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Higher Order Logic



Australian
National

University

What is Higher Order Logic?

» Propositional Logic:

> no quantifiers

» all variables have type bool
« First Order Logic:

» quantification over values, but not over functions and predicates,
» terms and formulas syntactically distinct

e Higher Order Logic:

quantification over everything, including predicates

» consistency by types

» formula = term of type bool

» definition built on A™ with certain default types and constants

v
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Defining Higher Order Logic

Default types:
bool = ind

» bool sometimes called o
* = sometimes called fun

Default Constants:
— 2 bool = bool = bool
= n o= « = bool
€ (= bool) = «
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Higher Order Abstract Syntax

Problem: Define syntax for binders like v, 3, ¢

One approach: V :: var = term = bool
Drawback: need to think about substitution, o conversion again.

But: Already have binder, substitution, « conversion in meta logic

A

So: Use )\ to encode all other binders.
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Higher Order Abstract Syntax

Example:
ALL :: (a = bool) = bool

HOAS usual syntax
ALL (Ax. x =2) Vx. x =2
ALL P Vx. P x

Isabelle can translate usual binder syntax into HOAS.
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Side Track: Syntax Declarations

e mixfix:
consts drvbl:: ¢t = ct = fm = bool ("_ - F ")
Legal syntax now: I,MF F
e priorities:
pattern can be annotated with priorities to indicate binding strength
Example: drvbl:: ¢t = ct = fm = bool ("_,- + " [30,0,20] 60)

« infixl/infixr: short form for left/right associative binary operators
Example: or :: bool = bool = bool (infixr" V" 30)

» binders: declaration must be of the form
c:(mn=m)= 73 (binder"B" < p>)
B x. P x translated into ¢ P (and vice versa)
Example ALL :: (o = bool) = bool (binder"V" 10)

More in Isabelle/Isar Reference Manual (8.2)
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Back to HOL

Base: bool, =, ind =, —, €

And the rest is definitions:

True =  (Ax: bool. x) = (Ax. x)

All P = P =(M\x. True)

Ex P = VQ.(.Px— Q) — Q

False = VP.P

-P = P — False

PAQ@ = VR(P—Q—R)—R

PVvQ = VR (P—R)—(Q—R)—R

IfPxy = SOMEz (P=True— z=x)A(P=False — z=y)
inj = Vxy. fx=fy—x=y

surj f Vy.Ix.y =f x
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The Axioms of HOL

s=t Ps Ax fx=gx
= refl P subst O, Fx) = (Ox. g %) ext
P— Q . P—Q P
X T m
P_>Q|mpl 0 p

P—=0Q —(@Q =P —=p@P=0q)

P = True V P = False True_or_False

P 7x
P (SOME x. P x)

somel

5 ind = ind.inj FA s £ MY
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That’s it.

» 3 basic constants
« 3 basic types
* 9 axioms

With this you can define and derive all the rest.

Isabelle knows 2 more axioms:

X y . h . R L. |
X=y eq_reflection (THEx. x—a2) =2 the_eq_trivia
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Demo:
The Definitions in Isabelle
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Deriving Proof Rules

In the following, we will
¢ look at the definitions in more detail
« derive the traditional proof rules from the axioms in Isabelle

Convenient for deriving rules: named assumptions in lemmas

lemma [name :]
assumes [name; :] “< prop >1
assumes [name; :] “< prop >3

shows “< prop >" < proof >

proves: [ < prop >1; < prop >3; ...] = < prop >
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True
consts True :: bool
True = (Ax :: bool. x) = (Ax. x)

Intuition:
right hand side is always true

Proof Rules:

—— Truel
True

Proof:

refl

(Ax =2 bool. x) = (Ax. x)
unfold True_def

True
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Universal Quantifier

consts ALL :: (a = bool) = bool
ALL P = P = (\x. True)

Intuition:
e ALL P is Higher Order Abstract Syntax for Vx. P x.
e Pis a function that takes an x and yields a truth value.

e ALL P should be true iff P yields true for all x, i.e.
if it is equivalent to the function Ax. True.

Proof Rules:

Ax. Px i ¥xPx PWX=R
Vx. Px 2 R

allE

Proof: Isabelle Demo
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False

consts False :: bool
False = VP.P

Intuition:
Everything can be derived from False.

Proof Rules:
False

P

FalseE

Proof: Isabelle Demo

True # False
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Negation

consts Not :: bool = bool (- )
-P =P — False

Intuition:
Try P = True and P = False and the traditional truth table for —.

Proof Rules:
A =— False -A A

“A notl P

notE

Proof: Isabelle Demo
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Existential Quantifier

consts EX :: (a« = bool) = bool
EXP = VQ. (Vx. Px — Q) — @

Intuition:
e EX P is HOAS for 3x. P x. (like V)
 Right hand side is characterization of 3 with V and —
¢ Note that inner V binds wide: (Vx. P x — Q)

« Remember lemma from last time:
(Vx. Px — Q) =((3x. Px) — Q)

Proof Rules:
P 7x Ix.Px Ax.Px=R

Ix. Px & R
Proof: Isabelle Demo

exE
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Conjunction

consts And :: bool = bool = bool (- A _)
PANR=VR.(P—Q —R)—R

Intuition:
 Mirrors proof rules for A
 Try truth table for P, Q, and R

Proof Rules:

A B , ANB [AB]=C
Ang ool c

conjE

Proof: Isabelle Demo
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Disjunction

consts Or :: bool = bool = bool (- V )
PVvQ=VR.(P—R)— (Q—R)—R

Intuition:
« Mirrors proof rules for v (case distinction)
 Try truth table for P, @, and R

Proof Rules:
A B . AVB A=—C B=—C ..
AVEB AVEB disjl1/2 C disjE

Proof: Isabelle Demo

20
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If-Then-Else

consts If :: bool = o = a = « (if_ then _else )
If Pxy = SOME z. (P =True — z = x) A (P = False — z =)

Intuition:
« for P = True, right hand side collapses to SOME z. z = x
« for P = False, right hand side collapses to SOME z. z = y

Proof Rules:

ifTrue ; ifFalse

if Truethenselset=s if False then s else t =

Proof: Isabelle Demo

21



Australian
National

University

That was HOL

22
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We have learned ...

« Defining HOL
« Higher Order Abstract Syntax
e Deriving proof rules

23
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