COMP4011/8011
Advanced Topics in
Formal Methods and Programming Languages

— Software Verification with Isabelle/HOL —

Peter Hofner

July 21, 2024

| Australian
National

University

Section 3

\-Calculus

Australian

National
University

A-calculus

Alonzo Church
e lived 1903—-1995
« supervised people like Alan Turing, Stephen Kleene

« famous for Church-Turing thesis, lambda calculus,
first undecidability results

» invented A calculus in 1930’s

A-calculus
« originally meant as foundation of mathematics
 important applications in theoretical computer science
« foundation of computability and functional programming

Australian
National

University

untyped A-calculus

« Turing-complete model of computation
» a simple way of writing down functions

Basic intuition:

instead of f(x)=x+5
write f=XM.x+5
AX. x +5
e aterm
» a nameless function
« that adds 5 to its parameter

Australian
National

University

Function Application

For applying arguments to functions

instead of f(a)
write fa

Example: (Ax.x+5) a

Evaluating: in ()\x. t) areplace xby ain t
(computation!)

Example: (Ax.x+5)(a+b) evaluatesto (a+b)+5

Australian
National

University

Now Formal

Australian
National

University

Syntax

Terms: t = v | Cc | (t t) ‘ ()\X. t)

v,xeV, ceC, V,C setsofnames

e v, x variables

* C constants

« (t t) application

+ (Ax. t) abstraction

Australian

National
University

Conventions

« leave out parentheses where possible
« list variables instead of multiple A

Example: instead of (Ay. (Ax.(xy))) write Ayx.xy

Rules:
e list variables: Ax. (A\y. t) = Axy.t
« application bindstotheleft: x y z = (x y) z # x (y z)
« abstraction binds to the right: Ax. x y = Ax. (x y) # (A\x. x) v
« leave out outermost parentheses

Getting used to the Syntax

Example:
Mxyz.xz(yz)=

Axyz (xz)(yz)=

My z ((x2)(y2) =

Ax Ay Az ((x2) (v 2) =

(Ax (. (Az. ((x 2) (v 2))))) =

Australian
National

University

Computation
Intuition: replace parameter by argument
this is called -reduction

Remember: (Ax. t) ais evaluated (noted —5) to
t where x is replaced by a

Example:
(Axy. Sucx = y)3 —p

(Ax. (A\y. Suc x = y))3 —p
(Ay. Suc3 = y)

Australian

National

University

Defining Computation

3 reduction:

s —pg S
t —p
s — S

()\X. S) t —p
(st) —p
(st) —p

(/\X. S) —8

s[x « t]
(s"t)
(st')
(Ax. s")

Still to do: define s[x «+ t]

Australian

National
University

Defining Substitution

Easy concept. Small problem: variable capture.
Example: (Ax. x z)[z + x]

We do not want: (Ax. x x) as result. What do we want?

In (Ay. y z) [z + x] = (\y. y x) there would be no problem.

So, solution is: rename bound variables.

Australian

National
University

Free Variables

Bound variables: in (Ax. t), x is a bound variable.

Free variables FV of a term:
FV (x) ={x}

FV(c) ={}
FV (st) =FV(s)UFV(t)
FV (\x. t) = FV(t) \ {x}

Example: FV(Ax. (Ay. (Ax. x))y x) ={y}
Term t is called closed if FV(t) = {}

The substitution example, (Ax. x z)[z + x], is problematic because the

bound variable x is a free variable of the replacement term “x”.

-| Australian
< National

=3 University

Substitution
X [x < t] =t
ylxet] =y
¢ [x + t] =c

(51 52) [X — t] = (Sl[X — t] 52[X — t])

(Ax. s) [x + t] = (Ax. s)
(Ay.s) [x « t] = (\y. s[x < t])
(Ay. s) [x « t] = (A\z. sly + z][x « t])

ifx#£y

if x#yandy ¢ FV(t)
ifx#£y
and z ¢ FV(t)U FV(s)

Z*| Australian
s National

s University

Substitution Example

(x (Ax. x) (Ay. z x))[x < y]
(x[x = y]) (A x)[x = y]) ((Ay. 2z x)Ix < y])
y (M. x) (A z y)

Australian

National
University

a Conversion

Bound names are irrelevant:

Ax. x and \y. y denote the same function.

(. conversion:

s =, t means s = t up to renaming of bound variables.

Formally:
(M. t) —a (Ay. tlx+y]) ify ¢ FV(1)
s —a S = (st) —a (50)
t —e ! = (st) —a (st)
s —a S = (M&s) —a (A 9)

s=,t iff s—%t
. " : B .
(—¥ = transitive, reflexive closure of —,, = multiple steps)

Australian

National
University

a Conversion

Equality in Isabelle is equality modulo « conversion:
if s =, t then s and t are syntactically equal.

Examples:
x(Axy.xy)
=a x(Ayx.yx)
— x(\zy.zy)
4o 2(\zy.zy)
#o x (Ax x. x x)

Australian
National

University

Back to 5

We have defined 5 reduction: —3
Some notation and concepts:

« [J conversion: s =gt iff In. s — s nAt—pn
e tis reducible if there is an s such that t —z s

e (Ax. s) tis called a redex (reducible expression)

« tis reducible iff it contains a redex

if it is not reducible, t is in normal form

Australian

Does every A-term have a normal form?

No!

Example:

(Ax. x x) (Ax. x x) —3
(Ax. x x) (Ax. x x) —3
(Ax. x x) (Ax. x x) —5 ...

(but: (Ax y. ¥) (Ax. x x) (Ax. x X)) —5 Ay.y)

A calculus is not terminating

Australian
> National

University

5 reduction is confluent

Confluence: s —j3 xAs—py=3t.x —5tAy —jt

s
X y

Order of reduction does not matter for result
Normal forms in)\ calculus are unique

20

Australian

National
University

5 reduction is confluent

Example:
(A y. y) (A x x) a) — (Axy.y) (aa) —p Ay y
(Axy.y) (Ax. x x) a) —p Ay y

21

Australian
National

University

n Conversion

Another case of trivially equal functions: t = (\x. t x)
Definition:

) —an ot if x ¢ FV(t)
(st) —n (')
(st) —n (st)

) — (Ax.9)

_ H * *
s=pt iff In.s—;nAt—3n

Example: (Ax. f x) (A\y. gy) —, (Ax. fx) g —, f g

« 7 reduction is confluent and terminating.

* — 3y is confluent.
— 3, Means —3 and —,, steps are both allowed.

e Equality in Isabelle is also modulo » conversion.

22

Australian
National

University

In fact ...

Equality in Isabelle is modulo «, 3, and n conversion.

We will see later why that is possible.

23

Australian
National

University

Isabelle Demo

24

Australian
National

University

So, what can you do with X calculus?

A calculus is very expressive, you can encode:
* logic, set theory
« turing machines, functional programs, etc.

Examples:
true = Axy. x if truex y —j x
false=Axy.y if falsexy —jy
if =AzXxy.zxy

Now, not, and, or, etc is easy:
not = Ax. if x false true
and = Ax y. if x y false
or = Axy.if x truey

25

Australian
National

University

More Examples

Encoding natural numbers (Church Numerals)

fx. f(f (f x))

Numeral n takes arguments f and x, applies f n-times to x.

iszero = An. n (Ax. false) true
succ =Anfx.f(nfx)
add =Amn M x.mf (nf x)

26

-| Australian
<, National
sy University

f(xxf)) (Axf.f(xxf)) t—p
M. f(xxf)) (Axf.f(xxf))f)) t—p
Axx) (Mxf.f(xxf))t)

—
—
>
X
~-

p=Mxf.f(xxf)(Axf.f(xxf))
ot t (1) s £ (¢ (1 £)) —rp £ (£ (t (0 1)) —3p

(Axf. f (x x f)) (Axf. f (x x f)) is Turing’s fix point operator

27

Australian

National
University

Nice, but ...

As a mathematical foundation, A does not work.
It resulted in an inconsistent logic.

» Frege (Predicate Logic, ~ 1879):
allows arbitrary quantification over predicates

* Russell (1901): Paradox R = {X|X ¢ X}

e Whitehead & Russell (Principia Mathematica, 1910-1913):
Fix the problem

e Church (1930): X calculus as logic, true, false, A, ... as A terms

Problem:
with {x|] P x} =Ax. P x xeM=Mx
you can write R = Ax. not (x x)
and get (R R) =g not (R R)

because (R R) = (Ax. not (x x)) R — s not (R R)

28

Australian
National

University

We have learned so far.. ..

¢)\ calculus syntax

« free variables, substitution

» 3 reduction

e « and 7 conversion

(3 reduction is confluent

«)\ calculus is very expressive (Turing complete)
)\ calculus results in an inconsistent logic

29

	1.2-Calculus
	Now Formal
	Isabelle Demo

