
COMP4011/8011
Advanced Topics in

Formal Methods and Programming Languages

– Software Verification with Isabelle/HOL –

Peter Höfner

August 18, 2024

1



Section 9

Term Rewriting

2



The Problem

Given a set of equations

l1 = r1
l2 = r2

...
ln = rn

does equation l = r hold?

Applications in:
• Mathematics (algebra, group theory, etc)
• Functional Programming (model of execution)
• Theorem Proving (dealing with equations, simplifying statements)

3



Term Rewriting: The Idea

use equations as reduction rules

l1 −→ r1
l2 −→ r2

...
ln −→ rn

decide l = r by deciding l
∗←→ r

4



Arrow Cheat Sheet

0−→ = {(x , y)|x = y} identity
n+1−→ =

n−→ ◦ −→ n+1 fold composition
+−→ =

⋃
i>0

i−→ transitive closure
∗−→ =

+−→ ∪ 0−→ reflexive transitive closure
=−→ = −→ ∪ 0−→ reflexive closure
−1−→ = {(y , x)|x −→ y} inverse
←− =

−1−→ inverse
←→ = ←− ∪ −→ symmetric closure
+←→ =

⋃
i>0

i←→ transitive symmetric closure
∗←→ =

+←→ ∪ 0←→ reflexive transitive symmetric closure

5



How to Decide l
∗←→ r

Same idea as for β: look for n such that l ∗−→ n and r
∗−→ n

Does this always work?
If l ∗−→ n and r

∗−→ n then l
∗←→ r . Ok.

If l ∗←→ r , will there always be a suitable n? No!

Example:
Rules: f x −→ a, g x −→ b, f (g x) −→ b

f x
∗←→ g x because f x −→ a←− f (g x) −→ b ←− g x

But: f x −→ a and g x −→ b and a, b in normal form

Works only for systems with Church-Rosser property:
l

∗←→ r =⇒ ∃n. l ∗−→ n ∧ r
∗−→ n

Fact: −→ is Church-Rosser iff it is confluent.

6



Confluence

s

x y

t

∗ ∗

∗∗

Problem:
is a given set of reduction rules confluent?

undecidable

Local Confluence

s

x y

t
∗∗

Fact: local confluence and termination =⇒ confluence

7



Termination

−→ is terminating if there are no infinite reduction chains
−→ is normalizing if each element has a normal form
−→ is convergent if it is terminating and confluent

Example:
−→β in λ is not terminating, but confluent
−→β in λ→ is terminating and confluent, i.e. convergent

Problem: is a given set of reduction rules terminating?

undecidable

8



When is −→ Terminating?

Basic idea: when each rule application makes terms simpler in some
way.
More formally: −→ is terminating when there is a well founded

order < on terms for which s < t whenever t −→ s
(well founded = no infinite decreasing chains a1 > a2 > ...)

Example: f (g x) −→ g x , g (f x) −→ f x

This system always terminates. Reduction order:
s <r t iff size(s) < size(t) with
size(s) = number of function symbols in s

1. Both rules always decrease size by 1 when applied to any term t

2. <r is well founded, because < is well founded on IN

9



Termination in Practice

In practice: often easier to consider just the rewrite rules by themselves,
rather than their application to an arbitrary term t.

Show for each rule li = ri , that ri < li .

Example:
g x < f (g x) and f x < g (f x)

Requires
u to become smaller whenever any subterm of u is made smaller.
Formally:

Requires < to be monotonic with respect to the structure of
terms:

s < t −→ u[s] < u[t].
True for most orders that don’t treat certain parts of terms as
special cases.

10



Example Termination Proof

Problem: Rewrite formulae containing ¬, ∧, ∨ and −→, so that they don’t
contain any implications and ¬ is applied only to variables and constants.

Rewrite Rules:
• Remove implications:

imp: (A −→ B) = (¬A ∨ B)

• Push ¬s down past other operators:
notnot: (¬¬P) = P

notand: (¬(A ∧ B)) = (¬A ∨ ¬B)

notor: (¬(A ∨ B)) = (¬A ∧ ¬B)

We show that the rewrite system defined by these rules is terminating.

11



Order on Terms

Each time one of our rules is applied, either:
• an implication is removed, or
• something that is not a ¬ is hoisted upwards in the term.

This suggests a 2-part order, <r : s <r t iff:
• num imps s < num imps t, or
• num imps s = num imps t ∧ osize s < osize t.

Let:
• s <i t ≡ num imps s < num imps t and
• s <n t ≡ osize s < osize t

Then <i and <n are both well-founded orders (since both return nats).
<r is the lexicographic order over <i and <n. <r is well-founded since <i

and <n are both well-founded.

12



Order Decreasing

imp clearly decreases num imps.
osize adds up all non-¬ operators and variables/constants, weights each
one according to its depth within the term.

osize′ c x = 2x

osize′ (¬P) x = osize′ P (x + 1)
osize′ (P ∧ Q) x = 2x + (osize′ P (x + 1)) + (osize′ Q (x + 1))
osize′ (P ∨ Q) x = 2x + (osize′ P (x + 1)) + (osize′ Q (x + 1))
osize′ (P −→ Q) x = 2x + (osize′ P (x + 1)) + (osize′ Q (x + 1))

osize P = osize′ P 0

The other rules decrease the depth of the things osize counts, so
decrease osize.

13



Term Rewriting in Isabelle

Term rewriting engine in Isabelle is called Simplifier

apply simp
• uses simplification rules
• (almost) blindly from left to right
• until no rule is applicable.

termination: not guaranteed
(may loop)

confluence: not guaranteed
(result may depend on which rule is used first)

14



Control

• Equations turned into simplification rules with [simp] attribute

• Adding/deleting equations locally:

apply (simp add: <rules>) and apply (simp del: <rules>)

• Using only the specified set of equations:

apply (simp only: <rules>)

15



Demo

16



Exercises

• Show, via a pen-and-paper proof, that the osize function is
monotonic with respect to the structure of terms from that example.

17



Applying a Rewrite Rule

• l −→ r applicable to term t[s]
if there is substitution σ such that σ l = s

• Result: t[σ r ]

• Equationally: t[s] = t[σ r ]

Example:
Rule: 0 + n −→ n

Term: a+ (0 + (b + c))

Substitution: σ = {n 7→ b + c}
Result: a+ (b + c)

18



Conditional Term Rewriting

Rewrite rules can be conditional:

[[P1 ...Pn]] =⇒ l = r

is applicable to term t[s] with σ if
• σ l = s and
• σ P1, . . . , σ Pn are provable by rewriting.

19



Rewriting with Assumptions

Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:
lemma ”f x = g x ∧ g x = f x =⇒ f x = 2¨

simp use and simplify assumptions
(simp (no asm)) ignore assumptions
(simp (no asm use)) simplify, but do not use assumptions
(simp (no asm simp)) use, but do not simplify assumptions

20



Preprocessing

Preprocessing (recursive) for maximal simplification power:

¬A 7→ A = False
A −→ B 7→ A =⇒ B

A ∧ B 7→ A, B
∀x . A x 7→ A ?x

A 7→ A = True

Example: (p −→ q ∧ ¬r) ∧ s

7→

p =⇒ q = True p =⇒ r = False s = True

21



Demo

22



Case splitting with simp

P (if A then s else t) = (A −→ P s) ∧ (¬A −→ P t)

Automatic

P (case e of 0 ⇒ a | Suc n ⇒ b) =
(e = 0 −→ P a) ∧ (∀n. e = Suc n −→ P b)

Manually: apply (simp split: nat.split)

Similar for any data type t: t.split

23



Congruence Rules

congruence rules are about using context

Example: in P −→ Q we could use P to simplify terms in Q

For =⇒ hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example: JP = P ′;P ′ =⇒ Q = Q ′K =⇒ (P −→ Q) = (P ′ −→ Q ′)

Read: to simplify P −→ Q

• first simplify P to P ′

• then simplify Q to Q ′ using P ′ as assumption
• the result is P ′ −→ Q ′

24



More Congruence

Sometimes useful, but not used automatically (slowdown):
conj cong: JP = P ′;P ′ =⇒ Q = Q ′K =⇒ (P ∧ Q) = (P ′ ∧ Q ′)

Context for if-then-else:
if cong: Jb = c ; c =⇒ x = u;¬c =⇒ y = vK =⇒

(if b then x else y) = (if c then u else v)

Prevent rewriting inside then-else (default):
if weak cong: b = c =⇒ (if b then x else y) = (if c then x else y)

• declare own congruence rules with [cong] attribute
• delete with [cong del]
• use locally with e.g. apply (simp cong: <rule>)

25



Ordered rewriting

Problem: x + y −→ y + x does not terminate

Solution: use permutative rules only if term becomes
lexicographically smaller.

Example: b + a ; a+ b but not a+ b ; b + a.

For types nat, int etc:
• lemmas add ac sort any sum (+)
• lemmas mult ac sort any product (∗)

Example: apply (simp add: add ac) yields
(b + c) + a ; · · ·; a+ (b + c)

26



AC Rules

Example for associative-commutative rules:
Associative: (x ⊙ y)⊙ z = x ⊙ (y ⊙ z)
Commutative: x ⊙ y = y ⊙ x

These 2 rules alone get stuck too early (not confluent).

Example: (z ⊙ x)⊙ (y ⊙ v)
We want: (z ⊙ x)⊙ (y ⊙ v) = v ⊙ (x ⊙ (y ⊙ z))
We get: (z ⊙ x)⊙ (y ⊙ v) = v ⊙ (y ⊙ (x ⊙ z))

We need: AC rule x ⊙ (y ⊙ z) = y ⊙ (x ⊙ z)

If these 3 rules are present for an AC operator
Isabelle will order terms correctly

27



Demo

28



Back to Confluence

Remember: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping lhs of rules.

Definition:
Let l1 −→ r1 and l2 −→ r2 be two rules with disjoint variables.
They form a critical pair if a non-variable subterm of l1 unifies with l2.

Example:
Rules: (1) f x −→ a (2) g y −→ b (3) f (g z) −→ b
Critical pairs:

(1)+(3) {x 7→ g z} a
(1)←− f (g z)

(3)−→ b

(3)+(2) {z 7→ y} b
(3)←− f (g y)

(2)−→ f b

29



Completion

(1) f x −→ a (2) g y −→ b (3) f (g z) −→ b

is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

(1)+(3) {x 7→ g z} a
(1)←− f (g z)

(3)−→ b

shows that a = b (because a
∗←→ b), so we add a −→ b as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

30



Orthogonal Rewriting Systems

Definitions:
A rule l −→ r is left-linear if no variable occurs twice in l .
A rewrite system is left-linear if all rules are.

A system is orthogonal if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages

31



We have learned ...

• Conditional term rewriting
• Congruence rules
• AC rules
• More on confluence

32


	Term Rewriting
	Demo
	Demo
	Demo


