

COMP4011/8011 Advanced Topics in Formal Methods and Programming Languages

Software Verification with Isabelle/HOL –

Peter Höfner

July 21, 2024

Section 3

 λ -Calculus

λ -calculus

Alonzo Church

- lived 1903–1995
- supervised people like Alan Turing, Stephen Kleene
- famous for Church-Turing thesis, lambda calculus, first undecidability results
- invented λ calculus in 1930's

λ -calculus

- · originally meant as foundation of mathematics
- important applications in theoretical computer science
- foundation of computability and functional programming

untyped λ -calculus

- · Turing-complete model of computation
- · a simple way of writing down functions

Basic intuition:

instead of
$$f(x) = x + 5$$

write $f = \lambda x. x + 5$

$$\lambda x. x + 5$$

- a term
- · a nameless function
- that adds 5 to its parameter

4

Function Application

For applying arguments to functions

```
instead of f(a) write f(a)
```

Example: $(\lambda x. x + 5) a$

Evaluating: in $(\lambda x. t)$ a replace x by a in t

(computation!)

Example: $(\lambda x. x + 5) (a + b)$ evaluates to (a + b) + 5

5

Now Formal

Syntax

Terms:
$$t ::= v \mid c \mid (t \ t) \mid (\lambda x. \ t)$$
 $v, x \in V, c \in C, V, C$ sets of names

- v, x variables
- c constants
- (t t) application
- $(\lambda x. t)$ abstraction

Conventions

- leave out parentheses where possible
- list variables instead of multiple λ

Example: instead of $(\lambda y. (\lambda x. (x y)))$ write $\lambda y. x. x. y$

Rules:

- list variables: $\lambda x. (\lambda y. t) = \lambda x y. t$
- application binds to the left: $x y z = (x y) z \neq x (y z)$
- abstraction binds to the right: $\lambda x. x y = \lambda x. (x y) \neq (\lambda x. x) y$
- · leave out outermost parentheses

8

Getting used to the Syntax

Example:

$$\lambda x \ y \ z. \ x \ z \ (y \ z) =$$

$$\lambda x \ y \ z. \ (x \ z) \ (y \ z) =$$

$$\lambda x \ y \ z. \ ((x \ z) \ (y \ z)) =$$

$$\lambda x. \ \lambda y. \ \lambda z. \ ((x \ z) \ (y \ z)) =$$

$$(\lambda x. \ (\lambda y. \ (\lambda z. \ ((x \ z) \ (y \ z))))) =$$

9

Computation

Intuition: replace parameter by argument

this is called β -reduction

Remember: $(\lambda x. t)$ *a* is evaluated (noted \longrightarrow_{β}) to

t where x is replaced by a

Example:

$$(\lambda x \ y. \ Suc \ x = y) \ 3 \longrightarrow_{\beta}$$

$$(\lambda x. \ (\lambda y. \ Suc \ x = y)) \ 3 \longrightarrow_{\beta}$$

$$(\lambda y. \ Suc \ 3 = y)$$

$$(\lambda x \ y. \ f \ (y \ x)) \ 5 \ (\lambda x. \ x) \longrightarrow_{\beta}$$

$$(\lambda y. \ f \ (y \ 5)) \ (\lambda x. \ x) \longrightarrow_{\beta}$$

$$f \ ((\lambda x. \ x) \ 5) \longrightarrow_{\beta}$$

Defining Computation

β reduction:

Still to do: define $s[x \leftarrow t]$

1

Defining Substitution

Easy concept. Small problem: variable capture.

Example: $(\lambda x. x z)[z \leftarrow x]$

We do **not** want: $(\lambda x. x. x)$ as result. What do we want?

In $(\lambda y.\ y\ z)$ $[z \leftarrow x] = (\lambda y.\ y\ x)$ there would be no problem.

So, solution is: rename bound variables.

Free Variables

Bound variables: in $(\lambda x. t)$, x is a bound variable.

Free variables FV of a term:

$$FV (x) = \{x\}$$

$$FV (c) = \{\}$$

$$FV (s t) = FV(s) \cup FV(t)$$

$$FV (\lambda x. t) = FV(t) \setminus \{x\}$$

Example:
$$FV(\lambda x. (\lambda y. (\lambda x. x) y) y x) = \{y\}$$

Term t is called **closed** if $FV(t) = \{\}$

The substitution example, $(\lambda x. xz)[z \leftarrow x]$, is problematic because the bound variable x is a free variable of the replacement term "x".

Substitution

$$x \begin{bmatrix} x \leftarrow t \end{bmatrix} = t$$

$$y \begin{bmatrix} x \leftarrow t \end{bmatrix} = y$$

$$c \begin{bmatrix} x \leftarrow t \end{bmatrix} = c$$

$$(s_1 s_2) \begin{bmatrix} x \leftarrow t \end{bmatrix} = (s_1 \begin{bmatrix} x \leftarrow t \end{bmatrix} s_2 \begin{bmatrix} x \leftarrow t \end{bmatrix})$$

$$(\lambda x. s) \begin{bmatrix} x \leftarrow t \end{bmatrix} = (\lambda x. s)$$

$$(\lambda y. s) \begin{bmatrix} x \leftarrow t \end{bmatrix} = (\lambda y. s \begin{bmatrix} x \leftarrow t \end{bmatrix})$$

$$(\lambda y. s) \begin{bmatrix} x \leftarrow t \end{bmatrix} = (\lambda z. s \begin{bmatrix} y \leftarrow t \end{bmatrix})$$

$$(\lambda y. s) \begin{bmatrix} x \leftarrow t \end{bmatrix} = (\lambda z. s \begin{bmatrix} y \leftarrow t \end{bmatrix} = (\lambda z. s \begin{bmatrix} y \leftarrow t \end{bmatrix})$$
if $x \neq y$ and $y \notin FV(t) \cup FV(s)$

$$x \neq y$$
and $y \notin FV(t) \cup FV(s)$

Substitution Example

$$(x (\lambda x. x) (\lambda y. z x))[x \leftarrow y]$$

$$= (x[x \leftarrow y]) ((\lambda x. x)[x \leftarrow y]) ((\lambda y. z x)[x \leftarrow y])$$

$$= y (\lambda x. x) (\lambda y'. z y)$$

α Conversion

Bound names are irrelevant:

 λx . x and λy . y denote the same function.

α conversion:

 $s =_{\alpha} t$ means s = t up to renaming of bound variables.

Formally:

$$(\lambda x. \ t) \longrightarrow_{\alpha} (\lambda y. \ t[x \leftarrow y]) \ \text{if} \ y \notin FV(t)$$

$$s \longrightarrow_{\alpha} s' \implies (s \ t) \longrightarrow_{\alpha} (s' \ t)$$

$$t \longrightarrow_{\alpha} t' \implies (s \ t) \longrightarrow_{\alpha} (s \ t')$$

$$s \longrightarrow_{\alpha} s' \implies (\lambda x. \ s) \longrightarrow_{\alpha} (\lambda x. \ s')$$

$$s =_{\alpha} t \quad \text{iff} \quad s \longrightarrow_{\alpha}^{*} t \\ (\longrightarrow_{\alpha}^{*} = \text{transitive, reflexive closure of} \longrightarrow_{\alpha} = \text{multiple steps})$$

α Conversion

Equality in Isabelle is equality modulo α conversion:

if $s =_{\alpha} t$ then s and t are syntactically equal.

Examples:

$$\begin{array}{ll} & x (\lambda x \ y. \ x \ y) \\ =_{\alpha} & x (\lambda y \ x. \ y \ x) \\ =_{\alpha} & x (\lambda z \ y. \ z \ y) \\ \neq_{\alpha} & z (\lambda z \ y. \ z \ y) \\ \neq_{\alpha} & x (\lambda x \ x. \ x \ x) \end{array}$$

Back to β

We have defined β reduction: \longrightarrow_{β} Some notation and concepts:

- β conversion: $s = \beta t$ iff $\exists n. \ s \longrightarrow_{\beta}^* n \land t \longrightarrow_{\beta}^* n$
- t is **reducible** if there is an s such that $t \longrightarrow_{\beta} s$
- $(\lambda x. s)$ t is called a **redex** (reducible expression)
- t is reducible iff it contains a redex
- if it is not reducible, t is in normal form

Does every λ -term have a normal form?

No!

Example:

$$(\lambda x. x x) (\lambda x. x x) \longrightarrow_{\beta} (\lambda x. x x) (\lambda x. x x) \longrightarrow_{\beta} (\lambda x. x x) (\lambda x. x x) \longrightarrow_{\beta} ...$$
(but: $(\lambda x y. y) ((\lambda x. x x) (\lambda x. x x)) \longrightarrow_{\beta} \lambda y. y$)

 λ calculus is not terminating

β reduction is confluent

Confluence: $s \longrightarrow_{\beta}^{*} x \land s \longrightarrow_{\beta}^{*} y \Longrightarrow \exists t. \ x \longrightarrow_{\beta}^{*} t \land y \longrightarrow_{\beta}^{*} t$

Order of reduction does not matter for result Normal forms in λ calculus are unique

β reduction is confluent

Example:

$$(\lambda x \ y. \ y) ((\lambda x. \ x \ x) \ a) \longrightarrow_{\beta} (\lambda x \ y. \ y) (a \ a) \longrightarrow_{\beta} \lambda y. \ y$$

 $(\lambda x \ y. \ y) ((\lambda x. \ x \ x) \ a) \longrightarrow_{\beta} \lambda y. \ y$

η Conversion

Another case of trivially equal functions: $t = (\lambda x. \ t \ x)$ Definition:

$$(\lambda x. \ t \ x) \longrightarrow_{\eta} t \quad \text{if } x \notin FV(t)$$

$$s \longrightarrow_{\eta} s' \implies (s \ t) \longrightarrow_{\eta} (s' \ t)$$

$$t \longrightarrow_{\eta} t' \implies (s \ t) \longrightarrow_{\eta} (s \ t')$$

$$s \longrightarrow_{\eta} s' \implies (\lambda x. \ s) \longrightarrow_{\eta} (\lambda x. \ s')$$

$$s =_{\eta} t \quad \text{iff} \ \exists n. \ s \longrightarrow_{\eta}^{*} n \land t \longrightarrow_{\eta}^{*} n$$

Example:
$$(\lambda x. f x) (\lambda y. g y) \longrightarrow_{\eta} (\lambda x. f x) g \longrightarrow_{\eta} f g$$

- η reduction is confluent and terminating.
- $\longrightarrow_{\beta\eta}$ is confluent. $\longrightarrow_{\beta\eta}$ means \longrightarrow_{β} and \longrightarrow_{η} steps are both allowed.
- Equality in Isabelle is also modulo η conversion.

In fact ...

Equality in Isabelle is modulo α , β , and η conversion.

We will see later why that is possible.

Isabelle Demo

So, what can you do with λ calculus?

 λ calculus is very expressive, you can encode:

- · logic, set theory
- turing machines, functional programs, etc.

Examples:

```
true \equiv \lambda x \ y. \ x if true x \ y \longrightarrow_{\beta}^* x false \equiv \lambda x \ y. \ y if false x \ y \longrightarrow_{\beta}^* y if \equiv \lambda z \ x \ y. \ z \ x \ y
```

```
Now, not, and, or, etc is easy:

not \equiv \lambda x. if x false true

and \equiv \lambda x y. if x y false

or \equiv \lambda x y. if x true y
```

More Examples

Encoding natural numbers (Church Numerals)

```
0 \equiv \lambda f \times x \times 1 \equiv \lambda f \times x \cdot f \times 2 \equiv \lambda f \times x \cdot f (f \times x) \times x \times f (f (f \times x))
...
```

Numeral n takes arguments f and x, applies f n-times to x.

```
iszero \equiv \lambda n. \ n \ (\lambda x. \ false) true succ \equiv \lambda n \ f \ x. \ f \ (n \ f \ x) add \equiv \lambda m \ n. \ \lambda f \ x. \ m \ f \ (n \ f \ x)
```


Fix Points

$$(\lambda x f. f (x x f)) (\lambda x f. f (x x f)) t \longrightarrow_{\beta}$$

$$(\lambda f. f ((\lambda x f. f (x x f)) (\lambda x f. f (x x f)) f)) t \longrightarrow_{\beta}$$

$$t ((\lambda x f. f (x x f)) (\lambda x f. f (x x f)) t)$$

$$\mu = (\lambda x f. f (x x f)) (\lambda x f. f (x x f))$$

$$\mu t \longrightarrow_{\beta} t (\mu t) \longrightarrow_{\beta} t (t (\mu t)) \longrightarrow_{\beta} t (t (t (\mu t))) \longrightarrow_{\beta} ...$$

$$(\lambda x f. f (x x f)) (\lambda x f. f (x x f)) \text{ is Turing's fix point operator}$$

Nice, but ...

As a mathematical foundation, λ does not work. It resulted in an inconsistent logic.

- Frege (Predicate Logic, ~ 1879): allows arbitrary quantification over predicates
- Russell (1901): Paradox $R \equiv \{X | X \notin X\}$
- Whitehead & Russell (Principia Mathematica, 1910-1913):
 Fix the problem
- Church (1930): λ calculus as logic, true, false, \wedge , ... as λ terms

Problem:

with
$$\{x \mid Px\} \equiv \lambda x. \ Px \qquad x \in M \equiv Mx$$

you can write $R \equiv \lambda x. \ \text{not} \ (x \ x)$
and get $(R \ R) =_{\beta} \ \text{not} \ (R \ R)$
because $(R \ R) = (\lambda x. \ \text{not} \ (x \ x)) \ R \longrightarrow_{\beta} \ \text{not} \ (R \ R)$

We have learned so far....

- λ calculus syntax
- · free variables, substitution
- β reduction
- α and η conversion
- β reduction is confluent
- λ calculus is very expressive (Turing complete)
- λ calculus results in an inconsistent logic