

COMP4011/8011 Advanced Topics in Formal Methods and Programming Languages

Software Verification with Isabelle/HOL –

Peter Höfner

August 12, 2024

Section 8

Higher Order Logic

What is Higher Order Logic?

- Propositional Logic:
 - no quantifiers
 - all variables have type bool
- First Order Logic:
 - quantification over values, but not over functions and predicates.
 - terms and formulas syntactically distinct
- Higher Order Logic:
 - quantification over everything, including predicates
 - consistency by types
 - formula = term of type bool
 - ▶ definition built on λ^{\rightarrow} with certain default types and constants

Defining Higher Order Logic

Default types:

bool $_{-} \Rightarrow _{-}$ ind

- bool sometimes called o
- ⇒ sometimes called fun

Default Constants:

```
\begin{array}{ccc} \longrightarrow & :: & bool \Rightarrow bool \Rightarrow bool \\ = & :: & \alpha \Rightarrow \alpha \Rightarrow bool \\ \epsilon & :: & (\alpha \Rightarrow bool) \Rightarrow \alpha \end{array}
```


Higher Order Abstract Syntax

Problem: Define syntax for binders like \forall , \exists , ε

One approach: $\forall :: var \Rightarrow term \Rightarrow bool$

Drawback: need to think about substitution, α conversion again.

But: Already have binder, substitution, α conversion in meta logic

So: Use λ to encode all other binders.

Higher Order Abstract Syntax

Example:

$$ALL :: (\alpha \Rightarrow bool) \Rightarrow bool$$

HOAS	usual syntax
ALL $(\lambda x. x = 2)$ ALL P	$\forall x. \ x = 2$ $\forall x. \ P \ x$

Isabelle can translate usual binder syntax into HOAS.

Side Track: Syntax Declarations

· mixfix:

```
consts drvbl :: ct \Rightarrow ct \Rightarrow fm \Rightarrow bool ("_-, _ \vdash _ ") Legal syntax now: \Gamma, \Gamma \vdash \Gamma
```

• priorities:

```
pattern can be annotated with priorities to indicate binding strength Example: ct \Rightarrow ct \Rightarrow fm \Rightarrow bool ("_, _ \vdash _" [30, 0, 20] 60)
```

- infixl/infixr: short form for left/right associative binary operators
 Example: or :: bool ⇒ bool ⇒ bool (infixr " ∨ " 30)
- binders: declaration must be of the form
 c :: (τ₁ ⇒ τ₂) ⇒ τ₃ (binder "B")
 B x. P x translated into c P (and vice versa)
 Example ALL :: (α ⇒ bool) ⇒ bool (binder "∀" 10)

More in Isabelle/Isar Reference Manual (8.2)

Back to HOL

```
Base: bool, \Rightarrow, ind =, \longrightarrow, \varepsilon
```

And the rest is definitions:

```
True \equiv (\lambda x :: bool. x) = (\lambda x. x)

All P \equiv P = (\lambda x. \text{ True})

\exists x P = (\lambda x. \text{ True})

\exists x
```


The Axioms of HOL

$$\frac{s = t \quad P \ s}{P \ t} \text{ subst} \qquad \frac{\bigwedge x. \ f \ x = g \ x}{(\lambda x. \ f \ x) = (\lambda x. \ g \ x)} \text{ ext}$$

$$\frac{P \Longrightarrow Q}{P \longrightarrow Q} \text{ impl} \qquad \frac{P \longrightarrow Q \quad P}{Q} \text{ mp}$$

$$\overline{(P \longrightarrow Q) \longrightarrow (Q \longrightarrow P) \longrightarrow (P = Q)} \text{ iff}$$

$$\overline{P = \text{True} \lor P = \text{False}} \text{ True_or_False}$$

$$\frac{P \ ?x}{P \ (\text{SOME} \ x. \ P \ x)} \text{ somel}$$

$$\overline{\exists f :: ind \implies ind. \text{ inj} \ f \land \neg \text{surj} \ f} \text{ infty}$$

That's it.

- 3 basic constants
- 3 basic types
- 9 axioms

With this you can define and derive all the rest.

Isabelle knows 2 more axioms:

$$\frac{x=y}{x\equiv y}$$
 eq_reflection $\overline{(THE x. x=a)=a}$ the_eq_trivial

Demo:

The Definitions in Isabelle

Deriving Proof Rules

In the following, we will

- look at the definitions in more detail
- derive the traditional proof rules from the axioms in Isabelle

Convenient for deriving rules: named assumptions in lemmas

```
lemma [name:] "< prop >_1" assumes [name_1:] "< prop >_2" assumes [name_2:] "< prop >_2" \vdots shows "< prop >" < proof >
```

proves: $[< prop >_1; < prop >_2; ...] \implies < prop >$

True

consts True :: bool

True $\equiv (\lambda x :: bool. x) = (\lambda x. x)$

Intuition:

right hand side is always true

Proof Rules:

 $\frac{}{\mathsf{True}}$ Truel

Proof:

 $\frac{\overline{(\lambda x :: bool. \ x) = (\lambda x. \ x)}}{\mathsf{True}} \ \ \underset{\mathsf{unfold True_def}}{\mathsf{def}}$

Demo

Universal Quantifier

consts ALL ::
$$(\alpha \Rightarrow bool) \Rightarrow bool$$
 ALL $P \equiv P = (\lambda x. \text{ True})$

Intuition:

- ALL P is Higher Order Abstract Syntax for $\forall x. Px.$
- *P* is a function that takes an *x* and yields a truth value.
- ALL P should be true iff P yields true for all x, i.e. if it is equivalent to the function λx . True.

Proof Rules:

$$\frac{\bigwedge x. \ P \ x}{\forall x. \ P \ x} \ \text{all} \qquad \frac{\forall x. \ P \ x}{R} \implies R \ \text{allE}$$

False

consts False :: bool

False $\equiv \forall P.P$

Intuition:

Everything can be derived from False.

Proof Rules:

 $\frac{\mathsf{False}}{\mathsf{P}} \; \mathsf{FalseE} \qquad \frac{}{\mathsf{True} \neq \mathsf{False}}$

Negation

consts Not ::
$$bool \Rightarrow bool (\neg _)$$

 $\neg P \equiv P \longrightarrow False$

Intuition:

Try P = True and P = False and the traditional truth table for \longrightarrow .

Proof Rules:

$$\frac{A \Longrightarrow False}{\neg A}$$
 not $\frac{\neg A \quad A}{P}$ not E

Existential Quantifier

consts EX ::
$$(\alpha \Rightarrow bool) \Rightarrow bool$$
 EX $P \equiv \forall Q. (\forall x. P x \longrightarrow Q) \longrightarrow Q$

Intuition:

- EX P is HOAS for $\exists x. P x$. (like \forall)
- Right hand side is characterization of \exists with \forall and \longrightarrow
- Note that inner \forall binds wide: $(\forall x. P x \longrightarrow Q)$
- Remember lemma from last time: $(\forall x. P x \longrightarrow Q) = ((\exists x. P x) \longrightarrow Q)$

Proof Rules:

$$\frac{P?x}{\exists x. Px} \text{ exl } \frac{\exists x. Px \quad \bigwedge x. Px \Longrightarrow R}{R} \text{ exE}$$

Conjunction

consts And ::
$$bool \Rightarrow bool \Rightarrow bool (_ \land _)$$

 $P \land Q \equiv \forall R. (P \longrightarrow Q \longrightarrow R) \longrightarrow R$

Intuition:

- Mirrors proof rules for ∧
- Try truth table for P, Q, and R

Proof Rules:

$$\frac{A \quad B}{A \land B}$$
 conjl $\frac{A \land B \quad [\![A;B]\!] \Longrightarrow C}{C}$ conjE

Disjunction

consts Or ::
$$bool \Rightarrow bool \Rightarrow bool (_ \lor _)$$

 $P \lor Q \equiv \forall R. (P \longrightarrow R) \longrightarrow (Q \longrightarrow R) \longrightarrow R$

Intuition:

- Mirrors proof rules for ∨ (case distinction)
- Try truth table for P, Q, and R

Proof Rules:

$$\frac{A}{A \lor B} \frac{B}{A \lor B}$$
 disjl1/2 $\frac{A \lor B}{C} \stackrel{A \lor B}{\longrightarrow} \frac{C}{C} \stackrel{B \Longrightarrow C}{\longrightarrow} C$ disjE

If-Then-Else

```
consts If :: bool \Rightarrow \alpha \Rightarrow \alpha \Rightarrow \alpha (if_ then _ else _)
If P \times y \equiv \mathsf{SOME} \ z. (P = \mathsf{True} \longrightarrow z = x) \land (P = \mathsf{False} \longrightarrow z = y)
```

Intuition:

- for P = True, right hand side collapses to SOME z. z = x
- for P = False, right hand side collapses to SOME z. z = y

Proof Rules:

if True then s else t = s if True if False then s else t = t if False

That was HOL

We have learned ...

- Defining HOL
- Higher Order Abstract Syntax
- · Deriving proof rules