

COMP4011/8011 Advanced Topics in Formal Methods and Programming Languages

– Software Verification with Isabelle/HOL –

Peter Höfner

August 6, 2024

Section 7

[Isabelle/HOL](#page-1-0) [Isar \(Part 1\)](#page-1-0) [A Language for Structured Proofs](#page-1-0)

Motivation

Is this true: $(A \rightarrow B) = (B \vee \neg A)$?

Motivation

```
Is this true: (A \rightarrow B) = (B \vee \neg A) ?
                  YES!
             apply (rule iffI)
              apply (cases A)
               apply (rule disjI1)
               apply (erule impE)
                apply assumption
               apply assumption
              apply (rule disjI2)
              apply assumption
             apply (rule impI)
             apply (erule disjE)
              apply assumption
             apply (erule notE)
             apply assumption
             done
                                           or by blast
```
OK it's true. But WHY?

Motivation

WHY is this true: $(A \rightarrow B) = (B \vee \neg A)$?

Demo

Isar

apply scripts What about..

- \rightarrow hard to read \rightarrow Elegance?
	-
- \rightarrow hard to maintain \rightarrow Explaining deeper insights?

No explicit structure. Isar!

A typical Isar proof

proof assume formula₀ **have** formula₁ **by** simp . . . **have** formula_n **by** blast **show** formula_{n+1} **by** ... **qed**

proves formula₀ \implies formula_{n+1}

(analogous to **assumes**/**shows** in lemma statements)

Isar core syntax

proposition = [name:] formula

proof and qed

proof [method] statement[∗] **qed**

```
lemma "[A; B] \implies A \wedge B"
proof (rule conjI)
   assume A: "A"
   from A show "A" by assumption
next
   assume B: "B"
   from B show "B" by assumption
qed
```
- \rightarrow **proof** (<method>) applies method to the stated goal
- \rightarrow **proof** applies a single rule that fits
- → **proof -** does nothing to the goal

How do I know what to Assume and Show?

Look at the proof state!

lemma "[$A; B$] $\Longrightarrow A \wedge B$ " **proof** (rule conjI)

- **proof** (rule conjI) changes proof state to
	- 1. $[A; B] \Longrightarrow A$ 2. $[A; B] \Longrightarrow B$
- so we need 2 shows: **show** "A" and **show** "B"
- We are allowed to **assume** A, because A is in the assumptions of the proof state.

The Three Modes of Isar

• **[prove]**:

goal has been stated, proof needs to follow.

• **[state]**:

proof block has opened or subgoal has been proved, new *from* statement, goal statement or assumptions can follow.

• **[chain]**:

from statement has been made, goal statement needs to follow.

```
lemma "[A; B] \Longrightarrow A \land B" [prove]
proof (rule conjI) [state]
   assume A: "A" [state]
   from A [chain] show "A" [prove] by assumption [state]
next [state] . . .
```


Have

Can be used to make intermediate steps.

```
Example: lemma '(x:: nat) + 1 = 1 + x"proof -
              have A: "x + 1 = Suc x" by simp
              have B: "1 + x = Suc x" by simp
              show "x + 1 = 1 + x" by (simp only: A B)
           qed
```


[Demo](#page-12-0)

Backward and Forward

Backward reasoning: ... **have** "A ∧ B" **proof**

- **proof** picks an **intro** rule automatically
- conclusion of rule must unify with $A \wedge B$

Forward reasoning: ...

assume AB: "A ∧ B" **from** AB **have** "..." **proof**

- now **proof** picks an **elim** rule automatically
- triggered by **from**
- first assumption of rule must unify with AB

General case: from $A_1 \nldots A_n$ **have** R **proof**

- first *n* assumptions of rule must unify with $A_1 \ldots A_n$
- conclusion of rule must unify with R

Fix and Obtain

• **fix** $v_1 ... v_n$

Introduces new arbitrary but fixed variables (\sim parameters, \wedge)

• **obtain** $v_1 ... v_n$ where $\langle \text{prop} \rangle \langle \text{proof} \rangle$

Introduces new variables together with property

Fancy Abbreviations

?thesis = the last enclosing goal statement

[Demo](#page-16-0)

Moreover and Ultimately

```
have X_1: P_1 \ldots have P_1 \ldotshave X_2: P_2 \ldots moreover have P_2 \ldots.
.
.
                                 .
                                 .
                                 .
have X_n: P_n ... moreover have P_n ... from X_1 ... X_n show ... ultimately show ...
                             firmately show . . .
```
wastes lots of brain power on names $X_1 \dots X_n$

General Case Distinctions

```
show formula
 proof -
   have P_1 \vee P_2 \vee P_3 <proof>
   moreover { \text{assume } P_1 ... have ?thesis <proof> }
   moreover { \text{assume } P_2 ... have ?thesis <proof> }
   moreover { \text{assume } P_3 ... have ?thesis <proof> }
   ultimately show ?thesis by blast
 qed
{ . . . } is a proof block similar to proof ... qed
{ \{ \text{assume } P_1 \ldots \text{ have } P \leq \text{proof} > \}
```
stands for $P_1 \Longrightarrow P$

Mixing proof styles

```
from . . .
have . . .
  apply - make incoming facts assumptions
  apply (. . . )
  .
.
.
  apply (. . . )
  done
```


More on Automation

This can be automated

Automated methods (fast, blast, clarify etc) are not hardwired. Safe/unsafe intro/elim rules can be declared.

Syntax:

 $\left[\langle \text{kind}\rangle \right]$ for safe rules $\langle \langle \text{kind}\rangle$ one of intro, elim, dest) [<kind>] for unsafe rules

Application (roughly):

do safe rules first, search/backtrack on unsafe rules only

Example: declare attribute globally **declare** conjI [intro!] allE [elim] remove attribute globally **declare** allE [rule del] delete locally **apply** (blast del: conjI)

use locally **apply** (blast intro: someI)

[Demo: Automation](#page-21-0)

Exercises

- derive the classical contradiction rule $(\neg P \implies False) \implies P$ in Isabelle
- define **nor** and **nand** in Isabelle
- show nor $x x =$ nand $x x$
- derive safe intro and elim rules for them
- use these in an automated proof of nor $x \times x =$ nand $x \times x$