

COMP4011/8011 Advanced Topics in Formal Methods and Programming Languages

– Software Verification with Isabelle/HOL –

Peter Höfner

August 18, 2024

Section 9

[Term Rewriting](#page-1-0)

The Problem

Given a set of equations

 $l_1 = r_1$ $l_2 = r_2$. . . $l_n = r_n$ does equation $l = r$ hold?

Applications in:

- Mathematics (algebra, group theory, etc)
- Functional Programming (model of execution)
- Theorem Proving (dealing with equations, simplifying statements)

Term Rewriting: The Idea

use equations as reduction rules

$$
h_1 \longrightarrow r_1
$$

\n
$$
h_2 \longrightarrow r_2
$$

\n
$$
\vdots
$$

\n
$$
h_n \longrightarrow r_n
$$

\ndecide $l = r$ by deciding $l \stackrel{*}{\longleftrightarrow} r$

Arrow Cheat Sheet

- $\stackrel{0}{\longrightarrow}$ = { $(x, y)|x = y$ } identity $\stackrel{n+1}{\longrightarrow}$ = $\stackrel{n}{\longrightarrow}$ 0 \longrightarrow \rightarrow = $\bigcup_{i>0}$ i \longrightarrow = \longrightarrow ∪ \longrightarrow \Rightarrow = $\rightarrow \square$ $\stackrel{-1}{\longrightarrow}$ = $\{(y,x)|x \longrightarrow y\}$ inverse \leftarrow = $\stackrel{-1}{\longrightarrow}$ inverse \longleftrightarrow = \leftarrow \cup \longrightarrow symmetric closure \longleftrightarrow = $\bigcup_{i>0}$ i \longleftrightarrow = \longleftrightarrow \cup \longleftrightarrow
	- n+1 fold composition transitive closure reflexive transitive closure reflexive closure

transitive symmetric closure reflexive transitive symmetric closure

How to Decide $l \stackrel{*}{\longleftrightarrow} r$

Same idea as for β : look for n such that $l \stackrel{*}{\longrightarrow} n$ and $r \stackrel{*}{\longrightarrow} n$

```
Does this always work?
If l \stackrel{*}{\longrightarrow} n and r \stackrel{*}{\longrightarrow} n then l \stackrel{*}{\longleftrightarrow} r. Ok.
If l \stackrel{*}{\longleftrightarrow} r, will there always be a suitable n? No!
```
Example:

Rules:
$$
f x \rightarrow a
$$
, $g x \rightarrow b$, $f (g x) \rightarrow b$
\n $f x \stackrel{*}{\longleftrightarrow} g x$ because $f x \rightarrow a \stackrel{*}{\longleftrightarrow} f (g x) \rightarrow b \stackrel{*}{\longleftarrow} g x$
\nBut: $f x \rightarrow a$ and $g x \rightarrow b$ and a, b in normal form

Works only for systems with **Church-Rosser** property: $l \stackrel{*}{\longleftrightarrow} r \Longrightarrow \exists n. l \stackrel{*}{\longrightarrow} n \wedge r \stackrel{*}{\longrightarrow} n$

Fact: → is Church-Rosser iff it is confluent.

Confluence

Problem:

is a given set of reduction rules confluent?

undecidable

Local Confluence

Fact: local confluence and termination ⇒ confluence

Termination

 \rightarrow is **terminating** if there are no infinite reduction chains −→ is **normalizing** if each element has a normal form → is convergent if it is terminating and confluent

Example:

 \longrightarrow _β in λ is not terminating, but confluent \rightarrow _β in λ [→] is terminating and confluent, i.e. convergent

Problem: is a given set of reduction rules terminating?

undecidable

When is \longrightarrow Terminating?

Basic idea: when each rule application makes terms simpler in some way.

More formally: \longrightarrow is terminating when there is a well founded order $<$ on terms for which $s < t$ whenever $t \rightarrow s$ (well founded = no infinite decreasing chains $a_1 > a_2 > ...$)

Example:
$$
f(g x) \rightarrow g x, g(f x) \rightarrow f x
$$

This system always terminates. Reduction order:

 $s <_{r} t$ iff size(s) $<$ size(t) with

 $size(s)$ = number of function symbols in s

- 1. Both rules always decrease $size$ by 1 when applied to any term t
- 2. \lt_r is well founded, because \lt is well founded on N

Termination in Practice

In practice: often easier to consider just the rewrite rules by themselves, rather than their application to an arbitrary term t . **Show** for each rule $l_i = r_i$, that $r_i < l_i$.

Example: $g x < f (g x)$ and $f x < g (f x)$

Requires

 u to become smaller whenever any subterm of u is made smaller. **Formally:**

Requires < to be **monotonic** with respect to the structure of terms:

 $s < t \longrightarrow u[s] < u[t].$

True for most orders that don't treat certain parts of terms as special cases.

Example Termination Proof

Problem: Rewrite formulae containing \neg , \wedge , \vee and \longrightarrow , so that they don't contain any implications and \neg is applied only to variables and constants.

Rewrite Rules:

• Remove implications:

imp: $(A \rightarrow B) = (\neg A \lor B)$

• Push $\neg s$ down past other operators:

notnot: $(\neg\neg P) = P$ **notand:** $(\neg(A \land B)) = (\neg A \lor \neg B)$ **notor:** $(\neg(A \lor B)) = (\neg A \land \neg B)$

We show that the rewrite system defined by these rules is terminating.

Order on Terms

Each time one of our rules is applied, either:

- an implication is removed, or
- something that is not $a i s$ hoisted upwards in the term.

This suggests a 2-part order, $<_{r}: s <_{r} t$ iff:

- num_imps $s <$ num_imps t, or
- num_imps $s =$ num_imps $t \wedge$ osize $s <$ osize t .

Let:

- $s \leq i$ $t \equiv$ num imps $s \leq$ num imps t and
- $s <_n t \equiv$ osize $s <$ osize t

Then \lt_i and \lt_n are both well-founded orders (since both return nats). $<$, is the lexicographic order over $<_i$ and $<_n. <$, is well-founded since $<_i$ and \lt are both well-founded.

Order Decreasing

imp clearly decreases num_imps.

osize adds up all non-¬ operators and variables/constants, weights each one according to its depth within the term.

osize' c $x = 2^x$ $\mathsf{cosize}'\;(\neg P) \qquad \quad x = \mathsf{osize}'\;P\;(x+1)$ osize' $(P \wedge Q)$ $x = 2^x + (osize' P (x + 1)) + (osize' Q (x + 1))$ osize′ $(P ∨ Q)$ $x = 2^x + (osize′ P (x + 1)) + (osize′ Q (x + 1))$ osize' $(P \longrightarrow Q)$ $x = 2^x + ($ osize' $P(x + 1)) + ($ osize' $Q(x + 1))$ α size $P = \alpha$ size^{α} P 0

The other rules decrease the depth of the things osize counts, so decrease osize.

Term Rewriting in Isabelle

Term rewriting engine in Isabelle is called **Simplifier**

apply simp

- uses simplification rules
- (almost) blindly from left to right
- until no rule is applicable.

termination: not guaranteed (may loop)

confluence: not guaranteed (result may depend on which rule is used first)

Control

- Equations turned into simplification rules with **[simp]** attribute
- Adding/deleting equations locally: **apply** (simp add: $\langle \text{rules} \rangle$) and **apply** (simp del: $\langle \text{rules} \rangle$)
- Using only the specified set of equations: **apply** (simp only: <rules>)

[Demo](#page-15-0)

• Show, via a pen-and-paper proof, that the osize function is monotonic with respect to the structure of terms from that example.

Applying a Rewrite Rule

- $l \rightarrow r$ applicable to term $t[s]$ if there is substitution σ such that $\sigma l = s$
- Result: $t[\sigma r]$
- Equationally: $t[s] = t[\sigma r]$

Example:

Rule: $0 + n \rightarrow n$ **Term:** $a + (0 + (b + c))$ **Substitution:** $\sigma = \{n \mapsto b + c\}$ **Result:** $a + (b + c)$

Conditional Term Rewriting

Rewrite rules can be conditional:

$$
\llbracket P_1 \dots P_n \rrbracket \Longrightarrow l = r
$$

is applicable to term $t[s]$ with σ if

- $\sigma l = s$ and
- σ P_1, \ldots, σ P_n are provable by rewriting.

Rewriting with Assumptions

Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:

lemma "
$$
f x = g x \land g x = f x \Longrightarrow f x = 2
$$
"

simp **use and simplify** assumptions (simp (no asm)) **ignore** assumptions (simp (no asm use)) **simplify**, but do **not use** assumptions (simp (no asm simp)) **use**, but do **not simplify** assumptions

Preprocessing

Preprocessing (recursive) for maximal simplification power:

$$
\neg A \rightarrow A = False
$$
\n
$$
A \rightarrow B \rightarrow A \Rightarrow B
$$
\n
$$
A \land B \rightarrow A, B
$$
\n
$$
\forall x. A x \rightarrow A?x
$$
\n
$$
A \rightarrow A = True
$$

Example: $(p \rightarrow q \land \neg r) \land s$

 \mapsto

 $p \Longrightarrow q = True \qquad p \Longrightarrow r = False \qquad s = True$

[Demo](#page-21-0)

Case splitting with simp

$$
P
$$
 (if A then s else t) = $(A \rightarrow P s) \land (\neg A \rightarrow P t)$
Automatic

$$
P \text{ (case } e \text{ of } 0 \Rightarrow a \mid \text{Suc } n \Rightarrow b) =
$$
\n
$$
(e = 0 \rightarrow P a) \land (\forall n. e = \text{Suc } n \rightarrow P b)
$$
\n
$$
\text{Manually: apply (simp split: nat.split)}
$$

Similar for any data type t: **t.split**

Congruence Rules

congruence rules are about using context

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q For \Longrightarrow hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example:
$$
[P = P'; P' \implies Q = Q'] \implies (P \longrightarrow Q) = (P' \longrightarrow Q')
$$

Read: to simplify $P \longrightarrow Q$

- first simplify P to P'
- then simplify Q to Q' using P' as assumption
- the result is $P' \longrightarrow Q'$

More Congruence

Sometimes useful, but not used automatically (slowdown):

$$
conj_\text{conj.} [P = P'; P' \Longrightarrow Q = Q'] \Longrightarrow (P \land Q) = (P' \land Q')
$$

Context for if-then-else:

if_cong: $\|b = c; c \implies x = u; \neg c \implies y = v\| \implies$ (if b then x else y) = (if c then u else v)

Prevent rewriting inside then-else (default):

if weak cong: $b = c \implies$ (if b then x else y) = (if c then x else y)

- declare own congruence rules with **[cong]** attribute
- delete with **[cong del]**
- use locally with e.g. **apply** (simp cong: <rule>)

Ordered rewriting

Problem: $x + y \rightarrow y + x$ does not terminate

Solution: use permutative rules only if term becomes lexicographically smaller.

Example: $b + a \rightarrow a + b$ but not $a + b \rightarrow b + a$.

For types nat, int etc:

- lemmas **add_ac** sort any sum $(+)$
- lemmas **mult ac** sort any product (∗)
- Example: **apply** (simp add: add_ac) yields $(b + c) + a \rightsquigarrow \cdots \rightsquigarrow a + (b + c)$

AC Rules

Example for associative-commutative rules: Associative: $(x \odot y) \odot z = x \odot (y \odot z)$ Commutative: $x \odot y = y \odot x$

These 2 rules alone get stuck too early (not confluent).

Example: $(z \odot x) \odot (y \odot y)$ We want: $(z \odot x) \odot (y \odot y) = v \odot (x \odot (y \odot z))$ We get: $(z \odot x) \odot (y \odot y) = v \odot (y \odot (x \odot z))$

We need: AC rule $x \odot (y \odot z) = y \odot (x \odot z)$

If these 3 rules are present for an AC operator Isabelle will order terms correctly

[Demo](#page-27-0)

Back to Confluence

Remember: confluence in general is undecidable. But: confluence for terminating systems is decidable! Problem: overlapping lhs of rules.

Definition:

Let $l_1 \longrightarrow r_1$ and $l_2 \longrightarrow r_2$ be two rules with disjoint variables.

They form a **critical pair** if a non-variable subterm of l_1 unifies with l_2 .

Example:

Rules: (1) $f \times \longrightarrow a$ (2) $g \times y \longrightarrow b$ (3) $f (g z) \longrightarrow b$ Critical pairs: (3)

$$
(1)+(3) \qquad \{x \mapsto g \ z\} \qquad a \stackrel{(1)}{\longleftrightarrow} f(g \ z) \quad \stackrel{(3)}{\longleftrightarrow} b
$$

$$
(3)+(2) \qquad \{z \mapsto y\} \qquad b \stackrel{(3)}{\longleftrightarrow} f(g \ y) \quad \stackrel{(2)}{\longrightarrow} f \ b
$$

Completion

(1) $f \times \longrightarrow a$ (2) $g \vee \longrightarrow b$ (3) $f (g z) \longrightarrow b$ is not confluent

But it can be made confluent by adding rules! How: join all critical pairs

Example:

(1)+(3) $\{x \mapsto g \ z\}$ a $\stackrel{(1)}{\longleftarrow}$ f $(g \ z) \stackrel{(3)}{\longrightarrow} b$ shows that $a = b$ (because $a \stackrel{*}{\longleftrightarrow} b$), so we add $a \longrightarrow b$ as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

Orthogonal Rewriting Systems

Definitions: A **rule** l −→ r is **left-linear** if no variable occurs twice in l. A **rewrite system** is **left-linear** if all rules are.

A system is **orthogonal** if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages

We have learned ...

- Conditional term rewriting
- Congruence rules
- AC rules
- More on confluence