COMP4011/8011
Advanced Topics in
Formal Methods and Programming Languages

— Software Verification with Isabelle/HOL —

Peter Hofner

July 21, 2024

Section 2

Enough Theory!

Getting started with Isabelle

Australian
National

University

System Architecture

Prover IDE (jEdit) — user interface
HOL, ZF — object-logics
Isabelle — generic, interactive theorem prover
Standard ML — logic implemented as ADT

User can access all layers!

Australian
National

University

System Requirements

e Linux, Windows, or MacOS X (10.8 +)
e Standard ML (PolyML implementation)
« Java (for jEdit)

Pre-made packages for Linux, Mac, and Windows + info on:
https://proofcraft.systems/isabelle/

https://proofcraft.systems/isabelle/

Australian
= National
G2y University

Australian

National
University

jEdit/PIDE

800 weekO1A demo.thy
File Edit Search Markers Folding View Utiities Macros _Plugins _Help
0 week01A_demo.thy (~/teaching/comp4161/1252/slides/ week01A/)

«
“«

text {*
Note that free variables (eg x), bound variables (eg An) and
constants (eg Suc) are displayed differently. *}

PORRIS

term "x
term "sfc x*
term "Succ x"
term "Suc x = Succ y"
term "\

«

X constant "Nat.suc”
i: nat = nat
text {* Tororspray™more types inside terms: *}
~ |declare [[show_types]]
v [term "Suc x = Succ y"

text {* To switch off again: *}
declare [[show_types=false]]
~ |term "Suc x = Succ y*

«

«

text {* @ and + are overloaded: *}

1006 +] ()Tradng @ Auto update [Update

“Suc x"
“nat*

B v Console | Output | Prover Session

Australian

National
University

jEdit/PIDE

800 weekO1A demo.thy
File Edit Search Markers Folding View Utiities Macros _Plugins _Help
0 week01A_demo.thy (~/teaching/comp4161/1252/slides/ week01A/)

«
“«

text {*
Note that free variables (eg x), bound variables (eg An) and
constants (eg Suc) are displayed differently. *}

PORRIS

term “x
term "sfc x"
term "Succ x"
term "Suc x = Succ y"
e =y constant "Nat.Suc"
it nat = nat
text {* Tovarspray™more types inside terms: *}
declare [[show_types]]
~ |term "Suc x = Succ y*

«

text {* To switch off again: *}
declare [[show_types=false]]
~ |term "Suc x = Succ y*

«

«

text {* @ and + are overloaded: *}

1006 +] ()Tradng @ Auto update [Update

“Suc x"
: "nat"

Isabelle Output

B v Console | Output | Prover Session

Australian
National

University

jEdit/PIDE

800 weekO1A demo.thy
File Edit Search Markers Folding View Utiities Macros _Plugins _Help
0 week01A_demo.thy (~/teaching/comp4161/1252/slides/ week01A/)

«

text {*

Note that free variables (eg x), bound variables (eg An) and<(LaTeX Comment

constants (eg Suc) are displayed differently. *}

term “x o
term "sfc x"
term "Succ x"
term "Suc x = Succ y"
term "X;

logic terms go in
quotes:“x + 2”

X constant "Nat.suc
12 mat = nat
text {* Tororspray™more types insi
declare [[show_types]]
term “Suc x = Succ y"

«

text {* To switch off again: *}
declare [[show_types=false]]
term "Suc x = Succ y*

«

«

«

text {* @ and + are overloaded: *}

1006 +] ()Tradng @ Auto update [Update

“Suc x"
: "nat"

B v Console | Output | Prover Session

Australian

National
University

jEdit/PIDE

800 weekO1A demo.thy
File Edit Search Markers Folding View Utiities Macros _Plugins _Help

0 week01A_demo.thy (~/teaching/comp4161/1252/slides/ week01A/)

: 5
v |text {* =
Note that free variables (eg x), bound variables (eg An) and 4
constants (eg Suc) are displayed differently. *} -
term “x" bl
term "sfc x"
term “Succ x" (
term "Suc x.= L .
- —— Command click
text {* Tovarspray-mordgypes inside terms: *} ijPS to deﬁnition
> |declare [[show_types]]
~ [term "Suc x = Succ y*
text {* To switch off again: *}
~ |declare [[show_types=false]]
o sy Command + hover
BBlcext (6 and ¢ are ovarloaded: *} for popup info
100 v| () Tracing ™ Auto update | Update
"Suc x"
: "nat"

Australian

National
University

jEdit/PIDE

800 weekO1A demo.thy
File Edit Search Markers Folding View Utiities Macros _Plugins _Help
0 week01A_demo.thy (~/teaching/comp4161/1252/slides/ week01A/)

«
“«

text {*
Note that free variables (eg x), bound variab
constants (eg Suc) are displayed differentl

PORRIS

processed
term “x"

term "sfc x"

term "Succ x"

term "Suc x = Succ y"
> |term "X

X constant "Nat.suc”
i: nat = nat
text {* Tororspray™more types inside terms: *}
declare [[show_types]]
v [term "Suc x = Succ y"

«

text {* To switch off again: *}
declare [[show_types=false]]

= ftern suc x = suee y- unprocessed

«

«

text {* @ and + are overloaded: *}

1006 +] ()Tradng @ Auto update [Update

“Suc x"
: "nat"

B v Console | Output | Prover Session

Australian

National
University

Exercises

« Download and install Isabelle
« Step through the demo files from the lecture web page

» Write your own theory file, look at some theorems in the library, try
find_theorems’

» How many theorems can help you if you need to prove something
containing the term “Suc(Suc x)”?

» What is the name of the theorem for associativity of addition of
natural numbers in the library?

	Enough Theory! [1ex]Getting started with Isabelle
	Demo

