

COMP4011/8011 Advanced Topics in Formal Methods and Programming Languages

Software Verification with Isabelle/HOL –

Peter Höfner

July 21, 2024

Section 4

Simple-Typed λ -Calculus

λ calculus is inconsistent

Can find term R such that R $R =_{\beta} not(R R)$

There are more terms that do not make sense: 12, true false, etc.

Solution: rule out ill-formed terms by using types. (Church 1940)

Introducing types

Idea: assign a type to each "sensible" λ term.

Examples:

- for term t has type α write $t :: \alpha$
- if x has type α then λx . x is a function from α to α Write: $(\lambda x. x) :: \alpha \Rightarrow \alpha$
- for s t to be sensible:
 s must be a function
 t must be right type for parameter

If $s :: \alpha \Rightarrow \beta$ and $t :: \alpha$ then $(s t) :: \beta$

Now formally again

Syntax for λ^{\rightarrow}

Terms:
$$t ::= v \mid c \mid (t \ t) \mid (\lambda x. \ t)$$

 $v, x \in V, c \in C, V, C \text{ sets of names}$

$$\alpha \Rightarrow \beta \Rightarrow \gamma = \alpha \Rightarrow (\beta \Rightarrow \gamma)$$

Context F:

Γ: function from variable and constant names to types.

Term t has type τ in context Γ : $\Gamma \vdash t :: \tau$

Examples

$$\Gamma \vdash (\lambda x. x) :: \alpha \Rightarrow \alpha$$

$$[y \leftarrow \text{int}] \vdash y :: \text{int}$$

$$[z \leftarrow \text{bool}] \vdash (\lambda y. y) z :: \text{bool}$$

$$[] \vdash \lambda f x. f x :: (\alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta$$

A term t is **well typed** or **type correct** if there are Γ and τ such that $\Gamma \vdash t :: \tau$

Type Checking Rules

Variables:
$$\overline{\Gamma \vdash x :: \Gamma(x)}$$

Application:
$$\frac{\Gamma \vdash t_1 :: \tau_2 \Rightarrow \tau \quad \Gamma \vdash t_2 :: \tau_2}{\Gamma \vdash (t_1 \ t_2) :: \tau}$$

Abstraction:
$$\frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau}$$

Example Type Derivation

$$\frac{\overline{[x \leftarrow \alpha, y \leftarrow \beta] \vdash x :: \alpha}}{\overline{[x \leftarrow \alpha] \vdash \lambda y. x :: \beta \Rightarrow \alpha}} Abs$$
$$\overline{[] \vdash \lambda x y. x :: \alpha \Rightarrow \beta \Rightarrow \alpha} Abs$$

Remember:

$$\frac{}{\Gamma \vdash x :: \Gamma(x)} \ \textit{Var} \quad \frac{\Gamma \vdash t_1 :: \tau_2 \Rightarrow \tau \quad \Gamma \vdash t_2 :: \tau_2}{\Gamma \vdash (t_1 \ t_2) :: \tau} \ \textit{App} \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau} \ \textit{Abs}$$

More complex Example

$$\Gamma = [f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta, x \leftarrow \alpha]$$

Remember:

$$\frac{}{\Gamma \vdash x :: \Gamma(x)} \ \textit{Var} \quad \frac{\Gamma \vdash t_1 :: \tau_2 \Rightarrow \tau \quad \Gamma \vdash t_2 :: \tau_2}{\Gamma \vdash (t_1 \ t_2) :: \tau} \ \textit{App} \quad \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau} \ \textit{Abs}$$

More general Types

· A term can have more than one type.

Example:
$$[] \vdash \lambda x. \ x :: bool \Rightarrow bool$$

 $[] \vdash \lambda x. \ x :: \alpha \Rightarrow \alpha$

• Some types are more general than others:

```
\tau \leq \sigma if there is a substitution S such that \tau = S(\sigma)
```

Examples:

$$\mathtt{int} \Rightarrow \mathtt{bool} \quad \lesssim \quad \alpha \Rightarrow \beta \quad \lesssim \quad \beta \Rightarrow \alpha \quad \not\lesssim \quad \alpha \Rightarrow \alpha$$

Most general Types

Fact: each type correct term has a most general type

Formally:

$$\Gamma \vdash t :: \tau \implies \exists \sigma. \ \Gamma \vdash t :: \sigma \land (\forall \sigma'. \ \Gamma \vdash t :: \sigma' \Longrightarrow \sigma' \lesssim \sigma)$$

It can be found by executing the typing rules backwards.

- type checking: checking if $\Gamma \vdash t :: \tau$ for given Γ and τ
- type inference: computing Γ and τ such that $\Gamma \vdash t :: \tau$

Type checking and type inference on λ^{\rightarrow} are decidable.

What about β reduction?

Definition of β reduction stays the same.

Fact: Well typed terms stay well typed during β reduction

Formally: $\Gamma \vdash s :: \tau \land s \longrightarrow_{\beta} t \Longrightarrow \Gamma \vdash t :: \tau$

This property is called subject reduction

What about termination?

 β reduction in λ^{\rightarrow} always terminates.

(Alan Turing, 1942)

- $=_{\beta}$ is decidable

 To decide if $s =_{\beta} t$, reduce s and t to normal form (always exists, because \longrightarrow_{β} terminates), and compare result.
- $=_{\alpha\beta\eta}$ is decidable
 This is why Isabelle can automatically reduce each term to $\beta\eta$ normal form.

What does this mean for Expressiveness?

Checkpoint:

- untyped lambda calculus is turing complete (all computable functions can be expressed)
- but it is inconsistent
- λ^{\rightarrow} "fixes" the inconsistency problem by adding types
- Problem: it is not turing complete anymore!

Not all computable functions can be expressed in λ^{\rightarrow} ! (non terminating functions cannot be expressed)

But wait... typed functional languages are turing complete!

What does this mean for Expressiveness? so...

- typed functional languages are turing complete
- but λ^{\rightarrow} is not...
- · How does this work?
- By adding one single constant, the Y operator (fix point operator), to λ^{\rightarrow}
- This introduces the non-termination that the types removed.

$$Y :: (\tau \Rightarrow \tau) \Rightarrow \tau$$

 $Y t \longrightarrow_{\beta} t (Y t)$

Fact: If we add Y to λ^{\rightarrow} as the only constant, then each computable function can be encoded as closed, type correct λ^{\rightarrow} term.

- Y is used for recursion
- lose decidability (what does $Y(\lambda x. x)$ reduce to?)
- (Isabelle/HOL doesn't have Y; recursion is more restricted)

Types and Terms in Isabelle

```
Types: \tau ::= b \mid '\nu \mid '\nu :: C \mid \tau \Rightarrow \tau \mid (\tau, ..., \tau) K

b \in \{bool, int, ...\} base types

\nu \in \{\alpha, \beta, ...\} type variables

K \in \{set, list, ...\} type constructors

C \in \{order, linord, ...\} type classes

Terms: t ::= \nu \mid c \mid ?\nu \mid (t \ t) \mid (\lambda x. \ t)

\nu, x \in V, \quad c \in C, \quad V, C \text{ sets of names}
```

- **type constructors**: construct a new type out of a parameter type. Example: int list
- **type classes**: restrict type variables to a class defined by axioms. Example: $\alpha :: order$
- schematic variables: variables that can be instantiated.

Type Classes

similar to Haskell's type classes, but with semantic properties

```
class order = assumes order_refl: "x \le x" assumes order_trans: "[x \le y; y \le z] \implies x \le z" ...
```

- theorems can be proved in the abstract
 lemma order_less_trans: " \(\lambda \text{ :: order. } \backslash x < z \)"
- can be used for subtyping
 class linorder = order +
 assumes linorder linear: "x < y ∨ y < x"
- can be instantiated instance nat :: "{order, linorder}" by ...

Schematic Variables

$$\frac{X}{X \wedge Y}$$

• X and Y must be **instantiated** to apply the rule

But: lemma "
$$x + 0 = 0 + x$$
"

- x is free
- convention: lemma must be true for all x
- during the proof, x must not be instantiated

Solution:

Isabelle has free (x), bound (x), and schematic (?X) variables.

Only schematic variables can be instantiated.

Free converted into schematic after proof is finished.

Higher Order Unification

Unification:

Find substitution σ on variables for terms s, t such that $\sigma(s) = \sigma(t)$

In Isabelle:

Find substitution σ on schematic variables such that $\sigma(s) =_{\alpha\beta\eta} \sigma(t)$

Examples:

$$\begin{array}{lll} ?X \wedge ?Y &=_{\alpha\beta\eta} & x \wedge x & [?X \leftarrow x, ?Y \leftarrow x] \\ ?P \ x &=_{\alpha\beta\eta} & x \wedge x & [?P \leftarrow \lambda x. \ x \wedge x] \\ P \ (?f \ x) &=_{\alpha\beta\eta} & ?Y \ x & [?f \leftarrow \lambda x. \ x, ?Y \leftarrow P] \end{array}$$

Higher Order: schematic variables can be functions.

Higher Order Unification

- Unification modulo $\alpha\beta$ (Higher Order Unification) is semi-decidable
- Unification modulo $\alpha\beta\eta$ is undecidable
- Higher Order Unification has possibly infinitely many solutions

But:

- Most cases are well-behaved
- Important fragments (like Higher Order Patterns) are decidable

Higher Order Pattern:

- is a term in β normal form where
- each occurrence of a schematic variable is of the form ?f t_1 ... t_n
- and the $t_1 \dots t_n$ are η -convertible into n distinct bound variables

We have learned so far...

- Simply typed lambda calculus: λ[→]
- Typing rules for λ^{\rightarrow} , type variables, type contexts
- β -reduction in λ^{\rightarrow} satisfies subject reduction
- β -reduction in λ^{\rightarrow} always terminates
- Types and terms in Isabelle

Exercises

- Construct a type derivation tree for the term $\lambda x \ y \ z \ z \ x \ (y \ x)$
- Find a unifier (substitution) such that $\lambda x \ y \ z$. ? $F \ y \ z = \lambda x \ y \ z$. $z \ (?G \ x \ y)$