

COMP4011/8011 Advanced Topics in Formal Methods and Programming Languages

Software Verification with Isabelle/HOL –

Peter Höfner

August 6, 2024

Section 6

Isabelle/HOL First-Order Logic

Last time...

- natural deduction rules for \land , \lor , \longrightarrow , \neg , iff...
- proof by assumption, by intro rule, elim rule
- · safe and unsafe rules
- indent your proofs! (one space per subgoal)
- prefer implicit backtracking (chaining) or rule_tac, instead of back
- prefer and defer
- oops and sorry

Quantifiers

Scope

- · Scope of parameters: whole subgoal
- Scope of \forall , \exists , ...: ends with ; or \Longrightarrow

Example:

Natural deduction for quantifiers

$$\frac{\bigwedge x. \ P \ x}{\forall x. \ P \ x} \text{ all} \qquad \frac{\forall x. \ P \ x}{R} \implies R \text{ allE}$$

$$\frac{P \ ?x}{\exists x. \ P \ x} \text{ exl} \qquad \frac{\exists x. \ P \ x}{R} \text{ exE}$$

- **alll** and **exE** introduce new parameters $(\bigwedge x)$.
- allE and exl introduce new unknowns (?x).

Instantiating Rules

Like **rule**, but ?*x* in *rule* is instantiated by *term* before application.

Similar: erule_tac

x is in rule, not in goal

Two Successful Proofs

1.
$$\forall x. \exists y. x = y$$

apply (rule all!)
1. $\bigwedge x. \exists y. x = y$

best practice

exploration

apply (rule_tac x = "x" in exl)

apply (rule exl)

1. $\bigwedge x$. x = x

1. $\bigwedge x$. x = ?y x

apply (rule refl)

apply (rule refl)

 $?y \mapsto \lambda u.u$

simpler & clearer

shorter & trickier

Two Unsuccessful Proofs

1.
$$\exists y. \ \forall x. \ x = y$$

apply (rule_tac x = ??? in exl) apply (rule exl)

1.
$$\forall x. \ x = ?y$$
apply (rule all!)

1. $\bigwedge x. \ x = ?y$
apply (rule refl)
 $?y \mapsto x \text{ yields } \bigwedge x'. \ x' = x$

Principle:

? $f x_1 ... x_n$ can only be replaced by term t

if params
$$(t) \subseteq x_1, \dots, x_n$$

Safe and Unsafe Rules

Safe allI, exE Unsafe allE, exI

Create parameters first, unknowns later

Demo: Quantifier Proofs

Parameter names

Parameter names are chosen by Isabelle

- 1. $\forall x. \exists y. x = y$ apply (rule all!)
- 1. $\bigwedge x$. $\exists y$. x = yapply (rule_tac x = "x" in exl)

Brittle!

Renaming parameters

- 1. $\forall x. \exists y. x = y$ apply (rule all!)
- 1. $\bigwedge x$. $\exists y$. x = y
 - apply (rename₋tac N)
- ∧ N. ∃y. N = y
 apply (rule_tac x = "N" in exl)

In general:

(rename_tac $x_1 \dots x_n$) renames the rightmost (inner) n parameters to $x_1 \dots x_n$

Forward Proof: frule and drule

```
apply (frule < rule >)
  Rule:
                                  [A_1; ...; A_m] \Longrightarrow A
                                  1. [B_1; ...; B_n] \Longrightarrow C
  Subgoal:
  Substitution:
                           \sigma(B_i) \equiv \sigma(A_1)
  New subgoals: 1. \sigma(\llbracket B_1; ...; B_n \rrbracket \Longrightarrow A_2)
                                  m-1. \sigma(\llbracket B_1; \dots; B_n \rrbracket \Longrightarrow A_m)
                                  m. \sigma(\llbracket B_1; \dots; B_n; A \rrbracket \Longrightarrow C)
```

Like **frule** but also deletes B_i : **apply** (drule < rule >)

Examples for Forward Rules

$$\frac{P \wedge Q}{P}$$
 conjunct1 $\frac{P \wedge Q}{Q}$ conjunct2

$${P \longrightarrow Q \quad P \over Q} \ \ {
m mp}$$

$$\frac{\forall x. Px}{P?x}$$
 spec

Forward Proof: OF

$$r [OF r_1 ... r_n]$$

Prove assumption 1 of theorem r with theorem r_1 , and assumption 2 with theorem r_2 , and ...

Rule
$$r$$
 $\llbracket A_1; ...; A_m \rrbracket \Longrightarrow A$
Rule r_1 $\llbracket B_1; ...; B_n \rrbracket \Longrightarrow B$
Substitution $\sigma(B) \equiv \sigma(A_1)$
 $r \llbracket \mathbf{OF} r_1 \rrbracket \qquad \sigma(\llbracket B_1; ...; B_n; A_2; ...; A_m \rrbracket \Longrightarrow A)$

Example:

 dvd_add : $[?a dvd ?b; ?a dvd ?c] \implies ?a dvd ?b + ?c$

dvd_refl: ?a dvd ?a

 $dvd_add[\mathbf{OF}\ dvd_refl]: [?a\ dvd\ ?c] \Longrightarrow ?a\ dvd\ ?a + ?c$

Forward proofs: THEN

 r_1 [THEN r_2] means r_2 [OF r_1]

Demo: Forward Proofs

Hilbert's Epsilon Operator

(David Hilbert, 1862-1943)

 ε x. Px is a value that satisfies P (if such a value exists)

 ε also known as **description operator**. In Isabelle the ε -operator is written SOME x. P x

$$\frac{P?x}{P(SOME x. Px)}$$
 somel

More Epsilon

arepsilon implies Axiom of Choice:

$$\forall x. \exists y. Q \times y \Longrightarrow \exists f. \forall x. Q \times (f \times x)$$

Existential and universal quantification can be defined with ε .

Isabelle also knows the definite description operator **THE** (aka ι):

$$\frac{}{(\mathsf{THE}\ x.\ x=a)=a}\ \mathsf{the_eq_trivial}$$

Some Automation

More Proof Methods:

apply (intro <intro-rules>) repeatedly applies intro rules

apply (elim <elim-rules>) repeatedly applies elim rules

apply clarify applies all safe rules

that do not split the goal

apply safe applies all safe rules

apply blast an automatic tableaux prover

(works well on predicate logic)

apply fast another automatic search tactic

Exercises

• We said that ε implies the Axiom of Choice:

$$\forall x. \exists y. Q \times y \Longrightarrow \exists f. \forall x. Q \times (f \times)$$

 Prove the axiom of choice as a lemma, using only the introduction and elimination rules for ∀ and ∃, namely allI, exI, allE, exE, and the introduction rule for €, someI, using only the proof methods rule, rule_tac, erule, erule_tac and assumption.

We have learned so far...

- Proof rules for predicate calculus
- · Safe and unsafe rules
- Forward Proof
- The Epsilon Operator
- Some automation