

COMP4011/8011 Advanced Topics in Formal Methods and Programming Languages

- Software Verification with Isabelle/HOL -

Peter Höfner

August 18, 2024

Section 9

Term Rewriting

The Problem

Given a set of equations

$$l_{1} = r_{1}$$

$$l_{2} = r_{2}$$

$$\vdots$$

$$l_{n} = r_{n}$$
does equation $l = r$ hold?

Applications in:

- Mathematics (algebra, group theory, etc)
- Functional Programming (model of execution)
- Theorem Proving (dealing with equations, simplifying statements)

Term Rewriting: The Idea

use equations as reduction rules

Arrow Cheat Sheet

$\stackrel{0}{\xrightarrow{n+1}}$	=	$\{(x, y) x = y\}$ $\xrightarrow{n} \circ \longrightarrow$
$\xrightarrow{+}$	=	$\bigcup_{i>0} \xrightarrow{i}$
$\xrightarrow{*}$	=	$\xrightarrow{+} \cup \xrightarrow{0}$
$\xrightarrow{=}$	=	$\longrightarrow \cup \stackrel{0}{\longrightarrow}$
$\xrightarrow{-1}$	=	$\{(y, x) x \longrightarrow y\}$
\leftarrow	=	$\xrightarrow{-1}$
\longleftrightarrow	=	$\longleftarrow \cup \longrightarrow$
$\stackrel{+}{\longleftrightarrow}$	=	$\bigcup_{i>0} \stackrel{i}{\longleftrightarrow}$

identity n+1 fold composition transitive closure reflexive transitive closure reflexive closure inverse

inverse symmetric closure

transitive symmetric closure reflexive transitive symmetric closure

How to Decide $I \stackrel{*}{\longleftrightarrow} r$

Same idea as for β **:** look for *n* such that $I \xrightarrow{*} n$ and $r \xrightarrow{*} n$

Does this always work? If $I \xrightarrow{*} n$ and $r \xrightarrow{*} n$ then $I \xleftarrow{*} r$. Ok. If $I \xleftarrow{*} r$, will there always be a suitable *n*? **No**!

Example: Rules: $f x \longrightarrow a$, $g x \longrightarrow b$, $f (g x) \longrightarrow b$ $f x \xleftarrow{*} g x$ because $f x \longrightarrow a \xleftarrow{} f (g x) \longrightarrow b \xleftarrow{} g x$ **But:** $f x \longrightarrow a$ and $g x \longrightarrow b$ and a, b in normal form

Works only for systems with **Church-Rosser** property: $I \xleftarrow{*} r \Longrightarrow \exists n. I \xrightarrow{*} n \land r \xrightarrow{*} n$

Fact: \longrightarrow is Church-Rosser iff it is confluent.

Confluence

Problem:

is a given set of reduction rules confluent?

undecidable

Local Confluence

Fact: local confluence and termination \implies confluence

Termination

 \rightarrow is terminating if there are no infinite reduction chains \rightarrow is normalizing if each element has a normal form \rightarrow is convergent if it is terminating and confluent

Example:

 \longrightarrow_{β} in λ is not terminating, but confluent \longrightarrow_{β} in λ^{\rightarrow} is terminating and confluent, i.e. convergent

Problem: is a given set of reduction rules terminating?

undecidable

When is \longrightarrow Terminating?

Basic idea: when each rule application makes terms simpler in some way.

More formally: \longrightarrow is terminating when there is a well founded order < on terms for which s < t whenever $t \longrightarrow s$ (well founded = no infinite decreasing chains $a_1 > a_2 > ...$)

Example:
$$f(g x) \longrightarrow g x, g(f x) \longrightarrow f x$$

This system always terminates. Reduction order:

 $s <_r t$ iff size(s) < size(t) with

size(s) = number of function symbols in s

- 1. Both rules always decrease size by 1 when applied to any term t
- 2. $<_r$ is well founded, because < is well founded on N

Termination in Practice

In practice: often easier to consider just the rewrite rules by themselves, rather than their application to an arbitrary term *t*.

Show for each rule $l_i = r_i$, that $r_i < l_i$.

Example: g x < f (g x) and f x < g (f x)

Requires

u to become smaller whenever any subterm of *u* is made smaller. **Formally:**

Requires < to be **monotonic** with respect to the structure of terms:

 $s < t \longrightarrow u[s] < u[t].$

True for most orders that don't treat certain parts of terms as special cases.

Example Termination Proof

Problem: Rewrite formulae containing \neg , \land , \lor and \longrightarrow , so that they don't contain any implications and \neg is applied only to variables and constants.

Rewrite Rules:

Remove implications:

imp: $(A \longrightarrow B) = (\neg A \lor B)$

• Push ¬s down past other operators:

notnot: $(\neg \neg P) = P$ **notand:** $(\neg (A \land B)) = (\neg A \lor \neg B)$ **notor:** $(\neg (A \lor B)) = (\neg A \land \neg B)$

We show that the rewrite system defined by these rules is terminating.

Order on Terms

Each time one of our rules is applied, either:

- · an implication is removed, or
- something that is not a \neg is hoisted upwards in the term.

This suggests a 2-part order, $<_r$: $s <_r t$ iff:

- num_imps *s* < num_imps *t*, or
- num_imps s = num_imps $t \land$ osize s < osize t.

Let:

- $s <_i t \equiv \text{num_imps } s < \text{num_imps } t$ and
- $s <_n t \equiv \text{osize } s < \text{osize } t$

Then $<_i$ and $<_n$ are both well-founded orders (since both return nats). $<_r$ is the lexicographic order over $<_i$ and $<_n$. $<_r$ is well-founded since $<_i$ and $<_n$ are both well-founded.

Order Decreasing

imp clearly decreases num_imps.

 $\sf osize$ adds up all non- \neg operators and variables/constants, weights each one according to its depth within the term.

osize' c $x = 2^x$ osize' $(\neg P)$ x = osize' P(x+1)osize' $(P \land Q)$ $x = 2^x + (\text{osize'} P(x+1)) + (\text{osize'} Q(x+1))$ osize' $(P \lor Q)$ $x = 2^x + (\text{osize'} P(x+1)) + (\text{osize'} Q(x+1))$ osize' $(P \longrightarrow Q) x = 2^x + (\text{osize'} P(x+1)) + (\text{osize'} Q(x+1))$ osize P = osize' P 0

The other rules decrease the depth of the things osize counts, so decrease osize.

Term Rewriting in Isabelle

Term rewriting engine in Isabelle is called Simplifier

apply simp

- uses simplification rules
- (almost) blindly from left to right
- until no rule is applicable.
- termination: not guaranteed (may loop)
- confluence: not guaranteed (result may depend on which rule is used first)

Control

- · Equations turned into simplification rules with [simp] attribute
- Adding/deleting equations locally: **apply** (simp add: <rules>) and **apply** (simp del: <rules>)
- Using only the specified set of equations:
 apply (simp only: <rules>)

Demo

 Show, via a pen-and-paper proof, that the osize function is monotonic with respect to the structure of terms from that example.

Applying a Rewrite Rule

- *I* → *r* applicable to term *t*[*s*] if there is substitution *σ* such that *σ I* = *s*
- Result: *t*[*σ r*]
- Equationally: $t[s] = t[\sigma r]$

Example:

Rule: $0 + n \rightarrow n$ **Term:** a + (0 + (b + c)) **Substitution:** $\sigma = \{n \mapsto b + c\}$ **Result:** a + (b + c)

Conditional Term Rewriting

Rewrite rules can be conditional:

$$\llbracket P_1 \dots P_n \rrbracket \Longrightarrow l = r$$

is applicable to term t[s] with σ if

- σ I = s and
- $\sigma P_1, \ldots, \sigma P_n$ are provable by rewriting.

Rewriting with Assumptions

Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:

lemma "
$$f x = g x \land g x = f x \Longrightarrow f x = 2$$
"

simpuse and simplify assumptions(simp (no_asm))ignore assumptions(simp (no_asm_use))simplify, but do not use assumptions(simp (no_asm_simp))use, but do not simplify assumptions

Preprocessing

Preprocessing (recursive) for maximal simplification power:

Example: $(p \longrightarrow q \land \neg r) \land s$

$$p \Longrightarrow q = True$$
 $p \Longrightarrow r = False$ $s = True$

Demo

Case splitting with simp

$$P (\text{if } A \text{ then } s \text{ else } t) = (A \longrightarrow P s) \land (\neg A \longrightarrow P t)$$

Automatic

$$P (\text{case } e \text{ of } 0 \Rightarrow a | \text{Suc } n \Rightarrow b) = (e = 0 \longrightarrow P a) \land (\forall n. e = \text{Suc } n \longrightarrow P b)$$

Manually: **apply** (simp split: nat.split)

Similar for any data type t: t.split

Congruence Rules

congruence rules are about using context

Example: in $P \longrightarrow Q$ we could use P to simplify terms in QFor \implies hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example:
$$\llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \longrightarrow Q) = (P' \longrightarrow Q')$$

Read: to simplify $P \longrightarrow Q$

- first simplify P to P'
- then simplify Q to Q' using P' as assumption
- the result is $P' \longrightarrow Q'$

More Congruence

Sometimes useful, but not used automatically (slowdown): **conj**_**cong**: $\llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \land Q) = (P' \land Q')$

Context for if-then-else:

if_cong: $[\![b = c; c \Longrightarrow x = u; \neg c \Longrightarrow y = v]\!] \Longrightarrow$ (if b then x else y) = (if c then u else v)

Prevent rewriting inside then-else (default):

if_weak_cong: $b = c \Longrightarrow$ (if b then x else y) = (if c then x else y)

- declare own congruence rules with [cong] attribute
- delete with [cong del]
- use locally with e.g. apply (simp cong: <rule>)

Ordered rewriting

Problem: $x + y \longrightarrow y + x$ does not terminate

Solution: use permutative rules only if term becomes lexicographically smaller.

Example: $b + a \rightarrow a + b$ but not $a + b \rightarrow b + a$.

For types nat, int etc:

- lemmas add_ac sort any sum (+)
- lemmas mult_ac sort any product (*)

Example: **apply** (simp add: add_ac) yields $(b+c) + a \rightsquigarrow \cdots \rightsquigarrow a + (b+c)$

AC Rules

Example for associative-commutative rules:

Associative: $(x \odot y) \odot z = x \odot (y \odot z)$ Commutative: $x \odot y = y \odot x$

These 2 rules alone get stuck too early (not confluent).

Example: $(z \odot x) \odot (y \odot v)$ We want: $(z \odot x) \odot (y \odot v) = v \odot (x \odot (y \odot z))$ We get: $(z \odot x) \odot (y \odot v) = v \odot (y \odot (x \odot z))$

We need: AC rule $x \odot (y \odot z) = y \odot (x \odot z)$

If these 3 rules are present for an AC operator Isabelle will order terms correctly

Demo

Back to Confluence

Remember: confluence in general is undecidable. But: confluence for terminating systems is decidable! Problem: overlapping lhs of rules.

Definition:

Let $l_1 \longrightarrow r_1$ and $l_2 \longrightarrow r_2$ be two rules with disjoint variables. They form a **critical pair** if a non-variable subterm of l_1 unifies with l_2 .

Example:

Rules: (1) $f \times \longrightarrow a$ (2) $g \to b$ (3) $f (g z) \to b$ Critical pairs:

(1)+(3) {
$$x \mapsto g z$$
} $a \stackrel{(1)}{\leftarrow} f(g z) \stackrel{(3)}{\rightarrow} b$
(3)+(2) { $z \mapsto y$ } $b \stackrel{(3)}{\leftarrow} f(g y) \stackrel{(2)}{\rightarrow} f b$

Completion

(1) $f x \longrightarrow a$ (2) $g y \longrightarrow b$ (3) $f (g z) \longrightarrow b$ is not confluent

But it can be made confluent by adding rules! How: join all critical pairs

Example:

$$(1)+(3) \qquad \{x \mapsto g \ z\} \qquad a \stackrel{(1)}{\leftarrow} f(g \ z) \stackrel{(3)}{\longrightarrow} b$$

shows that a = b (because $a \stackrel{*}{\longleftrightarrow} b$), so we add $a \longrightarrow b$ as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

Orthogonal Rewriting Systems

Definitions: A rule $l \rightarrow r$ is left-linear if no variable occurs twice in *l*. A rewrite system is left-linear if all rules are.

A system is **orthogonal** if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages

We have learned ...

- · Conditional term rewriting
- Congruence rules
- AC rules
- More on confluence