
COMP4011/8011
Advanced Topics in

Formal Methods and Programming Languages

– Software Verification with Isabelle/HOL –

Peter Höfner

August 6, 2024

1

Section 7

Isabelle/HOL
Isar (Part 1)

A Language for Structured Proofs

2

Motivation

Is this true: (A −→ B) = (B ∨ ¬A) ?

3

Motivation

Is this true: (A −→ B) = (B ∨ ¬A) ?

YES!

apply (rule iffI)
apply (cases A)
apply (rule disjI1)
apply (erule impE)
apply assumption

apply assumption
apply (rule disjI2)
apply assumption

apply (rule impI)
apply (erule disjE)
apply assumption

apply (erule notE)
apply assumption
done

or by blast

OK it’s true. But WHY?

4

Motivation

WHY is this true: (A −→ B) = (B ∨ ¬A) ?

Demo

5

Isar

apply scripts What about..

→ hard to read → Elegance?
→ hard to maintain → Explaining deeper insights?

No explicit structure. Isar!

6

A typical Isar proof

proof
assume formula0
have formula1 by simp
...
have formulan by blast
show formulan+1 by ...

qed

proves formula0 =⇒ formulan+1

(analogous to assumes/shows in lemma statements)

7

Isar core syntax

proof = proof [method] statement∗ qed
| by method

method = (simp . . .) | (blast . . .) | (rule . . .) | . . .

statement = fix variables (
∧

)
| assume proposition (=⇒)
| [from name+] (have | show) proposition proof
| next (separates subgoals)

proposition = [name:] formula

8

proof and qed

proof [method] statement∗ qed

lemma ”JA;BK =⇒ A ∧ B”
proof (rule conjI)

assume A: ”A”
from A show ”A” by assumption

next
assume B: ”B”
from B show ”B” by assumption

qed

→ proof (<method>) applies method to the stated goal
→ proof applies a single rule that fits
→ proof - does nothing to the goal

9

How do I know what to Assume and Show?

Look at the proof state!

lemma ”JA;BK =⇒ A ∧ B”
proof (rule conjI)

• proof (rule conjI) changes proof state to
1. JA;BK =⇒ A
2. JA;BK =⇒ B

• so we need 2 shows: show ”A” and show ”B”
• We are allowed to assume A,

because A is in the assumptions of the proof state.

10

The Three Modes of Isar

• [prove]:
goal has been stated, proof needs to follow.

• [state]:
proof block has opened or subgoal has been proved,
new from statement, goal statement or assumptions can follow.

• [chain]:
from statement has been made, goal statement needs to follow.

lemma ”JA;BK =⇒ A ∧ B” [prove]
proof (rule conjI) [state]

assume A: ”A” [state]
from A [chain] show ”A” [prove] by assumption [state]

next [state] . . .

11

Have

Can be used to make intermediate steps.

Example: lemma ”(x :: nat) + 1 = 1 + x”
proof -

have A: ”x + 1 = Suc x” by simp
have B: ”1 + x = Suc x” by simp
show ”x + 1 = 1 + x” by (simp only: A B)

qed

12

Demo

13

Backward and Forward
Backward reasoning: ... have ”A ∧ B” proof

• proof picks an intro rule automatically
• conclusion of rule must unify with A ∧ B

Forward reasoning: ...
assume AB: ”A ∧ B”
from AB have ”...” proof

• now proof picks an elim rule automatically
• triggered by from
• first assumption of rule must unify with AB

General case: from A1 ... An have R proof
• first n assumptions of rule must unify with A1 ... An

• conclusion of rule must unify with R

14

Fix and Obtain

• fix v1 ... vn

Introduces new arbitrary but fixed variables
(∼ parameters,

∧
)

• obtain v1 ... vn where <prop> <proof>

Introduces new variables together with property

15

Fancy Abbreviations

this = the previous fact proved or assumed

then = from this
thus = then show

hence = then have
with A1 ...An = from A1 ...An this

?thesis = the last enclosing goal statement

16

Demo

17

Moreover and Ultimately

have X1: P1 . . . have P1 . . .
have X2: P2 . . . moreover have P2 . . .
...

...
have Xn: Pn . . . moreover have Pn . . .
from X1 ...Xn show . . . ultimately show . . .

wastes lots of brain power on names X1 ...Xn

18

General Case Distinctions

show formula
proof -

have P1 ∨ P2 ∨ P3 <proof>
moreover { assume P1 ... have ?thesis <proof> }
moreover { assume P2 ... have ?thesis <proof> }
moreover { assume P3 ... have ?thesis <proof> }
ultimately show ?thesis by blast

qed
{ . . . } is a proof block similar to proof ... qed

{ assume P1 . . . have P <proof> }
stands for P1 =⇒ P

19

Mixing proof styles

from . . .
have . . .

apply - make incoming facts assumptions
apply (. . .)
...
apply (. . .)
done

20

More on Automation

This can be automated
Automated methods (fast, blast, clarify etc) are not hardwired.
Safe/unsafe intro/elim rules can be declared.

Syntax:
[<kind>!] for safe rules (<kind> one of intro, elim, dest)
[<kind>] for unsafe rules

Application (roughly):
do safe rules first, search/backtrack on unsafe rules only

Example: declare attribute globally declare conjI [intro!] allE [elim]
remove attribute globally declare allE [rule del]
use locally apply (blast intro: someI)
delete locally apply (blast del: conjI)

21

Demo: Automation

22

Exercises

• derive the classical contradiction rule (¬P =⇒ False) =⇒ P in
Isabelle

• define nor and nand in Isabelle
• show nor x x = nand x x

• derive safe intro and elim rules for them
• use these in an automated proof of nor x x = nand x x

23

	Isabelle/HOL Isar (Part 1) A Language for Structured Proofs
	Demo
	Demo
	Demo: Automation

