subgoals or lemmas are
sorried.

For all questions, you may prove your own helper lemmas, and you may use lemmas proved earlier
in other questions. You can also use automated tools like sledghammer. If you can’t finish an earlier
proof, use sorry to assume that the result holds so that you can use it if you wish in a later proof. You
won’t be penalised in the later proof for using an earlier true result you were unable to prove, and you’ll
be awarded partial marks for the earlier question in accordance with the progress you made on it.

Exercise 1 (AVL Trees) (50 Marks)

In this exercise we extend our analysis of trees started in Assignment 2. Please note, that we provide all
definitions and lemmas needed so that this exercise is self-contained. Don’t forget that splitting lemmas
such as tree.splits could be useful.

In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time
they differ by more than one, rebalancing is done to restore this property. This exercise aims to verify
that the following insert function is correct.

fun avl_insert :: "’a::linorder => ’a tree => ’a tree" where
"avl_insert x Leaf = Branch Leaf x Leaf" |
"avl_insert x (Branch 1 y r) =
(if x < y then
(let new_1 = avl_insert x 1 in
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let balanced_tree = Branch new_1l y r in
if factor balanced_tree < -1 then
if factor new_1 <= 0
then rotate_right balanced_tree
else rotate_left_right balanced_tree
else balanced_tree)
else if x > y then
(let new_r = avl_insert x r in
let balanced_tree = Branch 1 y new_r in
if factor balanced_tree > 1 then
if factor new_r >= 0
then rotate_left balanced_tree
else rotate_right_left balanced_tree
else balanced_tree)
else
Branch 1 y )"

We will work through the definitions in the following.
We use the definition of tree, function nrl_1ist, and corresponding functions from the last assign-
ment. An example is a useful helper function
lemma insort-1t:
"Vy € set xs. x > y = insort x (xs @ ys) = xs @ (insort x ys)"
by (induct xs arbitrary: x; fastforce)

Question 1: Rotating Trees (14 marks)

A crucial definition within the context of AVL trees is rotation. We rotate a node from right to left by the
following function. We rotate a node from right to left by the following function.
definition rotate-right :: "’a::linorder tree =-’a tree" where
"rotate-right b = (case b of
Branch (Branch 11 y 1r) x r =Branch 11 y (Branch 1lr x r)
| - =b)" The function rotate-left is defined in a similar fashion.

(a) Show that rotating left and then rotating right is the identity, under some weak circumstances. Try
to find the weakest assumption. Explain in a short sentence why this assumption is necessary (e.g.
provide a counterexample), and useful.

(b) Using the flatten-function 1nr_list from the last assignment, prove that rotating does not change
the order of leaves.

We now lift single rotation to a double-rotation construct.
definition rotate-right-left :: "(’a::linorder) tree =’a tree" where
"rotate-right-left b = (case b of
Branch 1 x (Branch (Branch rl y rr) z r)
=rotate-left (Branch 1 x (rotate-right (Branch (Branch rl y rr) z r)))
| - =b)" Again, we define a symmetric (rotate-left-right) one as well.

(c) Create a similar lemma to 1nr_1ist_rotate (Question (b)), featuring double rotation
rotate_left_right and rotate_right_left, respectively.
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Question 2: Balanced Trees (10 marks)

The AVL tree ensures that the height difference (balance factor) between the left and right subtrees of
any node is at most 1.

(d) Using the height-function, define a function balanced that checks whether a given tree (input) is
balanced.

(e) Prove that under some weak precondition, rotation balances a tree. (The lemmas can be found in the
Isabelle file.) Hint: Similar lemmas for double-rotation may come in handy later on.

Question 3: Verification (25 marks)

We are now turning towards the main theorem of this exercise, the verification of the algorithm presented
above.

(f) Describe the algorithm in a few sentences. (Feel free to use example trees)
We require a couple of auxiliary lemmas to complete the verification task.

(g) Using the function ordered from the last assignment, show that avl_insert inserts the new ele-
ment at the right position.
lemma Ilnr-list-avl-insert:
"[ordered t; x ¢set-tree t]
—> Inr-list (avl-insert x t) = insort x (lnr-list t)"

To reason about balanced tree, we require lemmas that relate the function avl_insert to the height of
the tree.

(h) Prove "balanced t —>height t < height (avl-insert x t)"
(1) The previous lemma gives a lower bound of the tree height. Provide a (strict) upper bound.
And finally,

(j) Prove that the algorithm is functionally correct. Please note that this proof could be potentially long.

"balanced tree —> balanced (avl_insert x tree)"

Exercise 2 (Stack) (50 Marks)

This exercise should be completed using Isabelle2023 and AutoCorres 1.10. https://github.com/
sel4/14v/releases/download/autocorres-1.10/autocorres-1.10.tar.gz.
You will need a Unix-based machine, AutoCorres does not support native Windows. Linux, Mac, and
Windows WSL should work. After extracting the autocorres-1.10.tar.gz archive, load the template theory
files via e.g.
L4V_ARCH=ARM isabelle jedit -d <path-to-autocorres-1.10> -1 AutoCorres a3.thy
In this question we will be verifying a simple stack implementation in C. The objective is to famil-
iarise yourself with proofs about imperative programs and reasoning about finite machine word arith-
metic in C.
The file stack. c contains a global array content of length LEN storing the contents of the stack (of
type unsigned int). The global variable top is the index of the top-most element of the stack when
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the stack contains elements and -1 otherwise. Note that top is an unsigned int, which means that -1
is the same as MAX_INT.

To reason about the C functions, the assignment template defines an abstraction predicate is_stack
xs s thatis true if and only if the list xs contains the contents of the global stack in state s. The definition
is based on the recursive definition stack_from xs n s that starts looking at the stack not from the top,
but from index n instead.

After processing by AutoCorres, the template opens the context stack, in which monadic versions of
the C functions are available under names ending with ’, for instance pop’ for the C function pop and
so on. The global state is an Isabelle record with fields top_’’ and contents_’’. The contents_’’
field is of Isabelle type array. Array types are written t [n] where t is the element type, and n is the
size of the array. The type provides an Arrays. index function to access fields and an Arrays.update
function to update elements. Array.index aiis written a. [i]. Use find_theorems to discover rules
about the array type.

Finally, the C program operates on finite machine words, but some of our predicates operate on
natural numbers. The function unat converts a machine word into a natural number. The operators <
and < on machine words can also be expressed via unat. Use find_theorems to discover rules about
unat and its interactions with operators on natural numbers.

We begin the proof by showing same basic properties of the abstraction predicates:

(a) is_stack [] s = (top_’’ s = - 1)
(b) is_stack [] s

(is_empty’ s = 1)
(c) stack_from xs (- 1) s = (xs = [1)
(d) is_stack [x] s = (top_’’ s = 0 Acontent_’’ s.[0] = x)

(e) is_stack (x # xs) s =
(top_’’ s < LENA
content_’’ s.[unat (top_’’ s)] = x Astack_from xs (top_’’ s - 1) s)

For C functions that change the state, we will want to know under which changes the predicate remains
the same.

(f) The stack_from predicate takes the index as a parameter and therefore does not depend on the value
of the variable top_’’:

stack_from xs n (s (top_’’ := t )= stack_from xs n s
(g) The stack_from predicate also does not change if we update the array at an index that is outside of
the range 0. .n, for instance at n+1.

nat (n + 1) < LEN —
stack_from xs n
(s((top_’’ := n+l1, content_’’ := update (content_’’ s) (unat (n + 1)) x|)
= stack_from xs n s

The template contains an optional lemma that might help with induction over the xs.
We are now ready to prove properties of the C functions.

(h) Complete the Hoare logic statement in the assignment template and prove partial correctness of
pop’.
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(i) Complete the Hoare logic statement in the assignment template and prove total correctness of pop’,
using the {_}! syntax, instead of {_[} . Total correctness means you will also have to show all side
conditions that could lead to undefined behaviour in C.

(j) Complete the Hoare logic statement in the assignment template and prove total correctness of push’.

(k) Prove partial correctness of sum’, which empties the stack and sums up all of its elements. The
Isabelle function sum_1ist xs in the template stands for the sum of all elements of xs. It is easier
in this proof to unfold the definition of pop’ again than to use the previous correctness lemma.



