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) calculus is inconsistent

Can find term R such that R R =3 not(R R)

There are more terms that do not make sense:
12, true false, etc.

Solution: rule out ill-formed terms by using types.
(Church 1940)
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Introducing types

Idea: assign a type to each “sensible” A term.
Examples:
o for termt has type a write t: «

e if x has type a then Ax. x is a function from a to «
Write: (Ax. x) ma =«

o for st tobe sensible:
s must be a function
t must be right type for parameter

fs:a=pfandt:athen(st):p
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Now formally again
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Syntax for A\~

Terms: t == v | c | (tt) | (Ax.t)
v, xeV, ceC, V,C setsofnames

Types: 7 = b | v | T =T
b € {bool, int, ...} base types
v e{a, B, ...} type variables

a=f=y = a=(f=1)

Context I':
I': function from variable and constant names to types.

Term t has type 7 in context I': Fr-tor
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Examples

N-(Mx.x)ta=a
[y ¢ int] F y :: int
[z < bool] F (Ay. y) z :: bool

JFXMx.fxui(a=8)=a=p

A term t is well typed or type correct
if there are ' and 7 such that ' -t :: 7
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Type Checking Rules

Variables: m

rFtiom=7 TEhhun
r"(tl tz)ZZT

Application:

Mx«+n]bFtor
FrE(\x.t)ome =71

Abstraction:
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Example Type Derivation

Var
Abs
Abs

[x oy« flFx:a
[x+—alFAy.x: =«
JFXy. xta= =«

Remember:

ﬁVar rM-taomn=r1 ﬂ—tg::TgA Mx<n]FtoT
x  T(x) FrE(ti) T TFOx 8)ime = 7

Abs



Australian
National

University

More complex Example

rEfra=(a=p) var rl—x::aXar
lN-fx:a=4 PP FFX::aXar
TFfxx=f L PP
[fa=a=plFXxfxx:a=0 Z

JFXMx fxx:(a=a=0)=a=p
Nr=[f+a=a=5x+q]
Remember:
Var ThFtion=r1 I_}—tzz:TgA Mx <+~ n]Ftor Abs

MEx:T(x) NE(t )T PP FrE(x.t) =71
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More general Types

¢ A term can have more than one type.

Example: []F Ax. x :: bool = bool
IFXx xa=a

» Some types are more general than others:
7 < o ifthere is a substitution S such that 7 = 5(o)

Examples:
int=bool < a=f < f=a £ a=a«a
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Most general Types

Fact: each type correct term has a most general type

Formally:
lrtor = Jo.TktuoA(Mo'. Tt = 0o <o)

It can be found by executing the typing rules backwards.

 type checking: checking if I' -t :: 7 for given I’ and 7
 type inference: computing ' and 7 such that "¢ :: 7

Type checking and type inference on A\~ are decidable.
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What about 5 reduction?

Definition of [ reduction stays the same.

Fact: Well typed terms stay well typed during 3 reduction
Formally: st As—gt=TFtur

This property is called subject reduction
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What about termination?

[ reduction in A~ always terminates.

(Alan Turing, 1942)

e =; is decidable
To decide if s =g t, reduce s and t to normal form (always exists,
because — 4 terminates), and compare result.

* =,3, is decidable
This is why Isabelle can automatically reduce each term to 57
normal form.
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What does this mean for Expressiveness?

Checkpoint:

« untyped lambda calculus is turing complete
(all computable functions can be expressed)

 but it is inconsistent
« A7 "fixes” the inconsistency problem by adding types
e Problem: it is not turing complete anymore!

Not all computable functions can be expressed in A\~!
(non terminating functions cannot be expressed)

But wait... typed functional languages are turing complete!
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What does this mean for Expressiveness?
So...

« typed functional languages are turing complete

e but A7 is not...

e How does this work?

« By adding one single constant, the Y operator (fix point operator), to
)\—)

This introduces the non-termination that the types removed.

Y:(r=1)=>71
Yt—pt(Y)
Fact: If we add Y to A~ as the only constant, then each computable
function can be encoded as closed, type correct A~ term.
« Y is used for recursion
« lose decidability (what does Y (Ax. x) reduce t0?)
« (Isabelle/HOL doesn’t have Y'; recursion is more restricted)
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Types and Terms in Isabelle

Types: 7 == b |v|vuC|7=7](r,...T)K
b € {bool, int, ...} base types
v €{aq, S, ...} type variables
K € {set, list, ...} type constructors
C € {order, linord, ...} type classes

Terms: t == v | c | v ]| (tt) | (Ax.t)
v, xeV, ce(C, V,C setsofnames
 type constructors: construct a new type out of a parameter type.
Example: int list

« type classes: restrict type variables to a class defined by axioms.
Example: « :: order

» schematic variables: variables that can be instantiated.
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Type Classes

« similar to Haskell’s type classes, but with semantic properties

class order =
assumes order_refl: "x < x”
assumes order_trans: "[x <y;y < z] = x < z"

 theorems can be proved in the abstract
lemma order_less_trans: " A x :a:order. [x < y;y < z] = x < 2"

 can be used for subtyping

class linorder = order +
assumes linorder_linear: "x <y Vy < x"

« can be instantiated
instance nat :: " {order, linorder}" by ...
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Schematic Variables

X Y
XANY

e X and Y must be instantiated to apply the rule

But: lemma “x+0=0+x"

x is free
convention: lemma must be true for all x
during the proof, x must not be instantiated

Solution:
Isabelle has free (x), bound (x), and schematic (?X) variables.

Only schematic variables can be instantiated.

Free converted into schematic after proof is finished.
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Higher Order Unification

Unification:
Find substitution o on variables for terms s, t such that o(s) = o(t)

In Isabelle:
Find substitution o on schematic variables such that o(s) =z, o(t)

Examples:
IXNTY  =apy XAX [?X < x,?7Y < x]
7P x =agy XAX [?P < Ax. x A x]
P (?f x) =apn Y x [?f + Ax. x,?7Y « P]

Higher Order: schematic variables can be functions.

20
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Higher Order Unification

« Unification modulo « (Higher Order Unification) is semi-decidable
« Unification modulo «8n is undecidable
» Higher Order Unification has possibly infinitely many solutions

But:
* Most cases are well-behaved
 Important fragments (like Higher Order Patterns) are decidable

Higher Order Pattern:
e isatermin 8 normal form where
e each occurrence of a schematic variable is of the form ?f t; ... t,
e andthe t; ... t, are n-convertible into n distinct bound variables

21
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We have learned so far...

« Simply typed lambda calculus: A~

e Typing rules for A7, type variables, type contexts
« f-reduction in A\~ satisfies subject reduction

e (B-reduction in A~ always terminates

e Types and terms in Isabelle

22



Australian
National

University

Exercises

 Construct a type derivation tree for the term Ax y z. z x (y x)

 Find a unifier (substitution) such that
MyzWFyz=XMxyz z(?Gxy)

23
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