

COMP4011/8011 Advanced Topics in Formal Methods and Programming Languages

Software Verification with Isabelle/HOL –

Peter Höfner

July 21, 2024

Section 1

Introduction

Binary Search (java.util.Arrays)

```
1:
      public static int binarySearch(int[] a, int key) {
          int low = 0;
2:
          int high = a.length - 1;
3:
4:
          while (low <= high) {
5:
6:
              int mid = (low + high) / 2;
              int midVal = a[mid];
7:
9:
              if (midVal < key)
10:
                  low = mid + 1
11:
              else if (midVal > key)
                  high = mid - 1;
12:
13:
               else
                  return mid; // key found
14:
15:
16:
           return -(low + 1); // key not found.
17:
       7
6:
                            int mid = (low + high) / 2;
```

http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html

What you will learn

- how to use a theorem prover
- background, how it works
- how to prove and specify
- · how to reason about programs

Health Warning

Theorem Proving may be addictive

Prerequisites

This is an advanced course. It assumes knowledge in

- · Functional programming
- · First-order formal logic

The following program should make sense to you:

map f [] = []
map f (x:xs) =
$$f x : map f xs$$

You should be able to read and understand this formula:

$$\exists x. (P(x) \longrightarrow \forall x. P(x))$$

Increase chance to succeed

you should:

- attend lectures
- try Isabelle early
- redo all the demos alone
- try the exercises/homework we give, when we do give some

DO NOT CHEAT

- assignments and exams are take-home. This does NOT mean you can work in groups. Each submission is personal.
- for more info, see Plagiarism Policy

What is a formal proof?

A derivation in a formal calculus

Example: $A \wedge B \longrightarrow B \wedge A$ derivable in the following system

Rules:
$$\frac{X \in S}{S \vdash X}$$
 (assumption) $\frac{S \cup \{X\} \vdash Y}{S \vdash X \longrightarrow Y}$ (impl) $\frac{S \vdash X \quad S \vdash Y}{S \vdash X \land Y}$ (conjl) $\frac{S \cup \{X, Y\} \vdash Z}{S \cup \{X \land Y\} \vdash Z}$ (conjE)

Proof:

1.	$\{A,B\} \vdash B$	(by assumption)
2.	$\{A,B\}\vdash A$	(by assumption)
3.	$\{A,B\} \vdash B \land A$	(by conjl with 1 and 2)
4.	$\{A \wedge B\} \vdash B \wedge A$	(by conjE with 3)
5.	$\{\} \vdash A \land B \longrightarrow B \land A$	(by impl with 4)

What is a theorem prover?

Implementation of a formal logic on a computer.

- fully automated (propositional logic)
- automated, but not necessarily terminating (first order logic)
- with automation, but mainly interactive (higher order logic)

There are other (algorithmic) verification tools:

- · model checking, static analysis, ...
- See COMP3710: Algorithmic Verification (S2 2022) or COMP4130

Why theorem proving?

- · Analyse systems/programs thoroughly
- Find design and specification errors early
- · High assurance: mathematical, machine checked proofs
- It's not always easy
- It's fun!

Main theorem proving system for this course

Isabelle

What is Isabelle?

A generic interactive proof assistant

- generic
 not specialised to one particular logic
 (two large developments: HOL and ZF, will mainly use HOL)
- interactive more than just yes/no, you can interactively guide the system
- proof assistant helps to explore, find, and maintain proofs

Correctness

If I prove it on the computer, it is correct, right?

No. because:

- 1. hardware could be faulty
- 2. operating system could be faulty
- 3. implementation runtime system could be faulty
- 4. compiler could be faulty
- 5. implementation could be
- 6. logic could be inconsistent
- 7. theorem could mean something else

Correctness

If I prove it on the computer, it is correct, right?

No, but: probability for

- OS and H/W issues reduced by using different systems
- runtime/compiler bugs reduced by using different compilers
- faulty implementation reduced by having the right prover architecture
- inconsistent logic reduced by implementing and analysing it
- · wrong theorem reduced by expressive/intuitive logics

No guarantees, but assurance immensely higher than manual proof

Meta Logic

Meta language:

The language used to talk about another language.

Examples:

English in a Spanish class, English in an English class

Meta logic:

The logic used to formalise another logic

Example:

Mathematics used to formalise derivations in formal logic

Meta Logic – Example

Syntax:

Formulae: $F ::= V \mid F \longrightarrow F \mid F \land F \mid False$ V ::= [A - Z]

Judgement: $S \vdash X \quad X$ a formula, S a set of formulae

logic / meta logic

$$\frac{X \in S}{S \vdash X} \qquad \frac{S \cup \{X\} \vdash Y}{S \vdash X \longrightarrow Y}$$

$$\frac{S \vdash X \quad S \vdash Y}{S \vdash X \land Y} \qquad \frac{S \cup \{X, Y\} \vdash Z}{S \cup \{X \land Y\} \vdash Z}$$

Isabelle's Meta Logic

 \setminus

```
Syntax: \bigwedge x. F (F another meta logic formula) in ASCII: !!x. F
```

- · this is the meta-logic universal quantifier
- example and more later

 \Longrightarrow

Syntax: $A \Longrightarrow B$ (A, B other meta logic formulae)

in ASCII: A ==> B

Binds to the right:

$$A \Longrightarrow B \Longrightarrow C = A \Longrightarrow (B \Longrightarrow C)$$

Abbreviation:

$$[\![A;B]\!] \Longrightarrow C = A \Longrightarrow B \Longrightarrow C$$

- read: A and B implies C
- used to write down rules, theorems, and proof states

Example: a theorem

mathematics: if x < 0 and y < 0, then x + y < 0

formal logic: $\vdash x < 0 \land y < 0 \longrightarrow x + y < 0$

variation: $x < 0; y < 0 \vdash x + y < 0$

Isabelle: lemma " $x < 0 \land y < 0 \longrightarrow x + y < 0$ "

variation: **lemma** " $[x < 0; y < 0] \implies x + y < 0$ "

variation: lemma

assumes "x < 0" and "y < 0" shows "x + y < 0"

Example: a rule

logic:
$$\frac{X}{X \wedge Y}$$

variation:
$$\frac{S \vdash X \quad S \vdash Y}{S \vdash X \land Y}$$

Isabelle:
$$[\![X;Y]\!] \Longrightarrow X \wedge Y$$

Example: a rule with nested implication

$$\begin{array}{ccc} X & Y \\ \vdots & \vdots \\ X \lor Y & Z & Z \end{array}$$

logic:

$$\frac{S \cup \{X\} \vdash Z \quad S \cup \{Y\} \vdash Z}{S \cup \{X \lor Y\} \vdash Z}$$

Isabelle:

variation:

$$[\![X\vee Y;X\Longrightarrow Z;Y\Longrightarrow Z]\!]\Longrightarrow Z$$

 λ

Syntax: $\lambda x. F$ (*F* another meta logic formula) in ASCII: %x. F

- lambda abstraction
- · used to represent functions
- used to encode bound variables
- · more about this soon