COMP4011/8011
Advanced Topics in
Formal Methods and Programming Languages

— Software Verification with Isabelle/HOL —

Peter Hofner

July 21, 2024

Australian
ational

Section 4

Simple-Typed A-Calculus

Australian
National

University

) calculus is inconsistent

Can find term R such that R R =3 not(R R)

There are more terms that do not make sense:
12, true false, etc.

Solution: rule out ill-formed terms by using types.
(Church 1940)

Australian
National

University

Introducing types

Idea: assign a type to each “sensible” A term.
Examples:
o for termt has type a write t: «

e if x has type a then Ax. x is a function from a to «
Write: (Ax. x) ma =«

o for st tobe sensible:
s must be a function
t must be right type for parameter

fs:a=pfandt:athen(st):p

Australian
National

University

Now formally again

Australian

National
University

Syntax for A\~

Terms: t == v | c | (tt) | (Ax.t)
v, xeV, ceC, V,C setsofnames

Types: 7 = b | v | T =T
b € {bool, int, ...} base types
v e{a, B, ...} type variables

a=f=y = a=(f=1)

Context I':
I': function from variable and constant names to types.

Term t has type 7 in context I': Fr-tor

Australian

National

University

Examples

N-(Mx.x)ta=a
[y ¢ int] F y :: int
[z < bool] F (Ay. y) z :: bool

JFXMx.fxui(a=8)=a=p

A term t is well typed or type correct
if there are ' and 7 such that ' -t :: 7

Australian
National

University

Type Checking Rules

Variables: m

rFtiom=7 TEhhun
r"(tl tz)ZZT

Application:

Mx«+n]bFtor
FrE(\x.t)ome =71

Abstraction:

Australian
National

University

Example Type Derivation

Var
Abs
Abs

[x oy« flFx:a
[x+—alFAy.x: =«
JFXy. xta= =«

Remember:

ﬁVar rM-taomn=r1 ﬂ—tg::TgA Mx<n]FtoT
x T(x) FrE(ti) T TFOx 8)ime = 7

Abs

Australian
National

University

More complex Example

rEfra=(a=p) var rl—x::aXar
lN-fx:a=4 PP FFX::aXar
TFfxx=f L PP
[fa=a=plFXxfxx:a=0 Z

JFXMx fxx:(a=a=0)=a=p
Nr=[f+a=a=5x+q]
Remember:
Var ThFtion=r1 I_}—tzz:TgA Mx <+~ n]Ftor Abs

MEx:T(x) NE(t)T PP FrE(x.t) =71

Australian
National

University

More general Types

¢ A term can have more than one type.

Example: []F Ax. x :: bool = bool
IFXx xa=a

» Some types are more general than others:
7 < o ifthere is a substitution S such that 7 = 5(o)

Examples:
int=bool < a=f < f=a £ a=a«a

Australian
National

w=— University

Most general Types

Fact: each type correct term has a most general type

Formally:
lrtor = Jo.TktuoA(Mo'. Tt = 0o <o)

It can be found by executing the typing rules backwards.

 type checking: checking if I' -t :: 7 for given I’ and 7
 type inference: computing ' and 7 such that "¢ :: 7

Type checking and type inference on A\~ are decidable.

Australian
i National

University

What about 5 reduction?

Definition of [reduction stays the same.

Fact: Well typed terms stay well typed during 3 reduction
Formally: st As—gt=TFtur

This property is called subject reduction

Australian

National
University

What about termination?

[reduction in A~ always terminates.

(Alan Turing, 1942)

e =; is decidable
To decide if s =g t, reduce s and t to normal form (always exists,
because — 4 terminates), and compare result.

* =,3, is decidable
This is why Isabelle can automatically reduce each term to 57
normal form.

Australian
i National

University

What does this mean for Expressiveness?

Checkpoint:

« untyped lambda calculus is turing complete
(all computable functions can be expressed)

 but it is inconsistent
« A7 "fixes” the inconsistency problem by adding types
e Problem: it is not turing complete anymore!

Not all computable functions can be expressed in A\~!
(non terminating functions cannot be expressed)

But wait... typed functional languages are turing complete!

Australian
National

University

What does this mean for Expressiveness?
So...

« typed functional languages are turing complete

e but A7 is not...

e How does this work?

« By adding one single constant, the Y operator (fix point operator), to
)\—)

This introduces the non-termination that the types removed.

Y:(r=1)=>71
Yt—pt(Y)
Fact: If we add Y to A~ as the only constant, then each computable
function can be encoded as closed, type correct A~ term.
« Y is used for recursion
« lose decidability (what does Y (Ax. x) reduce t0?)
« (Isabelle/HOL doesn’t have Y'; recursion is more restricted)

Australian
National

University

Types and Terms in Isabelle

Types: 7 == b |v|vuC|7=7](r,...T)K
b € {bool, int, ...} base types
v €{aq, S, ...} type variables
K € {set, list, ...} type constructors
C € {order, linord, ...} type classes

Terms: t == v | c | v]| (tt) | (Ax.t)
v, xeV, ce(C, V,C setsofnames
 type constructors: construct a new type out of a parameter type.
Example: int list

« type classes: restrict type variables to a class defined by axioms.
Example: « :: order

» schematic variables: variables that can be instantiated.

Australian
National

= University

Type Classes

« similar to Haskell’s type classes, but with semantic properties

class order =
assumes order_refl: "x < x”
assumes order_trans: "[x <y;y < z] = x < z"

 theorems can be proved in the abstract
lemma order_less_trans: " A x :a:order. [x < y;y < z] = x < 2"

 can be used for subtyping

class linorder = order +
assumes linorder_linear: "x <y Vy < x"

« can be instantiated
instance nat :: " {order, linorder}" by ...

Australian
National

University

Schematic Variables

X Y
XANY

e X and Y must be instantiated to apply the rule

But: lemma “x+0=0+x"

x is free
convention: lemma must be true for all x
during the proof, x must not be instantiated

Solution:
Isabelle has free (x), bound (x), and schematic (?X) variables.

Only schematic variables can be instantiated.

Free converted into schematic after proof is finished.

Australian

National
University

Higher Order Unification

Unification:
Find substitution o on variables for terms s, t such that o(s) = o(t)

In Isabelle:
Find substitution o on schematic variables such that o(s) =z, o(t)

Examples:
IXNTY =apy XAX [?X < x,?7Y < x]
7P x =agy XAX [?P < Ax. x A x]
P (?f x) =apn Y x [?f + Ax. x,?7Y « P]

Higher Order: schematic variables can be functions.

20

Australian
National

University

Higher Order Unification

« Unification modulo « (Higher Order Unification) is semi-decidable
« Unification modulo «8n is undecidable
» Higher Order Unification has possibly infinitely many solutions

But:
* Most cases are well-behaved
 Important fragments (like Higher Order Patterns) are decidable

Higher Order Pattern:
e isatermin 8 normal form where
e each occurrence of a schematic variable is of the form ?f t; ... t,
e andthe t; ... t, are n-convertible into n distinct bound variables

21

Australian
National

University

We have learned so far...

« Simply typed lambda calculus: A~

e Typing rules for A7, type variables, type contexts
« f-reduction in A\~ satisfies subject reduction

e (B-reduction in A~ always terminates

e Types and terms in Isabelle

22

Australian
National

University

Exercises

 Construct a type derivation tree for the term Ax y z. z x (y x)

 Find a unifier (substitution) such that
MyzWFyz=XMxyz z(?Gxy)

23

	Simple-Typed 1.2-Calculus
	Now formally again

