
COMP4011/8011
Advanced Topics in

Formal Methods and Programming Languages

– Software Verification with Isabelle/HOL –

Peter Höfner

September 22, 2024

1

Section 0

Admin

2

Lecturer

• A/Prof. Peter Höfner
CSIT, Room N234 (Building 108)
Peter.Hoefner@anu.edu.au
+61 2 6125 0159

Consultation
after the lecture, or by appointment

3

Lectures

• Tuesday 10:00-11:30, Rm G51 Haydon-Allen Bldg
Wednesday 9:00-10:30, Rm G52 Haydon-Allen Bldg

• Q/A session in Week 12 or 13

• Etiquette
▶ tailored for in-person attendance
▶ engage
▶ feel free to ask questions
▶ we reject behaviour that strays into harassment,

no matter how mild

4

DropIns

• not mandatory
• Thursday 11:00-13:30, Rm G51 Haydon-Allen Bldg
• from Week 2 onwards

• Summary
▶ your chance to discuss problems
▶ discuss home work
▶ discuss exercises from lectures
▶ no structured activity

(nothing will happen without your input)
▶ except: oral discussion of your assignments

5

Plan/Schedule I

Resources
web: https://cs.anu.edu.au/courses/comp4011-itp/
wattle: https://wattlecourses.anu.edu.au/course/view.php?id=44081
edstem: https://edstem.org/
(you will be registered at the end of the week)

Workload
The average student workload is 130 hours for a six unit course.
That is roughly 11 hours/week.
https://policies.anu.edu.au/ppl/document/ANUP_000691

6

https://cs.anu.edu.au/courses/comp4011-itp/
https://wattlecourses.anu.edu.au/course/view.php?id=44081
https://edstem.org/
https://policies.anu.edu.au/ppl/document/ANUP_000691

Plan/Schedule II
Assessment criteria

• Quizz: 0% (for feedback only)
• Assignments: 45%, 3 assignments
• Take-home exam: 55% (55 marks) [hurdle]
• hurdle: minimum of 35% in the final exam

Assessments (tentative)

No Hand Out Hand In Marks
0 23/07 26/07 0
1 16/08 15
2 04/10 15
3 12/10 15
4 tbc 55

7

About the Course I

This course is about mechanical proof assistants, how they
work, and what they can be used for. It presents specification
and proof techniques used in industrial grade interactive theo-
rem provers (Isabelle/HOL), teaches the theoretical background
to the techniques involved, and shows how to use a theorem
prover to conduct formal proofs in practice.

8

About the Course II
Topics (tentative)
The following schedule is tentative and likely to change.

Topic
0 Admin
1 Introduction
2 Lambda Calculus
3 Proofs in Isabelle, Natural Deduction, HOL
4 Term Rewriting
5 Induction
6 Recursive Datatypes and Primitive Recursion
7 General Recursion
8 Hoare Logic
9 Weakest Preconditions
10 Advanced Topics in Software Verification
11 Guest lectures and Exam Preparation

9

About the Course IV

Disclaimer
This is first time I offer this course.
The material in these notes has been drawn from several different
sources, including the books and similar courses at some other
universities. In particular, it is based on a course offered by UNSW and
Proofcraft.
As it is a newly designed course, changes in timetabling are quite likely.
Feedback (oral, email, survey, . . .) is highly appreciated.

10

Credits

Gerwin Klein, June Andronick, Johannes Åman Pohjola

Tobias Nipkow, Larry Paulson, Makarius Wenzel

David Basin, Burkhardt Wolff

11

Academic Integrity

• never misrepresent the work of others as your own
• if you take ideas from elsewhere (including tools)

you must say so with utmost clarity

12

Generative AI

• introduction of fundamental concepts
• use of any Generative AI tools is not permitted

13

Reading Material

• Tobias Nipkow and Gerwin Klein: Concrete Semantics
http://www.concrete-semantics.org

Further Reading
• Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel: Isabelle/HOL – A Proof

Assistant for Higher-Order Logic
• Apostolos Doxiadis, Christos H. Papadimitriou, Alecos Papadatos, Annie Di Donna.

Logicomix: An Epic Search for Truth
• Hendrik Pieter Barendregt. The Lambda Calculus, its Syntax and Semantics
• Alonzo Church. A formulation of the simple theory of types
• Michael J. C. Gordon and Tom F. Melham (eds), Introduction to HOL. Cambridge

University Press
• Franz Baader and Tobias Nipkow. Term Rewriting and All That
• . . .

14

http://www.concrete-semantics.org

Software

• Isabelle (Australian download mirror)
https://proofcraft.systems/isabelle/index.html

• Isabelle theory library
https://isabelle.in.tum.de/library/

• The Archive of Formal Proofs
https://www.isa-afp.org

Exercise 1
Install Isabelle
Feel free to bring your laptop into lectures and dropins.

15

https://proofcraft.systems/isabelle/index.html
https://isabelle.in.tum.de/library/
https://www.isa-afp.org

Section 1

Introduction

16

Binary Search (java.util.Arrays)
1: public static int binarySearch(int[] a, int key) {

2: int low = 0;

3: int high = a.length - 1;

4:

5: while (low <= high) {

6: int mid = (low + high) / 2;

7: int midVal = a[mid];

8:

9: if (midVal < key)

10: low = mid + 1

11: else if (midVal > key)

12: high = mid - 1;

13: else

14: return mid; // key found

15: }

16: return -(low + 1); // key not found.

17: }

6: int mid = (low + high) / 2;

http://googleresearch.blogspot.com/2006/06/

extra-extra-read-all-about-it-nearly.html

17

http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html
http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html

What you will learn

• how to use a theorem prover
• background, how it works
• how to prove and specify
• how to reason about programs

Health Warning

Theorem Proving may be addictive

18

Prerequisites

This is an advanced course. It assumes knowledge in
• Functional programming
• First-order formal logic

The following program should make sense to you:

map f [] = []
map f (x:xs) = f x : map f xs

You should be able to read and understand this formula:

∃x . (P(x) −→ ∀x . P(x))

19

Increase chance to succeed

you should:
• attend lectures
• try Isabelle early
• redo all the demos alone
• try the exercises/homework we give, when we do give some

• DO NOT CHEAT
▶ assignments and exams are take-home. This does NOT mean you can

work in groups. Each submission is personal.
▶ for more info, see Plagiarism Policy

20

What is a formal proof?

A derivation in a formal calculus

Example: A ∧ B −→ B ∧ A derivable in the following system

Rules:
X ∈ S
S ⊢ X

(assumption)
S ∪ {X} ⊢ Y

S ⊢ X −→ Y
(impI)

S ⊢ X S ⊢ Y
S ⊢ X ∧ Y

(conjI)
S ∪ {X ,Y } ⊢ Z

S ∪ {X ∧ Y } ⊢ Z
(conjE)

Proof:
1. {A,B} ⊢ B (by assumption)
2. {A,B} ⊢ A (by assumption)
3. {A,B} ⊢ B ∧ A (by conjI with 1 and 2)
4. {A ∧ B} ⊢ B ∧ A (by conjE with 3)
5. {} ⊢ A ∧ B −→ B ∧ A (by impI with 4)

21

What is a theorem prover?

Implementation of a formal logic on a computer.
• fully automated (propositional logic)
• automated, but not necessarily terminating (first order logic)
• with automation, but mainly interactive (higher order logic)

There are other (algorithmic) verification tools:
• model checking, static analysis, ...
• See COMP3710: Algorithmic Verification (S2 2022) or COMP4130

22

Why theorem proving?

• Analyse systems/programs thoroughly
• Find design and specification errors early
• High assurance: mathematical, machine checked proofs
• It’s not always easy
• It’s fun!

23

Main theorem proving system for this course

λ
→

∀
=Is

ab
el
le

β

α

Isabelle

24

What is Isabelle?

A generic interactive proof assistant

• generic
not specialised to one particular logic
(two large developments: HOL and ZF, will mainly use HOL)

• interactive
more than just yes/no, you can interactively guide the system

• proof assistant
helps to explore, find, and maintain proofs

25

Correctness

If I prove it on the computer, it is correct, right?

No, because:
1. hardware could be faulty
2. operating system could be faulty
3. implementation runtime system could be faulty
4. compiler could be faulty
5. implementation could be
6. logic could be inconsistent
7. theorem could mean something else

26

Correctness

If I prove it on the computer, it is correct, right?

No, but: probability for
• OS and H/W issues reduced by using different systems
• runtime/compiler bugs reduced by using different compilers
• faulty implementation reduced by having the right prover architecture
• inconsistent logic reduced by implementing and analysing it
• wrong theorem reduced by expressive/intuitive logics

No guarantees, but assurance immensely higher than manual proof

27

Meta Logic

Meta language:
The language used to talk about another language.

Examples:
English in a Spanish class, English in an English class

Meta logic:
The logic used to formalise another logic

Example:
Mathematics used to formalise derivations in formal logic

28

Meta Logic – Example

Syntax:
Formulae: F ::= V | F −→ F | F ∧ F | False

V ::= [A− Z]

Judgement: S ⊢ X X a formula, S a set of formulae

logic / meta logic

X ∈ S
S ⊢ X

S ∪ {X} ⊢ Y

S ⊢ X −→ Y

S ⊢ X S ⊢ Y
S ⊢ X ∧ Y

S ∪ {X ,Y } ⊢ Z

S ∪ {X ∧ Y } ⊢ Z

29

Isabelle’s Meta Logic

∧
=⇒ λ

30

∧

Syntax:
∧
x . F (F another meta logic formula)

in ASCII: !!x. F

• this is the meta-logic universal quantifier
• example and more later

31

=⇒
Syntax: A =⇒ B (A,B other meta logic formulae)
in ASCII: A ==> B

Binds to the right:

A =⇒ B =⇒ C = A =⇒ (B =⇒ C)

Abbreviation:

[[A;B]] =⇒ C = A =⇒ B =⇒ C

• read: A and B implies C

• used to write down rules, theorems, and proof states

32

Example: a theorem

mathematics: if x < 0 and y < 0, then x + y < 0

formal logic: ⊢ x < 0 ∧ y < 0 −→ x + y < 0
variation: x < 0; y < 0 ⊢ x + y < 0

Isabelle: lemma “x < 0 ∧ y < 0 −→ x + y < 0”
variation: lemma “[[x < 0; y < 0]] =⇒ x + y < 0”
variation: lemma

assumes “x < 0” and “y < 0” shows “x + y < 0”

33

Example: a rule

logic:
X Y
X ∧ Y

variation:
S ⊢ X S ⊢ Y
S ⊢ X ∧ Y

Isabelle: [[X ;Y]] =⇒ X ∧ Y

34

Example: a rule with nested implication

logic:
X ∨ Y

X....
Z

Y....
Z

Z

variation:
S ∪ {X} ⊢ Z S ∪ {Y } ⊢ Z

S ∪ {X ∨ Y } ⊢ Z

Isabelle: [[X ∨ Y ;X =⇒ Z ;Y =⇒ Z]] =⇒ Z

35

λ

Syntax: λx . F (F another meta logic formula)
in ASCII: %x. F

• lambda abstraction
• used to represent functions
• used to encode bound variables
• more about this soon

36

Section 2

Enough Theory!

Getting started with Isabelle

37

System Architecture

Prover IDE (jEdit) – user interface

HOL, ZF – object-logics

Isabelle – generic, interactive theorem prover

Standard ML – logic implemented as ADT

User can access all layers!

38

System Requirements

• Linux, Windows, or MacOS X (10.8 +)
• Standard ML (PolyML implementation)
• Java (for jEdit)

Pre-made packages for Linux, Mac, and Windows + info on:
https://proofcraft.systems/isabelle/

39

https://proofcraft.systems/isabelle/

Demo

40

jEdit/PIDE

41

jEdit/PIDE

Theory File

Isabelle Output

42

jEdit/PIDE

LaTeX Comment

Commands

logic terms go in
quotes: Òx + 2Ó

43

jEdit/PIDE

Command + hover
for popup info

Command click
jumps to deÞnition

44

jEdit/PIDE

error

processed

unprocessed

45

Exercises

• Download and install Isabelle
• Step through the demo files from the lecture web page
• Write your own theory file, look at some theorems in the library, try

’find theorems’
• How many theorems can help you if you need to prove something

containing the term “Suc(Suc x)”?
• What is the name of the theorem for associativity of addition of

natural numbers in the library?

46

Section 3

λ-Calculus

47

λ-calculus

Alonzo Church
• lived 1903–1995
• supervised people like Alan Turing, Stephen Kleene
• famous for Church-Turing thesis, lambda calculus,

first undecidability results
• invented λ calculus in 1930’s

λ-calculus
• originally meant as foundation of mathematics
• important applications in theoretical computer science
• foundation of computability and functional programming

48

untyped λ-calculus

• Turing-complete model of computation
• a simple way of writing down functions

Basic intuition:

instead of f (x) = x + 5
write f = λx . x + 5

λx . x + 5

• a term
• a nameless function
• that adds 5 to its parameter

49

Function Application

For applying arguments to functions

instead of f (a)
write f a

Example: (λx . x + 5) a

Evaluating: in (λx . t) a replace x by a in t
(computation!)

Example: (λx . x + 5) (a+ b) evaluates to (a+ b) + 5

50

Now Formal

51

Syntax

Terms: t ::= v | c | (t t) | (λx . t)

v , x ∈ V , c ∈ C , V ,C sets of names

• v , x variables
• c constants
• (t t) application
• (λx . t) abstraction

52

Conventions

• leave out parentheses where possible
• list variables instead of multiple λ

Example: instead of (λy . (λx . (x y))) write λy x . x y

Rules:
• list variables: λx . (λy . t) = λx y . t

• application binds to the left: x y z = (x y) z ̸= x (y z)

• abstraction binds to the right: λx . x y = λx . (x y) ̸= (λx . x) y

• leave out outermost parentheses

53

Getting used to the Syntax

Example:
λx y z . x z (y z) =

λx y z . (x z) (y z) =

λx y z . ((x z) (y z)) =

λx . λy . λz . ((x z) (y z)) =

(λx . (λy . (λz . ((x z) (y z)))))

54

Computation
Intuition: replace parameter by argument

this is called β-reduction

Remember: (λx . t) a is evaluated (noted −→β) to
t where x is replaced by a

Example:

(λx y . Suc x = y) 3 −→β

(λx . (λy . Suc x = y)) 3 −→β

(λy . Suc 3 = y)

(λx y . f (y x)) 5 (λx . x) −→β

(λy . f (y 5)) (λx . x) −→β

f ((λx . x) 5) −→β

f 5

55

Defining Computation

β reduction:
(λx . s) t −→β s[x ← t]

s −→β s ′ =⇒ (s t) −→β (s ′ t)
t −→β t ′ =⇒ (s t) −→β (s t ′)
s −→β s ′ =⇒ (λx . s) −→β (λx . s ′)

Still to do: define s[x ← t]

56

Defining Substitution

Easy concept. Small problem: variable capture.
Example: (λx . x z)[z ← x]

We do not want: (λx . x x) as result. What do we want?

In (λy . y z) [z ← x] = (λy . y x) there would be no problem.

So, solution is: rename bound variables.

57

Free Variables

Bound variables: in (λx . t), x is a bound variable.

Free variables FV of a term:
FV (x) = {x}
FV (c) = {}
FV (s t) = FV (s) ∪ FV (t)
FV (λx . t) = FV (t) \ {x}

Example: FV (λx . (λy . (λx . x) y) y x) = {y}

Term t is called closed if FV (t) = {}

The substitution example, (λx . x z)[z ← x], is problematic because the
bound variable x is a free variable of the replacement term “x”.

58

Substitution

x [x ← t] = t
y [x ← t] = y if x ̸= y
c [x ← t] = c

(s1 s2) [x ← t] = (s1[x ← t] s2[x ← t])

(λx . s) [x ← t] = (λx . s)
(λy . s) [x ← t] = (λy . s[x ← t]) if x ̸= y and y /∈ FV (t)
(λy . s) [x ← t] = (λz . s[y ← z][x ← t]) if x ̸= y

and z /∈ FV (t) ∪ FV (s)

59

Substitution Example

(x (λx . x) (λy . z x))[x ← y]
= (x [x ← y]) ((λx . x)[x ← y]) ((λy . z x)[x ← y])
= y (λx . x) (λy ′. z y)

60

α Conversion

Bound names are irrelevant:
λx . x and λy . y denote the same function.
α conversion:
s =α t means s = t up to renaming of bound variables.

Formally:
(λx . t) −→α (λy . t[x ← y]) if y /∈ FV (t)

s −→α s ′ =⇒ (s t) −→α (s ′ t)
t −→α t ′ =⇒ (s t) −→α (s t ′)
s −→α s ′ =⇒ (λx . s) −→α (λx . s ′)

s =α t iff s −→∗
α t

(−→∗
α = transitive, reflexive closure of −→α = multiple steps)

61

α Conversion

Equality in Isabelle is equality modulo α conversion:

if s =α t then s and t are syntactically equal.

Examples:
x (λx y . x y)

=α x (λy x . y x)
=α x (λz y . z y)
̸=α z (λz y . z y)
̸=α x (λx x . x x)

62

Back to β

We have defined β reduction: −→β

Some notation and concepts:
• β conversion: s =β t iff ∃n. s −→∗

β n ∧ t −→∗
β n

• t is reducible if there is an s such that t −→β s

• (λx . s) t is called a redex (reducible expression)
• t is reducible iff it contains a redex
• if it is not reducible, t is in normal form

63

Does every λ-term have a normal form?

No!

Example:

(λx . x x) (λx . x x) −→β

(λx . x x) (λx . x x) −→β

(λx . x x) (λx . x x) −→β ...

(but: (λx y . y) ((λx . x x) (λx . x x)) −→β λy . y)

λ calculus is not terminating

64

β reduction is confluent

Confluence: s −→∗
β x ∧ s −→∗

β y =⇒ ∃t. x −→∗
β t ∧ y −→∗

β t

s

x y

t

∗ ∗

∗∗

Order of reduction does not matter for result
Normal forms in λ calculus are unique

65

β reduction is confluent

Example:

(λx y . y) ((λx . x x) a) −→β (λx y . y) (a a) −→β λy . y

(λx y . y) ((λx . x x) a) −→β λy . y

66

η Conversion
Another case of trivially equal functions: t = (λx . t x)
Definition:

(λx . t x) −→η t if x /∈ FV (t)
s −→η s ′ =⇒ (s t) −→η (s ′ t)
t −→η t ′ =⇒ (s t) −→η (s t ′)
s −→η s ′ =⇒ (λx . s) −→η (λx . s ′)

s =η t iff ∃n. s −→∗
η n ∧ t −→∗

η n

Example: (λx . f x) (λy . g y) −→η (λx . f x) g −→η f g

• η reduction is confluent and terminating.
• −→βη is confluent.
−→βη means −→β and −→η steps are both allowed.

• Equality in Isabelle is also modulo η conversion.

67

In fact ...

Equality in Isabelle is modulo α, β, and η conversion.

We will see later why that is possible.

68

Isabelle Demo

69

So, what can you do with λ calculus?

λ calculus is very expressive, you can encode:
• logic, set theory
• turing machines, functional programs, etc.

Examples:
true ≡ λx y . x if true x y −→∗

β x
false ≡ λx y . y if false x y −→∗

β y
if ≡ λz x y . z x y

Now, not, and, or, etc is easy:
not ≡ λx . if x false true

and ≡ λx y . if x y false

or ≡ λx y . if x true y

70

More Examples

Encoding natural numbers (Church Numerals)

0 ≡ λf x . x
1 ≡ λf x . f x
2 ≡ λf x . f (f x)
3 ≡ λf x . f (f (f x))
...

Numeral n takes arguments f and x , applies f n-times to x .

iszero ≡ λn. n (λx . false) true
succ ≡ λn f x . f (n f x)
add ≡ λm n. λf x . m f (n f x)

71

Fix Points

(λx f . f (x x f)) (λx f . f (x x f)) t −→β

(λf . f ((λx f . f (x x f)) (λx f . f (x x f)) f)) t −→β

t ((λx f . f (x x f)) (λx f . f (x x f)) t)

µ = (λx f . f (x x f)) (λxf . f (x x f))
µ t −→β t (µ t) −→β t (t (µ t)) −→β t (t (t (µ t))) −→β ...

(λxf . f (x x f)) (λxf . f (x x f)) is Turing’s fix point operator

72

Nice, but ...
As a mathematical foundation, λ does not work.
It resulted in an inconsistent logic.

• Frege (Predicate Logic, ∼ 1879):
allows arbitrary quantification over predicates

• Russell (1901): Paradox R ≡ {X |X /∈ X}
• Whitehead & Russell (Principia Mathematica, 1910-1913):

Fix the problem
• Church (1930): λ calculus as logic, true, false, ∧, ... as λ terms

Problem:
with {x | P x} ≡ λx . P x x ∈ M ≡ M x
you can write R ≡ λx . not (x x)
and get (R R) =β not (R R)
because (R R) = (λx . not (x x)) R −→β not (R R)

73

We have learned so far.. . .

• λ calculus syntax
• free variables, substitution
• β reduction
• α and η conversion
• β reduction is confluent
• λ calculus is very expressive (Turing complete)
• λ calculus results in an inconsistent logic

74

Section 4

Simple-Typed λ-Calculus

75

λ calculus is inconsistent

Can find term R such that R R =β not(R R)

There are more terms that do not make sense:
1 2, true false, etc.

Solution: rule out ill-formed terms by using types.
(Church 1940)

76

Introducing types

Idea: assign a type to each “sensible” λ term.

Examples:
• for term t has type α write t :: α

• if x has type α then λx . x is a function from α to α
Write: (λx . x) :: α⇒ α

• for s t to be sensible:
s must be a function
t must be right type for parameter

If s :: α⇒ β and t :: α then (s t) :: β

77

Now formally again

78

Syntax for λ→

Terms: t ::= v | c | (t t) | (λx . t)
v , x ∈ V , c ∈ C , V ,C sets of names

Types: τ ::= b | ν | τ ⇒ τ
b ∈ {bool, int, ...} base types
ν ∈ {α,β, ...} type variables

α⇒ β ⇒ γ = α⇒ (β ⇒ γ)

Context Γ:
Γ: function from variable and constant names to types.

Term t has type τ in context Γ: Γ ⊢ t :: τ

79

Examples

Γ ⊢ (λx . x) :: α⇒ α

[y ← int] ⊢ y :: int

[z ← bool] ⊢ (λy . y) z :: bool

[] ⊢ λf x . f x :: (α⇒ β)⇒ α⇒ β

A term t is well typed or type correct
if there are Γ and τ such that Γ ⊢ t :: τ

80

Type Checking Rules

Variables: Γ ⊢ x :: Γ(x)

Application:
Γ ⊢ t1 :: τ2 ⇒ τ Γ ⊢ t2 :: τ2

Γ ⊢ (t1 t2) :: τ

Abstraction:
Γ[x ← τx] ⊢ t :: τ

Γ ⊢ (λx . t) :: τx ⇒ τ

81

Example Type Derivation

[x ← α, y ← β] ⊢ x :: α
Var

[x ← α] ⊢ λy . x :: β ⇒ α
Abs

[] ⊢ λx y . x :: α⇒ β ⇒ α
Abs

Remember:

Γ ⊢ x :: Γ(x)
Var Γ ⊢ t1 :: τ2 ⇒ τ Γ ⊢ t2 :: τ2

Γ ⊢ (t1 t2) :: τ
App

Γ[x ← τx] ⊢ t :: τ

Γ ⊢ (λx . t) :: τx ⇒ τ
Abs

82

More complex Example

Γ ⊢ f :: α⇒ (α⇒ β)
Var

Γ ⊢ x :: α
Var

Γ ⊢ f x :: α⇒ β
App

Γ ⊢ x :: α
Var

Γ ⊢ f x x :: β
App

[f ← α⇒ α⇒ β] ⊢ λx . f x x :: α⇒ β
Abs

[] ⊢ λf x . f x x :: (α⇒ α⇒ β)⇒ α⇒ β
Abs

Γ = [f ← α⇒ α⇒ β, x ← α]

Remember:

Γ ⊢ x :: Γ(x)
Var Γ ⊢ t1 :: τ2 ⇒ τ Γ ⊢ t2 :: τ2

Γ ⊢ (t1 t2) :: τ
App

Γ[x ← τx] ⊢ t :: τ

Γ ⊢ (λx . t) :: τx ⇒ τ
Abs

83

More general Types

• A term can have more than one type.

Example: [] ⊢ λx . x :: bool⇒ bool

[] ⊢ λx . x :: α⇒ α

• Some types are more general than others:

τ ≲ σ if there is a substitution S such that τ = S(σ)

Examples:
int⇒ bool ≲ α⇒ β ≲ β ⇒ α ̸≲ α⇒ α

84

Most general Types

Fact: each type correct term has a most general type

Formally:
Γ ⊢ t :: τ =⇒ ∃σ. Γ ⊢ t :: σ ∧ (∀σ′. Γ ⊢ t :: σ′ =⇒ σ′ ≲ σ)

It can be found by executing the typing rules backwards.

• type checking: checking if Γ ⊢ t :: τ for given Γ and τ

• type inference: computing Γ and τ such that Γ ⊢ t :: τ

Type checking and type inference on λ→ are decidable.

85

What about β reduction?

Definition of β reduction stays the same.

Fact: Well typed terms stay well typed during β reduction

Formally: Γ ⊢ s :: τ ∧ s −→β t =⇒ Γ ⊢ t :: τ

This property is called subject reduction

86

What about termination?

β reduction in λ→ always terminates.

(Alan Turing, 1942)

• =β is decidable
To decide if s =β t, reduce s and t to normal form (always exists,
because −→β terminates), and compare result.

• =αβη is decidable
This is why Isabelle can automatically reduce each term to βη
normal form.

87

What does this mean for Expressiveness?

Checkpoint:
• untyped lambda calculus is Turing complete

(all computable functions can be expressed)
• but it is inconsistent
• λ→ “fixes” the inconsistency problem by adding types
• Problem: it is not Turing complete anymore!

Not all computable functions can be expressed in λ→!
(non terminating functions cannot be expressed)

But wait... typed functional languages are turing complete!

88

What does this mean for Expressiveness?
So...

• typed functional languages are turing complete
• but λ→ is not...
• How does this work?
• By adding one single constant, the Y operator (fix point operator), to
λ→

• This introduces the non-termination that the types removed.

Y :: (τ ⇒ τ)⇒ τ
Y t −→β t (Y t)

Fact: If we add Y to λ→ as the only constant, then each computable
function can be encoded as closed, type correct λ→ term.

• Y is used for recursion
• lose decidability (what does Y (λx . x) reduce to?)
• (Isabelle/HOL doesn’t have Y ; recursion is more restricted)

89

Types and Terms in Isabelle

Types: τ ::= b | ′ν | ′ν :: C | τ ⇒ τ | (τ , ... , τ) K
b ∈ {bool, int, ...} base types
ν ∈ {α,β, ...} type variables
K ∈ {set, list, ...} type constructors
C ∈ {order, linord, ...} type classes

Terms: t ::= v | c | ?v | (t t) | (λx . t)
v , x ∈ V , c ∈ C , V ,C sets of names

• type constructors: construct a new type out of a parameter type.
Example: int list

• type classes: restrict type variables to a class defined by axioms.
Example: α :: order

• schematic variables: variables that can be instantiated.

90

Type Classes
• similar to Haskell’s type classes, but with semantic properties

class order =
assumes order refl: ”x ≤ x”
assumes order trans: ”[[x ≤ y ; y ≤ z]] =⇒ x ≤ z”
...

• theorems can be proved in the abstract
lemma order less trans: ”

∧
x ::′a :: order . [[x < y ; y < z]] =⇒ x < z”

• can be used for subtyping
class linorder = order +

assumes linorder linear: ”x ≤ y ∨ y ≤ x”

• can be instantiated
instance nat :: ”{order, linorder}” by ...

91

Schematic Variables
X Y
X ∧ Y

• X and Y must be instantiated to apply the rule

But: lemma “x + 0 = 0 + x”

• x is free
• convention: lemma must be true for all x
• during the proof, x must not be instantiated

Solution:
Isabelle has free (x), bound (x), and schematic (?X) variables.

Only schematic variables can be instantiated.

Free converted into schematic after proof is finished.

92

Higher Order Unification

Unification:
Find substitution σ on variables for terms s, t such that σ(s) = σ(t)

In Isabelle:
Find substitution σ on schematic variables such that σ(s) =αβη σ(t)

Examples:
?X∧?Y =αβη x ∧ x [?X ← x , ?Y ← x]
?P x =αβη x ∧ x [?P ← λx . x ∧ x]
P (?f x) =αβη ?Y x [?f ← λx . x , ?Y ← P]

Higher Order: schematic variables can be functions.

93

Higher Order Unification

• Unification modulo αβ (Higher Order Unification) is semi-decidable
• Unification modulo αβη is undecidable
• Higher Order Unification has possibly infinitely many solutions

But:
• Most cases are well-behaved
• Important fragments (like Higher Order Patterns) are decidable

Higher Order Pattern:
• is a term in β normal form where
• each occurrence of a schematic variable is of the form ?f t1 ... tn

• and the t1 ... tn are η-convertible into n distinct bound variables

94

We have learned so far...

• Simply typed lambda calculus: λ→

• Typing rules for λ→, type variables, type contexts
• β-reduction in λ→ satisfies subject reduction
• β-reduction in λ→ always terminates
• Types and terms in Isabelle

95

Exercises

• Construct a type derivation tree for the term λx y z . z x (y x)

• Find a unifier (substitution) such that
λx y z . ?F y z = λx y z . z (?G x y)

96

Section 5

Isabelle/HOL
Natural Deduction

97

Preview: Proofs in Isabelle

98

Proofs in Isabelle

General schema:

lemma name: ”<goal>”
apply <method>
apply <method>
...
done

• Sequential application of methods until
all subgoals are solved.

99

The Proof State

1.
∧

x1 ... xp.[[A1; ... ;An]] =⇒ B
2.

∧
y1 ... yq.[[C1; ... ;Cm]] =⇒ D

x1 ... xp Parameters
A1 ...An Local assumptions
B Actual (sub)goal

100

Isabelle Theories

Syntax:
theory MyTh
imports ImpTh1 . . . ImpThn
begin

(declarations, definitions, theorems, proofs, ...)∗

end

• MyTh: name of theory. Must live in file MyTh.thy

• ImpThi : name of imported theories. Import transitive.

Unless you need something special:
theory MyTh imports Main begin ... end

101

Natural Deduction Rules

A B
A ∧ B

conjI
A ∧ B JA;BK =⇒ C

C
conjE

A
A ∨ B

B
A ∨ B

disjI1/2 A ∨ B A =⇒ C B =⇒ C
C

disjE

A =⇒ B
A −→ B

impI A −→ B A B =⇒ C
C

impE

For each connective (∧,∨, etc):
introduction and elimination rules

102

Proof by Assumption

apply assumption

proves

1. JB1; ... ;BmK =⇒ C

by unifying C with one of the Bi

There may be more than one matching Bi and multiple unifiers.

Backtracking!

Explicit backtracking command: back

103

Intro Rules

Intro rules decompose formulae to the right of =⇒.

apply (rule <intro-rule>)

Intro rule JA1; ... ;AnK =⇒ A means
• To prove A it suffices to show A1 ...An

Applying rule JA1; ... ;AnK =⇒ A to subgoal C :
• unify A and C

• replace C with n new subgoals A1 ...An

104

Intro Rules: example

To prove subgoal A −→ A we can use: P =⇒ Q
P −→ Q

impI

(in Isabelle: impI : (?P =⇒?Q) =⇒?P −→?Q)

Recall:
Applying rule JA1; ... ;AnK =⇒ A to subgoal C :

• unify A and C

• replace C with n new subgoals A1 ...An

Here:
• unify... ?P −→?Q with A −→ A

• replace subgoal... A −→ A (i.e. J K =⇒ A −→ A)
with J A K =⇒ A (which can be proved with: apply assumption)

105

Elim Rules

Elim rules decompose formulae on the left of =⇒.

apply (erule <elim-rule>)

Elim rule JA1; ... ;AnK =⇒ A means
• If I know A1 and want to prove A it suffices to show A2 ...An

Applying rule JA1; ... ;AnK =⇒ A to subgoal C :
Like rule but also

• unifies first premise of rule with an assumption
• eliminates that assumption

106

Elim Rules: example
To prove JB ∧ AK =⇒ A we can use: P ∧ Q JP;QK =⇒ R

R
conjE

(in Isabelle: conjE : J?P ∧ ?Q; J?P; ?QK =⇒ ?RK =⇒ ?R)

Recall:
Applying rule JA1; ... ;AnK =⇒ A to subgoal C :
Like rule but also

• unifies first premise of rule with an assumption
• eliminates that assumption

Here:
• unify... ?R with A

• and also unify... ?P∧?Q with assumption B ∧ A

• replace subgoal... JB ∧ AK =⇒ A
with JB;AK =⇒ A (which can be proved with: apply assumption)

107

Demo

108

More Proof Rules

109

Iff, Negation, True and False

A =⇒ B B =⇒ A
A = B

iffI
A = B JA −→ B;B −→ AK =⇒ C

C
iffE

A = B
A =⇒ B

iffD1 A = B
B =⇒ A

iffD2

A =⇒ False
¬A notI ¬A A

P
notE

True TrueI False
P

FalseE

110

Equality

t = t refl s = t
t = s

sym r = s s = t
r = t trans

s = t P s
P t

subst

Rarely needed explicitly — used implicitly by term rewriting

111

Classical

P = True ∨ P = False
True-or-False

P ∨ ¬P excluded-middle

¬A =⇒ False
A

ccontr ¬A =⇒ A
A

classical

• excluded-middle, ccontr and classical
not derivable from the other rules.

• if we include True-or-False, they are derivable

They make the logic “classical”, “non-constructive”

112

Cases

P ∨ ¬P excluded-middle

is a case distinction on type bool

Isabelle can do case distinctions on arbitrary terms:

apply (case tac term)

113

Safe and not so safe

Safe rules preserve provability

conjI, impI, notI, iffI, refl, ccontr, classical, conjE, disjE
A B
A ∧ B

conjI

Unsafe rules can turn a provable goal into an unprovable one

disjI1, disjI2, impE, iffD1, iffD2, notE
A

A ∨ B
disjI1

Apply safe rules before unsafe ones

114

Demo

115

What we have learned so far . . .

• natural deduction rules for ∧, ∨, −→, ¬, iff...
• proof by assumption, by intro rule, elim rule
• safe and unsafe rules

• indent your proofs! (one space per subgoal)
• prefer implicit backtracking (chaining) or rule tac , instead of back
• prefer and defer

• oops and sorry

116

Section 6

Isabelle/HOL
First-Order Logic

117

Last time...

• natural deduction rules for ∧, ∨, −→, ¬, iff...
• proof by assumption, by intro rule, elim rule
• safe and unsafe rules

• indent your proofs! (one space per subgoal)
• prefer implicit backtracking (chaining) or rule tac , instead of back
• prefer and defer

• oops and sorry

118

Quantifiers

119

Scope

• Scope of parameters: whole subgoal
• Scope of ∀,∃, ...: ends with ; or =⇒

Example: ∧
x y . J ∀y . P y −→ Q z y ; Q x y K =⇒ ∃x . Q x y

means∧
x y . J (∀y1. P y1 −→ Q z y1); Q x y K =⇒ (∃x1. Q x1 y)

120

Natural deduction for quantifiers

∧
x . P x

∀x . P x
allI ∀x . P x P ?x =⇒ R

R
allE

P ?x
∃x . P x

exI
∃x . P x

∧
x . P x =⇒ R

R
exE

• allI and exE introduce new parameters (
∧
x).

• allE and exI introduce new unknowns (?x).

121

Instantiating Rules

apply (rule tac x = ”term” in rule)

Like rule, but ?x in rule is instantiated by term before application.

Similar: erule tac

! x is in rule, not in goal !

122

Two Successful Proofs

1. ∀x . ∃y . x = y

apply (rule allI)

1.
∧
x . ∃y . x = y

best practice exploration

apply (rule tac x = ”x” in exI) apply (rule exI)

1.
∧
x . x = x 1.

∧
x . x = ?y x

apply (rule refl) apply (rule refl)

?y 7→ λu.u

simpler & clearer shorter & trickier

123

Two Unsuccessful Proofs
1. ∃y . ∀x . x = y

apply (rule tac x = ??? in exI) apply (rule exI)

1. ∀x . x = ?y

apply (rule allI)

1.
∧
x . x = ?y

apply (rule refl)

?y 7→ x yields
∧

x ′. x ′ = x

Principle:
?f x1 ... xn can only be replaced by term t

if params(t) ⊆ x1, ... , xn

124

Safe and Unsafe Rules

Safe allI, exE
Unsafe allE, exI

Create parameters first, unknowns later

125

Demo: Quantifier Proofs

126

Parameter names

Parameter names are chosen by Isabelle

1. ∀ x . ∃y . x = y

apply (rule allI)

1.
∧
x . ∃y . x = y

apply (rule tac x = ”x” in exI)

Brittle!

127

Renaming parameters

1. ∀x . ∃y . x = y

apply (rule allI)

1.
∧

x . ∃y . x = y

apply (rename tac N)

1.
∧
N. ∃y . N = y

apply (rule tac x = ”N” in exI)

In general:
(rename tac x1 ... xn) renames the rightmost (inner) n parameters to
x1 ... xn

128

Forward Proof: frule and drule

apply (frule < rule >)

Rule: JA1; ... ;AmK =⇒ A

Subgoal: 1. JB1; ... ;BnK =⇒ C

Substitution: σ(Bi) ≡ σ(A1)

New subgoals: 1. σ(JB1; ... ;BnK =⇒ A2)

...

m-1. σ(JB1; ... ;BnK =⇒ Am)

m. σ(JB1; ... ;Bn;AK =⇒ C)

Like frule but also deletes Bi : apply (drule < rule >)

129

Examples for Forward Rules

P ∧ Q
P

conjunct1
P ∧ Q
Q

conjunct2

P −→ Q P
Q

mp

∀x . P x
P ?x

spec

130

Forward Proof: OF
r [OF r1 ... rn]

Prove assumption 1 of theorem r with theorem r1, and assumption 2 with
theorem r2, and ...

Rule r JA1; ... ;AmK =⇒ A

Rule r1 JB1; ... ;BnK =⇒ B

Substitution σ(B) ≡ σ(A1)

r [OF r1] σ(JB1; ... ;Bn;A2; ... ;AmK =⇒ A)

Example:
dvd add : J ?a dvd ?b; ?a dvd ?c K =⇒?a dvd ?b + ?c
dvd refl : ?a dvd ?a

dvd add [OF dvd refl] : J ?a dvd ?c K =⇒?a dvd ?a + ?c

131

Forward proofs: THEN

r1 [THEN r2] means r2 [OF r1]

132

Demo: Forward Proofs

133

Hilbert’s Epsilon Operator

(David Hilbert, 1862-1943)

ε x . Px is a value that satisfies P (if such a value exists)

ε also known as description operator.
In Isabelle the ε-operator is written SOME x . P x

P ?x
P (SOME x . P x)

someI

134

More Epsilon

ε implies Axiom of Choice:

∀x . ∃y . Q x y =⇒ ∃f . ∀x . Q x (f x)

Existential and universal quantification can be defined with ε.

Isabelle also knows the definite description operator THE (aka ι):

(THE x . x = a) = a
the eq trivial

135

Some Automation

More Proof Methods:

apply (intro <intro-rules>) repeatedly applies intro rules

apply (elim <elim-rules>) repeatedly applies elim rules

apply clarify applies all safe rules
that do not split the goal

apply safe applies all safe rules

apply blast an automatic tableaux prover
(works well on predicate logic)

apply fast another automatic search tactic

136

Exercises

• We said that ε implies the Axiom of Choice:

∀x . ∃y . Q x y =⇒ ∃f . ∀x . Q x (f x)

• Prove the axiom of choice as a lemma, using only the introduction
and elimination rules for ∀ and ∃, namely allI, exI, allE, exE, and
the introduction rule for ε, someI, using only the proof methods
rule, rule tac, erule, erule tac and assumption.

137

We have learned so far...

• Proof rules for predicate calculus
• Safe and unsafe rules
• Forward Proof
• The Epsilon Operator
• Some automation

138

Section 7

Isabelle/HOL
Isar (Part 1)

A Language for Structured Proofs

139

Motivation

Is this true: (A −→ B) = (B ∨ ¬A) ?

140

Motivation

Is this true: (A −→ B) = (B ∨ ¬A) ?

YES!

apply (rule iffI)
apply (cases A)
apply (rule disjI1)
apply (erule impE)
apply assumption

apply assumption
apply (rule disjI2)
apply assumption

apply (rule impI)
apply (erule disjE)
apply assumption

apply (erule notE)
apply assumption
done

or by blast

OK it’s true. But WHY?

141

Motivation

WHY is this true: (A −→ B) = (B ∨ ¬A) ?

Demo

142

Isar

apply scripts What about..

→ hard to read → Elegance?
→ hard to maintain → Explaining deeper insights?

No explicit structure. Isar!

143

A typical Isar proof

proof
assume formula0
have formula1 by simp
...
have formulan by blast
show formulan+1 by ...

qed

proves formula0 =⇒ formulan+1

(analogous to assumes/shows in lemma statements)

144

Isar core syntax

proof = proof [method] statement∗ qed
| by method

method = (simp . . .) | (blast . . .) | (rule . . .) | . . .

statement = fix variables (
∧

)
| assume proposition (=⇒)
| [from name+] (have | show) proposition proof
| next (separates subgoals)

proposition = [name:] formula

145

proof and qed

proof [method] statement∗ qed

lemma ”JA;BK =⇒ A ∧ B”
proof (rule conjI)

assume A: ”A”
from A show ”A” by assumption

next
assume B: ”B”
from B show ”B” by assumption

qed

→ proof (<method>) applies method to the stated goal
→ proof applies a single rule that fits
→ proof - does nothing to the goal

146

How do I know what to Assume and Show?

Look at the proof state!

lemma ”JA;BK =⇒ A ∧ B”
proof (rule conjI)

• proof (rule conjI) changes proof state to
1. JA;BK =⇒ A
2. JA;BK =⇒ B

• so we need 2 shows: show ”A” and show ”B”
• We are allowed to assume A,

because A is in the assumptions of the proof state.

147

The Three Modes of Isar

• [prove]:
goal has been stated, proof needs to follow.

• [state]:
proof block has opened or subgoal has been proved,
new from statement, goal statement or assumptions can follow.

• [chain]:
from statement has been made, goal statement needs to follow.

lemma ”JA;BK =⇒ A ∧ B” [prove]
proof (rule conjI) [state]

assume A: ”A” [state]
from A [chain] show ”A” [prove] by assumption [state]

next [state] . . .

148

Have

Can be used to make intermediate steps.

Example: lemma ”(x :: nat) + 1 = 1 + x”
proof -

have A: ”x + 1 = Suc x” by simp
have B: ”1 + x = Suc x” by simp
show ”x + 1 = 1 + x” by (simp only: A B)

qed

149

Demo

150

Backward and Forward
Backward reasoning: ... have ”A ∧ B” proof

• proof picks an intro rule automatically
• conclusion of rule must unify with A ∧ B

Forward reasoning: ...
assume AB: ”A ∧ B”
from AB have ”...” proof

• now proof picks an elim rule automatically
• triggered by from
• first assumption of rule must unify with AB

General case: from A1 ... An have R proof
• first n assumptions of rule must unify with A1 ... An

• conclusion of rule must unify with R

151

Fix and Obtain

• fix v1 ... vn

Introduces new arbitrary but fixed variables
(∼ parameters,

∧
)

• obtain v1 ... vn where <prop> <proof>

Introduces new variables together with property

152

Fancy Abbreviations

this = the previous fact proved or assumed

then = from this
thus = then show

hence = then have
with A1 ...An = from A1 ...An this

?thesis = the last enclosing goal statement

153

Demo

154

Moreover and Ultimately

have X1: P1 . . . have P1 . . .
have X2: P2 . . . moreover have P2 . . .
...

...
have Xn: Pn . . . moreover have Pn . . .
from X1 ...Xn show . . . ultimately show . . .

wastes lots of brain power on names X1 ...Xn

155

General Case Distinctions

show formula
proof -

have P1 ∨ P2 ∨ P3 <proof>
moreover { assume P1 ... have ?thesis <proof> }
moreover { assume P2 ... have ?thesis <proof> }
moreover { assume P3 ... have ?thesis <proof> }
ultimately show ?thesis by blast

qed
{ . . . } is a proof block similar to proof ... qed

{ assume P1 . . . have P <proof> }
stands for P1 =⇒ P

156

Mixing proof styles

from . . .
have . . .

apply - make incoming facts assumptions
apply (. . .)
...
apply (. . .)
done

157

More on Automation

This can be automated
Automated methods (fast, blast, clarify etc) are not hardwired.
Safe/unsafe intro/elim rules can be declared.

Syntax:
[<kind>!] for safe rules (<kind> one of intro, elim, dest)
[<kind>] for unsafe rules

Application (roughly):
do safe rules first, search/backtrack on unsafe rules only

Example: declare attribute globally declare conjI [intro!] allE [elim]
remove attribute globally declare allE [rule del]
use locally apply (blast intro: someI)
delete locally apply (blast del: conjI)

158

Demo: Automation

159

Exercises

• derive the classical contradiction rule (¬P =⇒ False) =⇒ P in
Isabelle

• define nor and nand in Isabelle
• show nor x x = nand x x

• derive safe intro and elim rules for them
• use these in an automated proof of nor x x = nand x x

160

Section 8

Higher Order Logic

161

What is Higher Order Logic?

• Propositional Logic:
▶ no quantifiers
▶ all variables have type bool

• First Order Logic:
▶ quantification over values, but not over functions and predicates,
▶ terms and formulas syntactically distinct

• Higher Order Logic:
▶ quantification over everything, including predicates
▶ consistency by types
▶ formula = term of type bool
▶ definition built on λ→ with certain default types and constants

162

Defining Higher Order Logic

Default types:

bool ⇒ ind

• bool sometimes called o

• ⇒ sometimes called fun

Default Constants:

−→ :: bool ⇒ bool ⇒ bool
= :: α⇒ α⇒ bool
ϵ :: (α⇒ bool)⇒ α

163

Higher Order Abstract Syntax

Problem: Define syntax for binders like ∀, ∃, ε

One approach: ∀ :: var ⇒ term⇒ bool
Drawback: need to think about substitution, α conversion again.

But: Already have binder, substitution, α conversion in meta logic

λ
So: Use λ to encode all other binders.

164

Higher Order Abstract Syntax

Example:
ALL :: (α⇒ bool)⇒ bool

HOAS usual syntax

ALL (λx . x = 2) ∀x . x = 2
ALL P ∀x . P x

Isabelle can translate usual binder syntax into HOAS.

165

Side Track: Syntax Declarations
• mixfix:

consts drvbl :: ct ⇒ ct ⇒ fm⇒ bool (” , ⊢ ”)
Legal syntax now: Γ,Π ⊢ F

• priorities:
pattern can be annotated with priorities to indicate binding strength
Example: drvbl :: ct ⇒ ct ⇒ fm⇒ bool (” , ⊢ ” [30, 0, 20] 60)

• infixl/infixr: short form for left/right associative binary operators
Example: or :: bool ⇒ bool ⇒ bool (infixr ” ∨ ” 30)

• binders: declaration must be of the form
c :: (τ1 ⇒ τ2)⇒ τ3 (binder ”B” < p >)
B x . P x translated into c P (and vice versa)
Example ALL :: (α⇒ bool)⇒ bool (binder ”∀” 10)

More in Isabelle/Isar Reference Manual (8.2)

166

Back to HOL

Base: bool ,⇒, ind =, −→, ε

And the rest is definitions:
True ≡ (λx :: bool . x) = (λx . x)
All P ≡ P = (λx . True)
Ex P ≡ ∀Q. (∀x . P x −→ Q) −→ Q
False ≡ ∀P. P
¬P ≡ P −→ False
P ∧ Q ≡ ∀R. (P −→ Q −→ R) −→ R
P ∨ Q ≡ ∀R. (P −→ R) −→ (Q −→ R) −→ R
If P x y ≡ SOME z . (P = True −→ z = x) ∧ (P = False −→ z = y)
inj f ≡ ∀x y . f x = f y −→ x = y
surj f ≡ ∀y . ∃x . y = f x

167

The Axioms of HOL

t = t refl
s = t P s

P t
subst

∧
x . f x = g x

(λx . f x) = (λx . g x)
ext

P =⇒ Q
P −→ Q

impI
P −→ Q P

Q
mp

(P −→ Q) −→ (Q −→ P) −→ (P = Q)
iff

P = True ∨ P = False
True or False

P ?x
P (SOME x . P x)

someI

∃f :: ind ⇒ ind . inj f ∧ ¬surj f infty

168

That’s it.

• 3 basic constants
• 3 basic types
• 9 axioms

With this you can define and derive all the rest.

Isabelle knows 2 more axioms:

x = y
x ≡ y eq reflection (THE x . x = a) = a

the eq trivial

169

Demo:
The Definitions in Isabelle

170

Deriving Proof Rules

In the following, we will
• look at the definitions in more detail
• derive the traditional proof rules from the axioms in Isabelle

Convenient for deriving rules: named assumptions in lemmas

lemma [name :]
assumes [name1 :] “< prop >1”
assumes [name2 :] “< prop >2”
...
shows “< prop >” < proof >

proves: J < prop >1; < prop >2; ... K =⇒ < prop >

171

True

consts True :: bool
True ≡ (λx :: bool . x) = (λx . x)

Intuition:
right hand side is always true

Proof Rules:
True

TrueI

Proof:
(λx :: bool . x) = (λx . x)

refl

True
unfold True def

172

Demo

173

Universal Quantifier

consts ALL :: (α⇒ bool)⇒ bool
ALL P ≡ P = (λx . True)

Intuition:
• ALL P is Higher Order Abstract Syntax for ∀x . P x .
• P is a function that takes an x and yields a truth value.
• ALL P should be true iff P yields true for all x , i.e.

if it is equivalent to the function λx . True.
Proof Rules: ∧

x . P x

∀x . P x
allI ∀x . P x P ?x =⇒ R

R
allE

Proof: Isabelle Demo

174

False

consts False :: bool
False ≡ ∀P.P

Intuition:
Everything can be derived from False.

Proof Rules:
False
P

FalseE
True ̸= False

Proof: Isabelle Demo

175

Negation

consts Not :: bool ⇒ bool (¬)
¬P ≡ P −→ False

Intuition:
Try P = True and P = False and the traditional truth table for −→.

Proof Rules:
A =⇒ False
¬A notI ¬A A

P
notE

Proof: Isabelle Demo

176

Existential Quantifier

consts EX :: (α⇒ bool)⇒ bool
EX P ≡ ∀Q. (∀x . P x −→ Q) −→ Q

Intuition:
• EX P is HOAS for ∃x . P x . (like ∀)
• Right hand side is characterization of ∃ with ∀ and −→
• Note that inner ∀ binds wide: (∀x . P x −→ Q)

• Remember lemma from last time:
(∀x . P x −→ Q) = ((∃x . P x) −→ Q)

Proof Rules:
P ?x
∃x . P x

exI
∃x . P x

∧
x . P x =⇒ R

R
exE

Proof: Isabelle Demo

177

Conjunction

consts And :: bool ⇒ bool ⇒ bool (∧)
P ∧ Q ≡ ∀R. (P −→ Q −→ R) −→ R

Intuition:
• Mirrors proof rules for ∧
• Try truth table for P, Q, and R

Proof Rules:

A B
A ∧ B

conjI
A ∧ B JA;BK =⇒ C

C
conjE

Proof: Isabelle Demo

178

Disjunction

consts Or :: bool ⇒ bool ⇒ bool (∨)
P ∨ Q ≡ ∀R. (P −→ R) −→ (Q −→ R) −→ R

Intuition:
• Mirrors proof rules for ∨ (case distinction)
• Try truth table for P, Q, and R

Proof Rules:

A
A ∨ B

B
A ∨ B

disjI1/2 A ∨ B A =⇒ C B =⇒ C
C

disjE

Proof: Isabelle Demo

179

If-Then-Else

consts If :: bool ⇒ α⇒ α⇒ α (if then else)
If P x y ≡ SOME z . (P = True −→ z = x) ∧ (P = False −→ z = y)

Intuition:
• for P = True, right hand side collapses to SOME z . z = x

• for P = False, right hand side collapses to SOME z . z = y

Proof Rules:

if True then s else t = s
ifTrue

if False then s else t = t
ifFalse

Proof: Isabelle Demo

180

That was HOL

181

We have learned ...

• Defining HOL
• Higher Order Abstract Syntax
• Deriving proof rules

182

Section 9

Term Rewriting

183

The Problem

Given a set of equations

l1 = r1
l2 = r2

...
ln = rn

does equation l = r hold?

Applications in:
• Mathematics (algebra, group theory, etc)
• Functional Programming (model of execution)
• Theorem Proving (dealing with equations, simplifying statements)

184

Term Rewriting: The Idea

use equations as reduction rules

l1 −→ r1
l2 −→ r2

...
ln −→ rn

decide l = r by deciding l
∗←→ r

185

Arrow Cheat Sheet

0−→ = {(x , y)|x = y} identity
n+1−→ =

n−→ ◦ −→ n+1 fold composition
+−→ =

⋃
i>0

i−→ transitive closure
∗−→ =

+−→ ∪ 0−→ reflexive transitive closure
=−→ = −→ ∪ 0−→ reflexive closure
−1−→ = {(y , x)|x −→ y} inverse
←− =

−1−→ inverse
←→ = ←− ∪ −→ symmetric closure
+←→ =

⋃
i>0

i←→ transitive symmetric closure
∗←→ =

+←→ ∪ 0←→ reflexive transitive symmetric closure

186

How to Decide l
∗←→ r

Same idea as for β: look for n such that l ∗−→ n and r
∗−→ n

Does this always work?
If l ∗−→ n and r

∗−→ n then l
∗←→ r . Ok.

If l ∗←→ r , will there always be a suitable n? No!

Example:
Rules: f x −→ a, g x −→ b, f (g x) −→ b

f x
∗←→ g x because f x −→ a←− f (g x) −→ b ←− g x

But: f x −→ a and g x −→ b and a, b in normal form

Works only for systems with Church-Rosser property:
l

∗←→ r =⇒ ∃n. l ∗−→ n ∧ r
∗−→ n

Fact: −→ is Church-Rosser iff it is confluent.

187

Confluence

s

x y

t

∗ ∗

∗∗

Problem:
is a given set of reduction rules confluent?

undecidable

Local Confluence

s

x y

t
∗∗

Fact: local confluence and termination =⇒ confluence

188

Termination

−→ is terminating if there are no infinite reduction chains
−→ is normalizing if each element has a normal form
−→ is convergent if it is terminating and confluent

Example:
−→β in λ is not terminating, but confluent
−→β in λ→ is terminating and confluent, i.e. convergent

Problem: is a given set of reduction rules terminating?

undecidable

189

When is −→ Terminating?

Basic idea: when each rule application makes terms simpler in some
way.
More formally: −→ is terminating when there is a well founded

order < on terms for which s < t whenever t −→ s
(well founded = no infinite decreasing chains a1 > a2 > ...)

Example: f (g x) −→ g x , g (f x) −→ f x

This system always terminates. Reduction order:
s <r t iff size(s) < size(t) with
size(s) = number of function symbols in s

1. Both rules always decrease size by 1 when applied to any term t

2. <r is well founded, because < is well founded on IN

190

Termination in Practice

In practice: often easier to consider just the rewrite rules by themselves,
rather than their application to an arbitrary term t.

Show for each rule li = ri , that ri < li .

Example:
g x < f (g x) and f x < g (f x)

Requires
u to become smaller whenever any subterm of u is made smaller.
Formally:

Requires < to be monotonic with respect to the structure of
terms:

s < t −→ u[s] < u[t].
True for most orders that don’t treat certain parts of terms as
special cases.

191

Example Termination Proof

Problem: Rewrite formulae containing ¬, ∧, ∨ and −→, so that they don’t
contain any implications and ¬ is applied only to variables and constants.

Rewrite Rules:
• Remove implications:

imp: (A −→ B) = (¬A ∨ B)

• Push ¬s down past other operators:
notnot: (¬¬P) = P

notand: (¬(A ∧ B)) = (¬A ∨ ¬B)

notor: (¬(A ∨ B)) = (¬A ∧ ¬B)

We show that the rewrite system defined by these rules is terminating.

192

Order on Terms

Each time one of our rules is applied, either:
• an implication is removed, or
• something that is not a ¬ is hoisted upwards in the term.

This suggests a 2-part order, <r : s <r t iff:
• num imps s < num imps t, or
• num imps s = num imps t ∧ osize s < osize t.

Let:
• s <i t ≡ num imps s < num imps t and
• s <n t ≡ osize s < osize t

Then <i and <n are both well-founded orders (since both return nats).
<r is the lexicographic order over <i and <n. <r is well-founded since <i

and <n are both well-founded.

193

Order Decreasing

imp clearly decreases num imps.
osize adds up all non-¬ operators and variables/constants, weights each
one according to its depth within the term.

osize′ c x = 2x

osize′ (¬P) x = osize′ P (x + 1)
osize′ (P ∧ Q) x = 2x + (osize′ P (x + 1)) + (osize′ Q (x + 1))
osize′ (P ∨ Q) x = 2x + (osize′ P (x + 1)) + (osize′ Q (x + 1))
osize′ (P −→ Q) x = 2x + (osize′ P (x + 1)) + (osize′ Q (x + 1))

osize P = osize′ P 0

The other rules decrease the depth of the things osize counts, so
decrease osize.

194

Term Rewriting in Isabelle

Term rewriting engine in Isabelle is called Simplifier

apply simp
• uses simplification rules
• (almost) blindly from left to right
• until no rule is applicable.

termination: not guaranteed
(may loop)

confluence: not guaranteed
(result may depend on which rule is used first)

195

Control

• Equations turned into simplification rules with [simp] attribute

• Adding/deleting equations locally:

apply (simp add: <rules>) and apply (simp del: <rules>)

• Using only the specified set of equations:

apply (simp only: <rules>)

196

Demo

197

Exercises

• Show, via a pen-and-paper proof, that the osize function is
monotonic with respect to the structure of terms from that example.

198

Applying a Rewrite Rule

• l −→ r applicable to term t[s]
if there is substitution σ such that σ l = s

• Result: t[σ r]

• Equationally: t[s] = t[σ r]

Example:
Rule: 0 + n −→ n

Term: a+ (0 + (b + c))

Substitution: σ = {n 7→ b + c}
Result: a+ (b + c)

199

Conditional Term Rewriting

Rewrite rules can be conditional:

[[P1 ...Pn]] =⇒ l = r

is applicable to term t[s] with σ if
• σ l = s and
• σ P1, . . . , σ Pn are provable by rewriting.

200

Rewriting with Assumptions

Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:
lemma ”f x = g x ∧ g x = f x =⇒ f x = 2¨

simp use and simplify assumptions
(simp (no asm)) ignore assumptions
(simp (no asm use)) simplify, but do not use assumptions
(simp (no asm simp)) use, but do not simplify assumptions

201

Preprocessing

Preprocessing (recursive) for maximal simplification power:

¬A 7→ A = False
A −→ B 7→ A =⇒ B

A ∧ B 7→ A, B
∀x . A x 7→ A ?x

A 7→ A = True

Example: (p −→ q ∧ ¬r) ∧ s

7→

p =⇒ q = True p =⇒ r = False s = True

202

Demo

203

Case splitting with simp

P (if A then s else t) = (A −→ P s) ∧ (¬A −→ P t)

Automatic

P (case e of 0 ⇒ a | Suc n ⇒ b) =
(e = 0 −→ P a) ∧ (∀n. e = Suc n −→ P b)

Manually: apply (simp split: nat.split)

Similar for any data type t: t.split

204

Congruence Rules

congruence rules are about using context

Example: in P −→ Q we could use P to simplify terms in Q

For =⇒ hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example: JP = P ′;P ′ =⇒ Q = Q ′K =⇒ (P −→ Q) = (P ′ −→ Q ′)

Read: to simplify P −→ Q

• first simplify P to P ′

• then simplify Q to Q ′ using P ′ as assumption
• the result is P ′ −→ Q ′

205

More Congruence

Sometimes useful, but not used automatically (slowdown):
conj cong: JP = P ′;P ′ =⇒ Q = Q ′K =⇒ (P ∧ Q) = (P ′ ∧ Q ′)

Context for if-then-else:
if cong: Jb = c ; c =⇒ x = u;¬c =⇒ y = vK =⇒

(if b then x else y) = (if c then u else v)

Prevent rewriting inside then-else (default):
if weak cong: b = c =⇒ (if b then x else y) = (if c then x else y)

• declare own congruence rules with [cong] attribute
• delete with [cong del]
• use locally with e.g. apply (simp cong: <rule>)

206

Ordered rewriting

Problem: x + y −→ y + x does not terminate

Solution: use permutative rules only if term becomes
lexicographically smaller.

Example: b + a ; a+ b but not a+ b ; b + a.

For types nat, int etc:
• lemmas add ac sort any sum (+)
• lemmas mult ac sort any product (∗)

Example: apply (simp add: add ac) yields
(b + c) + a ; · · ·; a+ (b + c)

207

AC Rules

Example for associative-commutative rules:
Associative: (x ⊙ y)⊙ z = x ⊙ (y ⊙ z)
Commutative: x ⊙ y = y ⊙ x

These 2 rules alone get stuck too early (not confluent).

Example: (z ⊙ x)⊙ (y ⊙ v)
We want: (z ⊙ x)⊙ (y ⊙ v) = v ⊙ (x ⊙ (y ⊙ z))
We get: (z ⊙ x)⊙ (y ⊙ v) = v ⊙ (y ⊙ (x ⊙ z))

We need: AC rule x ⊙ (y ⊙ z) = y ⊙ (x ⊙ z)

If these 3 rules are present for an AC operator
Isabelle will order terms correctly

208

Demo

209

Back to Confluence

Remember: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping lhs of rules.

Definition:
Let l1 −→ r1 and l2 −→ r2 be two rules with disjoint variables.
They form a critical pair if a non-variable subterm of l1 unifies with l2.

Example:
Rules: (1) f x −→ a (2) g y −→ b (3) f (g z) −→ b
Critical pairs:

(1)+(3) {x 7→ g z} a
(1)←− f (g z)

(3)−→ b

(3)+(2) {z 7→ y} b
(3)←− f (g y)

(2)−→ f b

210

Completion

(1) f x −→ a (2) g y −→ b (3) f (g z) −→ b

is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

(1)+(3) {x 7→ g z} a
(1)←− f (g z)

(3)−→ b

shows that a = b (because a
∗←→ b), so we add a −→ b as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

211

Orthogonal Rewriting Systems

Definitions:
A rule l −→ r is left-linear if no variable occurs twice in l .
A rewrite system is left-linear if all rules are.

A system is orthogonal if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages

212

We have learned ...

• Conditional term rewriting
• Congruence rules
• AC rules
• More on confluence

213

Specification Techniques

214

Section 10

Sets, Types & Rule Induction

215

Sets in Isabelle

Type ’a set: sets over type ’a

• {}, {e1, ... , en}, {x . P x}
• e ∈ A, A ⊆ B

• A ∪ B, A ∩ B, A− B, −A
•
⋃

x ∈ A. B x ,
⋂
x ∈ A. B x ,

⋂
A,

⋃
A

• {i ..j}
• insert :: α⇒ α set⇒ α set

• f ‘A ≡ {y . ∃x ∈ A. y = f x}
• . . .

216

Proofs about Sets

Natural deduction proofs:
• equalityI: JA ⊆ B; B ⊆ AK =⇒ A = B

• subsetI: (
∧
x . x ∈ A =⇒ x ∈ B) =⇒ A ⊆ B

• . . . find theorems

217

Bounded Quantifiers

• ∀x ∈ A. P x ≡ ∀x . x ∈ A −→ P x

• ∃x ∈ A. P x ≡ ∃x . x ∈ A ∧ P x

• ballI: (
∧
x . x ∈ A =⇒ P x) =⇒ ∀x ∈ A. P x

• bspec: J∀x ∈ A. P x ; x ∈ AK =⇒ P x

• bexI: JP x ; x ∈ AK =⇒ ∃x ∈ A. P x

• bexE: J∃x ∈ A. P x ;
∧
x . Jx ∈ A;P xK =⇒ QK =⇒ Q

218

Demo: Sets

219

The Three Basic Ways of Introducing Theorems
• Axioms:

Example: axiomatization where refl: ”t = t”

Do not use. Evil. Can make your logic inconsistent.

• Definitions:

Example: definition inj where
“inj f ≡ ∀x y . f x = f y −→ x = y ”
Introduces a new lemma called inj def.

• Proofs:

Example: lemma ”inj (λx . x + 1)”

The harder, but safe choice.

220

The Three Basic Ways of Introducing Types
• typedecl: by name only

Example: typedecl names
Introduces new type names without any further assumptions

• type synonym: by abbreviation

Example: type synonym α rel = ”α⇒ α⇒ bool”
Introduces abbreviation rel for existing type α⇒ α⇒ bool
Type abbreviations are immediately expanded internally

• typedef: by definiton as a set

Example: typedef new type = ”{some set}” <proof>
Introduces a new type as a subset of an existing type.
The proof shows that the set on the rhs in non-empty.

221

How typedef works

new type

existing type

Abs

Rep

222

How typedef works

new type

existing type

Abs

Rep

223

Example: Pairs

(α,β) Prod

1. Pick existing type: α⇒ β ⇒ bool

2. Identify subset:
(α,β) Prod = {f . ∃a b. f = λ(x :: α) (y :: β). x = a ∧ y = b}

3. We get from Isabelle:
▶ functions Abs Prod, Rep Prod
▶ both injective
▶ Abs Prod (Rep Prod x) = x

4. We now can:
▶ define constants Pair, fst, snd in terms of Abs Prod and Rep Prod
▶ derive all characteristic theorems
▶ forget about Rep/Abs, use characteristic theorems instead

224

Demo: Introducing new Types

225

Inductive Definitions

226

Example

⟨skip,σ⟩ −→ σ

JeKσ = v

⟨x := e,σ⟩ −→ σ[x 7→ v]

⟨c1,σ⟩ −→ σ′ ⟨c2,σ′⟩ −→ σ′′

⟨c1; c2,σ⟩ −→ σ′′

JbKσ = False

⟨while b do c ,σ⟩ −→ σ

JbKσ = True ⟨c ,σ⟩ −→ σ′ ⟨while b do c ,σ′⟩ −→ σ′′

⟨while b do c ,σ⟩ −→ σ′′

227

What does this mean?

• ⟨c ,σ⟩ −→ σ′ fancy syntax for a relation (c ,σ,σ′) ∈ E

• relations are sets: E :: (com× state× state) set

• the rules define a set inductively

But which set?

228

Simpler Example

0 ∈ N
n ∈ N

n + 1 ∈ N

• N is the set of natural numbers IN

• But why not the set of real numbers? 0 ∈ IR, n ∈ IR =⇒ n + 1 ∈ IR

• IN is the smallest set that is consistent with the rules.

Why the smallest set?
• Objective: no junk. Only what must be in X shall be in X .
• Gives rise to a nice proof principle (rule induction)
• Alternative (greatest set) occasionally also useful: coinduction

229

Rule Induction

0 ∈ N
n ∈ N

n + 1 ∈ N

induces induction principle

JP 0;
∧
n. P n =⇒ P (n + 1)K =⇒ ∀x ∈ N. P x

230

Demo: Inductive Definitions

231

Formally

Rules a1 ∈ X ... an ∈ X

a ∈ X
with a1, ... , an, a ∈ A

define set X ⊆ A

Formally: set of rules R ⊆ A set× A (R, X possibly infinite)

Applying rules R to a set B: R̂ B ≡ {x . ∃H. (H, x) ∈ R ∧ H ⊆ B}

Example:

R ≡ {({}, 0)} ∪ {({n}, n + 1). n ∈ IR}
R̂ {3, 6, 10} = {0, 4, 7, 11}

232

The Set

Definition: B is R-closed iff R̂ B ⊆ B

Definition: X is the least R-closed subset of A

This does always exist:

Fact: X =
⋂
{B ⊆ A. B R−closed}

233

Generation from Above

A

R-closed

R-closed

R-closed

X

234

Rule Induction

0 ∈ N
n ∈ N

n + 1 ∈ N

induces induction principle

JP 0;
∧
n. P n =⇒ P (n + 1)K =⇒ ∀x ∈ N. P x

In general:

∀({a1, ... an}, a) ∈ R. P a1 ∧ ... ∧ P an =⇒ P a

∀x ∈ X . P x

235

Why does this work?

∀({a1, ... an}, a) ∈ R. P a1 ∧ ... ∧ P an =⇒ P a

∀x ∈ X . P x

∀({a1, ... an}, a) ∈ R. P a1 ∧ ... ∧ P an =⇒ P a
says

{x . P x} is R-closed

but: X is the least R-closed set
hence: X ⊆ {x . P x}
which means: ∀x ∈ X . P x

qed

236

Rules with side conditions

a1 ∈ X ... an ∈ X C1 ... Cm

a ∈ X

induction scheme:

(∀({a1, ... an}, a) ∈ R. P a1 ∧ ... ∧ P an ∧
C1 ∧ ... ∧ Cm ∧
{a1, ... , an} ⊆ X =⇒ P a)

=⇒
∀x ∈ X . P x

237

X as Fixpoint

How to compute X?
X =

⋂
{B ⊆ A. B R − closed} hard to work with.

Instead: view X as least fixpoint, X least set with R̂ X = X .

Fixpoints can be approximated by iteration:

X0 = R̂0 {} = {}
X1 = R̂1 {} = rules without hypotheses
...
Xn = R̂n {}

Xω =
⋃

n∈IN(R̂
n {}) = X

238

Generation from Below

A

R̂0 {}

A

R̂0 {} ∪ R̂1 {}

A

R̂0 {} ∪ R̂1 {} ∪ R̂2 {}

A

R̂0 {} ∪ R̂1 {} ∪ R̂2 {} ∪ ...

239

Does this always work?

Knaster-Tarski Fixpoint Theorem:
Let (A,≤) be a complete lattice, and f :: A⇒ A a monotone function.
Then the fixpoints of f again form a complete lattice.

Lattice:
Finite subsets have a greatest lower bound (meet) and least upper
bound (join).

Complete Lattice:
All subsets have a greatest lower bound and least upper bound.

Implications:
• least and greatest fixpoints exist (complete lattice always

non-empty).
• can be reached by (possibly infinite) iteration. (Why?)

240

Exercise

Formalise this lecture in Isabelle:
• Define closed f A :: (α set⇒ α set)⇒ α set⇒ bool
• Show closed f A ∧ closed f B =⇒ closed f (A ∩ B) if f is monotone

(mono is predefined)
• Define lfpt f as the intersection of all f -closed sets
• Show that lfpt f is a fixpoint of f if f is monotone
• Show that lfpt f is the least fixpoint of f
• Declare a constant R :: (α set× α) set

• Define R̂ :: α set⇒ α set in terms of R
• Show soundness of rule induction using R and lfpt R̂

241

We have learned ...

• Formal background of inductive definitions
• Definition by intersection
• Computation by iteration
• Formalisation in Isabelle

242

Section 11

Datatypes

243

Datatypes

Example:
datatype ’a list = Nil | Cons ’a “’a list”

Properties:
• Constructors:

Nil :: ’a list
Cons :: ’a⇒ ’a list⇒ ’a list

• Distinctness: Nil ̸= Cons x xs
• Injectivity: (Cons x xs = Cons y ys) = (x = y ∧ xs = ys)

244

More Examples
Enumeration:

datatype answer = Yes | No | Maybe

Polymorphic:
datatype ’a option = None | Some ’a
datatype (’a,’b,’c) triple = Triple ’a ’b ’c

Recursion:
datatype ’a list = Nil | Cons ’a “’a list”
datatype ’a tree = Tip | Node ’a “’a tree” “a tree”

Mutual Recursion:
datatype even = EvenZero | EvenSucc odd
and odd = OddSucc even

245

Nested

Nested recursion:

datatype ’a tree = Tip | Node ’a “’a tree list”

datatype ’a tree = Tip | Node ’a “’a tree option” “’a tree option”

• Recursive call is under a type constructor.

246

The General Case

datatype (α1, ... ,αn) τ = C1 τ1,1 ... τ1,n1
| . . .
| Ck τk,1 ... τk,nk

• Constructors: Ci :: τi ,1 ⇒ ... ⇒ τi ,ni ⇒ (α1, ... ,αn) τ

• Distinctness: Ci ... ̸= Cj ... if i ̸= j

• Injectivity: (Ci x1 ... xni = Ci y1 ... yni) = (x1 = y1 ∧ ... ∧ xni = yni)

Distinctness and Injectivity applied automatically

247

How is this Type Defined?

datatype ’a list = Nil | Cons ’a “’a list”

• internally reduced to a single constructor, using product and sum
• constructor defined as an inductive set (like typedef)
• recursion: least fixpoint

More detail: Tutorial on (Co-)datatypes Definitions at isabelle.in.tum.de

248

Datatype Limitations

Must be definable as a (non-empty) set.

• Infinitely branching ok.
• Mutually recursive ok.
• Strictly positive (right of function arrow) occurrence ok.

Not ok:

datatype t = C (t⇒ bool)
| D ((bool⇒ t)⇒ bool)
| E ((t⇒ bool)⇒ bool)

Because: Cantor’s theorem (α set is larger than α)

249

Datatype Limitations
Not ok (nested recursion):

datatype (’a, ’b) fun copy = Fun “’a⇒ ’b”

datatype ’a t = F “(’a t, ’a) fun copy”

• recursion in (’a1, ...,’an) t is only allowed on a subset of ’a1 ... ’an
• these arguments are called live arguments
• Mainly: in “’a⇒ ’b”, ’a is dead and ’b is live
• Thus: in (’a, ’b) fun copy, ’a is dead and ’b is live
• type constructors must be registered as BNFs∗ to have live

arguments
• BNF defines well-behaved type constructors, ie where recursion is

allowed
• datatypes automatically are BNFs (that’s how they are constructed)
• can register other type constructors as BNFs — not covered here∗∗

∗ BNF = Bounded Natural Functors.
∗∗ Defining (Co)datatypes and Primitively (Co)recursive Functions in Isabelle/HOL

250

Case

Every datatype introduces a case construct, e.g.

(case xs of []⇒ ... | y #ys ⇒ ... y ... ys ...)

In general: one case per constructor

• Nested patterns allowed: x#y#zs

• Dummy and default patterns with
• Binds weakly, needs () in context

251

Cases

apply (case tac t)

creates k subgoals

Jt = Ci x1 ... xp; ...K =⇒ ...

one for each constructor Ci

252

Demo

253

Recursion

254

Why nontermination can be harmful

How about f x = f x + 1?

Subtract f x on both sides.

=⇒
0 = 1

! All functions in HOL must be total !

255

Primitive Recursion

primrec guarantees termination structurally

Example primrec:

primrec app :: “’a list⇒ ’a list⇒ ’a list”
where
“app Nil ys = ys” |
“app (Cons x xs) ys = Cons x (app xs ys)”

256

The General Case

If τ is a datatype (with constructors C1, ... ,Ck) then f :: τ ⇒ τ ′ can be
defined by primitive recursion:

f (C1 y1,1 ... y1,n1) = r1
...
f (Ck yk,1 ... yk,nk) = rk

The recursive calls in ri must be structurally smaller
(of the form f a1 ... yi ,j ... ap)

257

How does this Work?

primrec just fancy syntax for a recursion operator

Example: rec list :: “’a⇒ (’b⇒ ’b list⇒ ’a⇒ ’a)⇒ ’b list⇒ ’a”
rec list f1 f2 Nil = f1
rec list f1 f2 (Cons x xs) = f2 x xs (rec list f1 f2 xs)

app ≡ rec list (λys. ys) (λx xs xs ′. λys. Cons x (xs ′ ys))

primrec app :: “’a list⇒ ’a list⇒ ’a list”
where
“app Nil ys = ys” |
“app (Cons x xs) ys = Cons x (app xs ys)”

258

rec list

Defined: automatically, first inductively (set), then by epsilon

(Nil, f1) ∈ list rel f1 f2

(xs, xs ′) ∈ list rel f1 f2

(Cons x xs, f2 x xs xs ′) ∈ list rel f1 f2

rec list f1 f2 xs ≡ THE y . (xs, y) ∈ list rel f1 f2
Automatic proof that set def indeed is total function

(the equations for rec list are lemmas!)

259

Predefined Datatypes

260

nat is a datatype

datatype nat = 0 | Suc nat

Functions on nat definable by primrec!

primrec
f 0 = ...
f (Suc n) = ... f n ...

261

Option

datatype ’a option = None | Some ’a

Important application:

’b⇒ ’a option ∼ partial function:
None ∼ no result

Some a ∼ result a

Example:
primrec lookup :: ’k⇒ (’k × ’v) list⇒ ’v option
where

lookup k [] = None |
lookup k (x #xs) = (if fst x = k then Some (snd x) else lookup k xs)

262

Demo

263

Section 12

Induction

264

Structural induction

P xs holds for all lists xs if
• P Nil
• and for arbitrary x and xs, P xs =⇒ P (x#xs)

Induction theorem list.induct:
JP [];

∧
a list. P list =⇒ P (a#list)K =⇒ P list

• General proof method for induction: (induct x)
▶ x must be a free variable in the first subgoal.
▶ type of x must be a datatype.

265

Basic heuristics

Theorems about recursive functions are proved by induction

Induction on argument number i of f
if f is defined by recursion on argument number i

266

Example

A tail recursive list reverse:

primrec itrev :: ’a list⇒ ’a list⇒ ’a list
where
itrev [] ys = ys |
itrev (x#xs) ys = itrev xs (x#ys)

lemma itrev xs [] = rev xs

267

Demo – Proof Attempt

268

Generalisation

Replace constants by variables

lemma itrev xs ys = rev xs@ys

Quantify free variables by ∀
(except the induction variable)

lemma ∀ys. itrev xs ys = rev xs@ys

Or: apply (induct xs arbitrary: ys)

269

Exercises

• define a primitive recursive function lsum :: nat list⇒ nat
that returns the sum of the elements in a list.

• show “2 ∗ lsum [0.. < Suc n] = n ∗ (n + 1)”
• show “lsum (replicate n a) = n ∗ a”
• define a function lsumT using a tail recursive version of listsum.
• show that the two functions are equivalent: lsum xs = lsumT xs

270

Section 13

General Recursion

271

General Recursion

The Choice

• Limited expressiveness, automatic termination
▶ primrec

• High expressiveness, termination proof may fail
▶ fun

• High expressiveness, tweakable, termination proof manual
▶ function

272

fun —Examples

fun sep :: “’a⇒ ’a list⇒ ’a list”
where

“sep a (x # y # zs) = x # a # sep a (y # zs)” |
“sep a xs = xs”

fun ack :: “nat⇒ nat⇒ nat”
where

“ack 0 n = Suc n” |
“ack (Suc m) 0 = ack m 1” |
“ack (Suc m) (Suc n) = ack m (ack (Suc m) n)”

273

fun

• More permissive than primrec:
▶ pattern matching in all parameters
▶ nested, linear constructor patterns
▶ reads equations sequentially like in Haskell (top to bottom)
▶ proves termination automatically in many cases

(tries lexicographic order)

• Generates more theorems than primrec

• May fail to prove termination:
▶ use function (sequential) instead
▶ allows you to prove termination manually

274

Demo

275

fun — Induction Principle

• Each fun definition induces an induction principle
• For each equation:

show P holds for lhs, provided P holds for each recursive call on rhs
• Example sep.induct:

J
∧
a. P a [];∧
a w . P a [w];∧
a x y zs. P a (y#zs) =⇒ P a (x#y#zs);

K =⇒ P a xs

276

Termination

Isabelle tries to prove termination automatically
• For most functions this works with a lexicographic termination

relation.
• Sometimes not⇒ error message with unsolved subgoal
• You can prove termination separately.

function (sequential) quicksort where
“quicksort [] = []” |
“quicksort (x#xs) = (quicksort [y ← xs. y ≤ x])@[x]@(quicksort [y ← xs. x < y])”
by pat completeness auto

termination
by (relation “measure length”) (auto simp: less Suc eq le)

277

Demo

278

How does fun/function work?

Recall primrec:
• defined one recursion operator per datatype D

• inductive definition of its graph (x , f x) ∈ D rel

• prove totality: ∀x . ∃y . (x , y) ∈ D rel

• prove uniqueness: (x , y) ∈ D rel ⇒ (x , z) ∈ D rel ⇒ y = z

• recursion operator for datatype D rec , defined via THE .
• primrec: apply datatype recursion operator

279

How does fun/function work?

Similar strategy for fun:
• a new inductive definition for each fun f

• extract recursion scheme for equations in f

• define graph f rel inductively, encoding recursion scheme
• prove totality (= termination)
• prove uniqueness (automatic)
• derive original equations from f rel

• export induction scheme from f rel

280

How does fun/function work?

function can separate and defer termination proof:
• skip proof of totality
• instead derive equations of the form: x ∈ f dom⇒ f x = ...

• similarly, conditional induction principle
• f dom = acc f rel

• acc = accessible part of f rel

• the part that can be reached in finitely many steps
• termination = ∀x . x ∈ f dom

• still have conditional equations for partial functions

281

Demo

282

Proving Termination

termination fun name sets up termination goal ∀x . x ∈ fun name dom

Three main proof methods:
• lexicographic order (default tried by fun)
• size change (automated translation to simpler size-change graph1)
• relation R (manual proof via well-founded relation)

1C.S. Lee, N.D. Jones, A.M. Ben-Amram,
The Size-change Principle for Program Termination, POPL 2001.

283

Well-Founded Orders

Definition
<r is well founded if well-founded induction holds
wf(<r) ≡ ∀P. (∀x . (∀y <r x .P y) −→ P x) −→ (∀x . P x)

Well founded induction rule:
wf(<r)

∧
x . (∀y <r x . P y) =⇒ P x

P a

Alternative definition (equivalent):
there are no infinite descending chains, or (equivalent):
every nonempty set has a minimal element wrt <r

min (<r) Q x ≡ ∀y ∈ Q. y ̸<r x
wf (<r) = (∀Q ̸= {}. ∃m ∈ Q. min r Q m)

284

Well-Founded Orders: Examples

• < on IN is well founded
well founded induction = complete induction

• > and ≤ on IN are not well founded
• x <r y = x dvd y ∧ x ̸= 1 on IN is well founded

the minimal elements are the prime numbers
• (a, b) <r (x , y) = a <1 x ∨ a = x ∧ b <2 y is well founded

if <1 and <2 are well founded
• A <r B = A ⊂ B ∧ finite B is well founded
• ⊆ and ⊂ in general are not well founded

More about well founded relations: Term Rewriting and All That

285

Extracting the Recursion Scheme

So far for termination. What about the recursion scheme?
Not fixed anymore as in primrec.

Examples:
• fun fib where

fib 0 = 1 |
fib (Suc 0) = 1 |
fib (Suc (Suc n)) = fib n + fib (Suc n)

Recursion: Suc (Suc n) ; n, Suc (Suc n) ; Suc n
• fun f where f x = (if x = 0 then 0 else f (x - 1) * 2)

Recursion: x ̸= 0 =⇒ x ; x - 1

286

Extracting the Recursion Scheme

Higher Order:
• datatype ’a tree = Leaf ’a | Branch ’a tree list

fun treemap :: (’a⇒ ’a)⇒ ’a tree⇒ ’a tree where
treemap fn (Leaf n) = Leaf (fn n) |
treemap fn (Branch l) = Branch (map (treemap fn) l)

Recursion: x ∈ set l =⇒ (fn, Branch l) ; (fn, x)

How does Isabelle extract context information for the call?

287

Extracting the Recursion Scheme

Extracting context for equations
⇒

Congruence Rules!

Recall rule if cong:

J b = c; c =⇒ x = u; ¬ c =⇒ y = v K =⇒
(if b then x else y) = (if c then u else v)

Read: for transforming x , use b as context information, for y use ¬b.
In fun def: for recursion in x, use b as context, for y use ¬b.

288

Congruence Rules for fun defs

The same works for function definitions.

declare my rule[fundef cong]
(if cong already added by default)

Another example (higher-order):
J xs = ys;

∧
x. x ∈ set ys =⇒ f x = g x K =⇒ map f xs = map g ys

Read: for recursive calls in f , f is called with elements of xs

289

Demo

290

Further Reading

Alexander Krauss,
Automating Recursive Definitions and Termination Proofs
in Higher-Order Logic.
PhD thesis, TU Munich, 2009.

https://www21.in.tum.de/~krauss/papers/krauss-thesis.pdf

291

https://www21.in.tum.de/~krauss/papers/krauss-thesis.pdf

We have seen ...

• General recursion with fun/function
• Induction over recursive functions
• How fun works
• Termination, partial functions, congruence rules

292

Section 14

Sledgehammer and Co.

293

Overview

Automatic Proof and Disproof

• Sledgehammer: automatic proofs
• Quickcheck: counter example by testing
• Nitpick: counter example by SAT

Based on slides by Jasmin Blanchette, Lukas Bulwahn, and Tobias Nipkow
(TUM).

294

Automation

Dramatic improvements in fully automated proofs in the last 2 decades.

• First-order logic (ATP): Otter, Vampire, E, SPASS
• Propositional logic (SAT): MiniSAT, Chaff, RSat
• SAT modulo theory (SMT): CVC3/4/5, Yices, Z3

The key:
Efficient reasoning engines, and restricted logics.

295

Automation in Isabelle

1980s rule applications, write ML code

1990s simplifier, automatic provers (blast, auto), arithmetic

2000s embrace external tools, but don’t trust them
(ATP/SMT/SAT)

296

Sledgehammer

Sledgehammer:
• Connects Isabelle with ATPs and SMT solvers:

E, SPASS, Vampire, CVC4, Yices, Z3

• Simple invocation:
▶ Users don’t need to select or know facts
▶ or ensure the problem is first-order
▶ or know anything about the automated prover

• Exploits local parallelism and remote servers

297

Demo: Sledgehammer

298

Sledgehammer Architecture

299

Fact Selection

Provers perform poorly if given 1000s of facts.
• Best number of facts depends on the prover
• Need to take care which facts we give them
• Idea: order facts by relevance, give top n to prover

(n = 250, 1000, ...)
• Meng & Paulson method: lightweight, symbol-based filter
• Machine learning method:

look at previous proofs to get a probability of relevance

300

From HOL to FOL

Source: higher-order, polymorphism, type classes
Target: first-order, untyped or simply-typed

• First-order:
▶ SK combinators, λ-lifting
▶ Explicit function application operator

• Encode types:
▶ Monomorphise (generate multiple instances), or
▶ Encode polymorphism on term level

301

Reconstruction

We don’t want to trust the external provers.
Need to check/reconstruct proof.

• Re-find using Metis
Usually fast and reliable (sometimes too slow)

• Rerun external prover for trusted replay
Used for SMT. Re-runs prover each time!

• Recheck stored explicit external representation of proof
Used for SMT, no need to re-run. Fragile.

• Recast into structured Isar proof
Fast, not always readable.

302

Judgement Day (up to 2013)

Evaluating Sledgehammer:
• 1240 goals out of 7 existing theories.
• How many can sledgehammer solve?

• 2010: E, SPASS, Vampire (for 5-120s). 46%
ESV × 5s ≈ V × 120s

• 2011: Add E-SInE, CVC2, Yices, Z3 (30s).
Z3 > V

• 2012: Better integration with SPASS. 64%
SPASS best (small margin)

• 2013: Machine learning for fact selection. 69%
Improves a few percent across provers.

303

Evaluation

54%54%54%54% 46%

3 ATPs x 30s

2010

304

Evaluation

54%54%54%54% 46%

3 ATPs x 30s

66%66%66%66%

34%

3 ATPs x 30 s
nontrivial goals

2010

305

Evaluation

54%54%54%54% 46%

3 ATPs x 30s

66%66%66%66%

34%

3 ATPs x 30 s
nontrivial goals

2010

36%36%36%36%36%

64%

(4 ATPs + 3 SMTs) x 30s0s0s

50%50%50%50%50% 50%

(4 ATPs + 3 SMTs) x 30s
nontrivial goals

2012

306

Judgement Day (2016)

919/1230 = 74%

307

Sledgehammer rules!

Example application:
• Large Isabelle/HOL repository of algebras for modelling

imperative programs
(Kleene Algebra, Hoare logic, ..., ≈ 1000 lemmas)

• Intricate refinement and termination theorems
• Sledgehammer and Z3 automate algebraic proofs at

textbook level.

“The integration of ATP, SMT, and Nitpick is for our purposes very
very helpful.”

308

Disproof

309

Theorem proving and testing

Testing can show only the presence of errors,
but not their absence. (Dijkstra)

Testing cannot prove theorems, but it can refute conjectures!

Sad facts of life:
• Most lemma statements are wrong the first time.
• Theorem proving is expensive as a debugging technique.

Find counter examples automatically!

310

Quickcheck

Lightweight validation by testing.

• Motivated by Haskell’s QuickCheck
• Uses Isabelle’s code generator
• Fast
• Runs in background, proves you wrong as you type.

311

Quickcheck

Covers a number of testing approaches:

• Random and exhausting testing.
• Smart test data generators.
• Narrowing-based (symbolic) testing.

Creates test data generators automatically.

312

Demo: Quickcheck

313

Test generators for datatypes

Fast iteration in continuation-passing-style

datatype α list = Nil | Cons α (α list)

Test function:

testα list P = P Nil andalso testα (λx. testα list (λxs. P (Cons x xs)))

314

Test generators for predicates

distinct xs =⇒ distinct (remove1 x xs)

Problem:
Exhaustive testing creates many useless test cases.

Solution:
Use definitions in precondition for smarter generator.
Only generate cases where distinct xs is true.

test-distinctα list P = P Nil andalso
testα (λx. test-distinctα list (if x /∈ xs then (λxs. P (Cons x xs))
else True))

Use data flow analysis to figure out which variables
must be computed and which generated.

315

Narrowing

Symbolic execution with demand-driven refinement
• Test cases can contain variables
• If execution cannot proceed: instantiate with further

symbolic terms

Pays off if large search spaces can be discarded:
distinct (Cons 1 (Cons 1 x))

False for any x, no further instantiations for x necessary.

Implementation:
Lazy execution with outer refinement loop.
Many re-computations, but fast.

316

Quickcheck Limitations

Only executable specifications!

• No equality on functions with infinite domain
• No axiomatic specifications

317

Nitpick

318

Nitpick

Finite model finder

• Based on SAT via Kodkod (backend of Alloy prover)
• Soundly approximates infinite types

319

Nitpick Successes

• Algebraic methods
• C++ memory model
• Found soundness bugs in TPS and LEO-II

Fan mail:
“Last night I got stuck on a goal I was sure was a theorem. After
5–10 minutes I gave Nitpick a try, and within a few secs it had
found a splendid counterexample—despite the mess of locales
and type classes in the context!”

320

Demo: Nitpick

321

Automation Summary

• Proof: Sledgehammer
• Counter examples: Quickcheck
• Counter examples: Nitpick

322

Section 15

Isar (Part 2)

323

Datatypes in Isar

324

General Case Distinctions

show formula
proof -

have P1 ∨ P2 ∨ P3 <proof>
moreover { assume P1 ... have ?thesis <proof> }
moreover { assume P2 ... have ?thesis <proof> }
moreover { assume P3 ... have ?thesis <proof> }
ultimately show ?thesis by blast

qed
{ . . . } is a proof block similar to proof ... qed

{ assume P1 . . . have P <proof> }
stands for P1 =⇒ P

325

Datatype case distinction

proof (cases term)
case Constructor1
...

next
...
next

case (Constructork x⃗)
· · · x⃗ · · ·

qed

case (Constructori x⃗) ≡
fix x⃗ assume Constructori : “term = Constructori x⃗”

326

Structural induction for nat

show P n
proof (induct n)

case 0 ≡ let ?case = P 0
. . .
show ?case

next
case (Suc n) ≡ fix n assume Suc: P n
. . . let ?case = P (Suc n)
· · · n · · ·
show ?case

qed

327

Structural induction: =⇒ and
∧

show “
∧
x . A n =⇒ P n”

proof (induct n)
case 0 ≡ fix x assume 0: “A 0”
. . . let ?case = “P 0”
show ?case

next
case (Suc n) ≡ fix n and x
. . . assume Suc: “

∧
x . A n =⇒ P n”

· · · n · · · “A (Suc n)”
. . . let ?case = “P (Suc n)”
show ?case

qed

328

Demo: Datatypes in Isar

329

Calculational Reasoning

330

The Goal

Prove:
x · x−1 = 1 using: assoc: (x · y) · z = x · (y · z)

left inv: x−1 · x = 1
left one: 1 · x = x

331

The Goal

Prove:
x · x−1 = 1 · (x · x−1)

... = 1 · x · x−1

... = (x−1)−1 · x−1 · x · x−1

... = (x−1)−1 · (x−1 · x) · x−1

... = (x−1)−1 · 1 · x−1

... = (x−1)−1 · (1 · x−1)

... = (x−1)−1 · x−1

... = 1

assoc: (x · y) · z = x · (y · z)
left inv: x−1 · x = 1

left one: 1 · x = x

Can we do this in Isabelle?
• Simplifier: too eager
• Manual: difficult in apply style
• Isar: with the methods we know, too verbose

332

Chains of equations

The Problem

a = b
... = c
... = d

shows a = d by transitivity of =

Each step usually nontrivial (requires own subproof)
Solution in Isar:

• Keywords also and finally to delimit steps
• . . . : predefined schematic term variable,

refers to right hand side of last expression
• Automatic use of transitivity rules to connect steps

333

also/finally

have “t0 = t1” [proof] calculation register
also “t0 = t1”
have “... = t2” [proof]
also “t0 = t2”
...

...
also “t0 = tn−1”
have “· · · = tn” [proof]
finally t0 = tn
show P
— ’finally’ pipes fact “t0 = tn” into the proof

334

More about also

• Works for all combinations of =, ≤ and <.
• Uses all rules declared as [trans].
• To view all combinations: print trans rules

335

Designing [trans] Rules
have = “l1 ⊙ r1” [proof]
also
have “...⊙ r2” [proof]
also

Anatomy of a [trans] rule:
• Usual form: plain transitivity Jl1 ⊙ r1; r1 ⊙ r2K =⇒ l1 ⊙ r2
• More general form: JP l1 r1;Q r1 r2;AK =⇒ C l1 r2

Examples:
• pure transitivity: Ja = b; b = cK =⇒ a = c

• mixed: Ja ≤ b; b < cK =⇒ a < c

• substitution: JP a; a = bK =⇒ P b

• antisymmetry: Ja < b; b < aK =⇒ False

• monotonicity:
Ja = f b; b < c ;

∧
x y . x < y =⇒ f x < f yK =⇒ a < f c

336

Demo

337

Finding Theorems
Command find theorems (C-c C-f) finds combinations of:

• pattern: ” + + ”
• lhs of simp rules: simp: ” * (+)”
• intro/elim/dest on current goal
• lemma name: name: assoc
• exclusions thereof: -name: ”HOL.”

find theorems dest -”hd” name: ”List.”

finds all theorems in the current context that
• match the goal as dest rule,
• do not contain the constant ”hd”
• are in the List theory (name starts with ”List.”)

338

Isar: define and defines

Can define vnameal constant in Isar proof context:
proof

...
define ”f ≡ big term”
have ”g = f x” ...

like definition, not automatically unfolded (f def)
different to let ?f = ”big term”

Also available in lemma statement:
lemma ...:

fixes ...
assumes ...
defines ...
shows ...

339

Section 16

Floyd-Hoare Logic

340

Semantics (A Crash Course)

341

Further Details

• see Concrete Semantics
• COMP3610/6361 Principles of Programming Languages
https://comp.anu.edu.au/courses/comp3610/

342

https://comp.anu.edu.au/courses/comp3610/

IMP - a small Imperative Language

Commands:

datatype com = SKIP
| Assign vname aexp (:=)
| Semi com com (;)
| Cond bexp com com (IF THEN ELSE)
| While bexp com (WHILE DO OD)

type synonym vname = string
type synonym state = vname⇒ nat

type synonym aexp = state⇒ nat
type synonym bexp = state⇒ bool

343

Example Program

Usual syntax:
B := 1;
WHILE A ̸= 0 DO

B := B ∗ A;
A := A− 1

OD

Expressions are functions from state to bool or nat:
B := (λσ. 1);
WHILE (λσ. σ A ̸= 0) DO

B := (λσ. σ B ∗ σ A);
A := (λσ. σ A− 1)

OD

344

What does it do?

So far we have defined:
• Syntax of commands and expressions
• State of programs (function from variables to values)

Now we need: the meaning (semantics) of programs

How to define execution of a program?
• A wide field of its own
• Some choices:

▶ Operational (inductive relations, big step, small step)
▶ Denotational (programs as functions on states, state transformers)
▶ Axiomatic (pre-/post conditions, Hoare logic)

345

Structural Operational Semantics

⟨SKIP,σ⟩ → σ

e σ = v
⟨x := e,σ⟩ → σ[x 7→ v]

⟨c1,σ⟩ → σ′ ⟨c2,σ′⟩ → σ′′

⟨c1; c2,σ⟩ → σ′′

b σ = True ⟨c1,σ⟩ → σ′

⟨IF b THEN c1 ELSE c2,σ⟩ → σ′

b σ = False ⟨c2,σ⟩ → σ′

⟨IF b THEN c1 ELSE c2,σ⟩ → σ′

346

Structural Operational Semantics

b σ = False
⟨WHILE b DO c OD,σ⟩ → σ

b σ = True ⟨c ,σ⟩ → σ′ ⟨WHILE b DO c OD,σ′⟩ → σ′′

⟨WHILE b DO c OD,σ⟩ → σ′′

347

Demo: The Definitions in Isabelle

348

Proofs about Programs

Now we know:
• What programs are: Syntax
• On what they work: State
• How they work: Semantics

So we can prove properties about programs

Example:
Show that example program from earlier implements the factorial.

lemma ⟨factorial,σ⟩ → σ′ =⇒ σ′B = fac (σA)
(where fac 0 = 1, fac (Suc n) = (Suc n) ∗ fac n)

349

Demo: Example Proof

350

Too tedious

Induction needed for each loop

Is there something easier?

351

Floyd-Hoare Logic

352

Floyd-Hoare Logic

Idea: describe meaning of program by pre/post conditions

Examples:
{True} x := 2 {x = 2}
{y = 2} x := 21 ∗ y {x = 42}

{x = n} IF y < 0 THEN x := x + y ELSE x := x − y {x = n − |y |}

{A = n} factorial {B = fac n}

Proofs: have rules that directly work on such triples

353

Meaning of a Hoare-Triple
{P} c {Q}

What are the assertions P and Q?
• Here: again functions from state to bool

(shallow embedding of assertions)
• Other choice: syntax and semantics for assertions

(deep embedding)

What does {P} c {Q} mean?

Partial Correctness:
|= {P} c {Q} ≡ ∀σ σ′. P σ ∧ ⟨c ,σ⟩ → σ′ −→ Q σ′

Total Correctness:
|= {P} c {Q} ≡ (∀σ σ′. P σ ∧ ⟨c ,σ⟩ → σ′ −→ Q σ′) ∧

(∀σ. P σ −→ ∃σ′. ⟨c ,σ⟩ → σ′)

This lecture: partial correctness only (easier)
354

Hoare Rules

{P} SKIP {P} {P[x 7→ e]} x := e {P}

{P} c1 {R} {R} c2 {Q}
{P} c1; c2 {Q}

{P ∧ b} c1 {Q} {P ∧ ¬b} c2 {Q}
{P} IF b THEN c1 ELSE c2 {Q}

{P ∧ b} c {P} P ∧ ¬b =⇒ Q

{P} WHILE b DO c OD {Q}

P =⇒ P ′ {P ′} c {Q ′} Q ′ =⇒ Q

{P} c {Q}

355

Hoare Rules

⊢ {P} SKIP {P} ⊢ {λσ. P (σ(x := e σ))} x := e {P}

⊢ {P} c1 {R} ⊢ {R} c2 {Q}
⊢ {P} c1; c2 {Q}

⊢ {λσ. P σ ∧ b σ} c1 {Q} ⊢ {λσ. P σ ∧ ¬b σ} c2 {Q}
⊢ {P} IF b THEN c1 ELSE c2 {Q}

⊢ {λσ. P σ ∧ b σ} c {P}
∧
σ. P σ ∧ ¬b σ =⇒ Q σ

⊢ {P} WHILE b DO c OD {Q}∧
σ. P σ =⇒ P ′ σ ⊢ {P ′} c {Q ′}

∧
σ. Q ′ σ =⇒ Q σ

⊢ {P} c {Q}

356

Are the Rules Correct?

Soundness: ⊢ {P} c {Q} =⇒|= {P} c {Q}

Proof: by rule induction on ⊢ {P} c {Q}

Demo: Hoare Logic in Isabelle

357

We have seen ...

• Syntax of a simple imperative language
• Operational semantics
• Program proof on operational semantics
• Hoare logic rules
• Soundness of Hoare logic

358

Automation?

Hoare rule application is nicer than using operational semantics.

BUT:
• it’s still kind of tedious
• it seems boring & mechanical

Automation?

359

Invariant

Problem: While – need creativity to find right (invariant) P

Solution:
• annotate program with invariants
• then, Hoare rules can be applied automatically

Example:

{M = 0 ∧ N = 0}
WHILE M ̸= a INV {N = M ∗ b} DO N := N + b;M := M + 1 OD
{N = a ∗ b}

360

Weakest Preconditions

pre c Q = weakest P such that {P} c {Q}

With annotated invariants, easy to get:

pre SKIP Q = Q
pre (x := a) Q = λσ. Q(σ(x := aσ))
pre (c1; c2) Q = pre c1 (pre c2 Q)
pre (IF b THEN c1 ELSE c2) Q = λσ. (bσ −→ pre c1 Q σ) ∧

(¬bσ −→ pre c2 Q σ)
pre (WHILE b INV I DO c OD) Q = I

361

Verification Conditions

{pre c Q} c {Q} only true under certain conditions

These are called verification conditions vc c Q:

vc SKIP Q = True
vc (x := a) Q = True
vc (c1; c2) Q = vc c2 Q ∧ (vc c1 (pre c2 Q))
vc (IF b THEN c1 ELSE c2) Q = vc c1 Q ∧ vc c2 Q
vc (WHILE b INV I DO c OD) Q = (∀σ. Iσ ∧ bσ −→ pre c I σ)∧

(∀σ. Iσ ∧ ¬bσ −→ Q σ)∧
vc c I

vc c Q ∧ (P =⇒ pre c Q) =⇒ {P} c {Q}

362

Syntax Tricks
• x := λσ. 1 instead of x := 1 sucks
• {λσ. σ x = n} instead of {x = n} sucks as well

Problem: program variables are functions, not values

Solution: distinguish program variables syntactically

Choices:
• declare program variables with each Hoare triple

▶ nice, usual syntax
▶ works well if you state full program and only use vcg

• separate program variables from Hoare triple (ext. records),
indicate usage as function syntactically

▶ more syntactic overhead
▶ program pieces compose nicely

363

Demo

364

Arrays

Depending on language, model arrays as functions:
• Array access = function application:

a[i] = a i
• Array update = function update:

a[i] :== v = a :== a(i:= v)

Use lists to express length:
• Array access = nth:

a[i] = a ! i
• Array update = list update:

a[i] :== v = a :== a[i:= v]
• Array length = list length:

a.length = length a

365

Pointers

Choice 1

datatype ref = Ref int | Null
types heap = int⇒ val
datatype val = Int int | Bool bool | Struct x int int bool | ...

• hp :: heap, p :: ref
• Pointer access: *p = the Int (hp (the addr p))
• Pointer update: *p :== v = hp :== hp ((the addr p) := v)

• a bit clunky
• gets even worse with structs
• lots of value extraction (the Int) in spec and program

366

Pointers
Choice 2 (Burstall ’72, Bornat ’00)

Example: struct with next pointer and element

datatype ref = Ref int | Null
types next hp = int⇒ ref
types elem hp = int⇒ int

• next :: next hp, elem :: elem hp, p :: ref
• Pointer access: p→next = next (the addr p)
• Pointer update: p→next :== v = next :== next ((the addr p) := v)

In general:
• a separate heap for each struct field
• buys you p→next ̸= p→elem automatically (aliasing)
• still assumes type safe language

367

Demo

368

We have seen ...

• Weakest precondition
• Verification conditions
• Example program proofs
• Arrays, pointers

369

	Admin
	Lecturer
	Plan/Schedule
	About the Course
	Academic Integrity
	Generative AI

	Introduction
	Enough Theory! [1ex]Getting started with Isabelle
	Demo

	1.2-Calculus
	Now Formal
	Isabelle Demo

	Simple-Typed 1.2-Calculus
	Now formally again

	Isabelle/HOL Natural Deduction
	Preview: Proofs in Isabelle
	Demo
	More Proof Rules
	Demo

	Isabelle/HOL First-Order Logic
	Quantifiers
	Demo: Quantifier Proofs
	Demo: Forward Proofs

	Isabelle/HOL Isar (Part 1) A Language for Structured Proofs
	Demo
	Demo
	Demo: Automation

	Higher Order Logic
	Demo: The Definitions in Isabelle
	Demo
	That was HOL

	Term Rewriting
	Demo
	Demo
	Demo

	Sets, Types & Rule Induction
	Demo: Sets
	Demo: Introducing new Types
	Inductive Definitions
	Demo: Inductive Definitions

	Datatypes
	Demo
	Recursion
	Predefined Datatypes
	Demo

	Induction
	Demo – Proof Attempt

	General Recursion
	Demo
	Demo
	Demo
	Demo

	Sledgehammer and Co.
	Demo: Sledgehammer
	Disproof
	Demo: Quickcheck
	Nitpick
	Demo: Nitpick

	Isar (Part 2)
	Datatypes in Isar
	Demo: Datatypes in Isar
	Calculational Reasoning
	Demo

	Floyd-Hoare Logic
	Semantics (A Crash Course)
	Demo: The Definitions in Isabelle
	Demo: Example Proof
	Floyd-Hoare Logic
	Demo
	Demo

