
COMP4011/8011
Advanced Topics in

Formal Methods and Programming Languages

– Software Verification with Isabelle/HOL –

Peter Höfner

August 26, 2024

1



Specification Techniques

2



Section 10

Sets, Types & Rule Induction

3



Sets in Isabelle

Type ’a set: sets over type ’a

• {}, {e1, ... , en}, {x . P x}
• e ∈ A, A ⊆ B

• A ∪ B, A ∩ B, A− B, −A

•
⋃

x ∈ A. B x ,
⋂
x ∈ A. B x ,

⋂
A,

⋃
A

• {i ..j}
• insert :: α ⇒ α set ⇒ α set

• f ‘A ≡ {y . ∃x ∈ A. y = f x}
• . . .

4



Proofs about Sets

Natural deduction proofs:
• equalityI: JA ⊆ B; B ⊆ AK =⇒ A = B

• subsetI: (
∧
x . x ∈ A =⇒ x ∈ B) =⇒ A ⊆ B

• . . . find theorems

5



Bounded Quantifiers

• ∀x ∈ A. P x ≡ ∀x . x ∈ A −→ P x

• ∃x ∈ A. P x ≡ ∃x . x ∈ A ∧ P x

• ballI: (
∧
x . x ∈ A =⇒ P x) =⇒ ∀x ∈ A. P x

• bspec: J∀x ∈ A. P x ; x ∈ AK =⇒ P x

• bexI: JP x ; x ∈ AK =⇒ ∃x ∈ A. P x

• bexE: J∃x ∈ A. P x ;
∧
x . Jx ∈ A;P xK =⇒ QK =⇒ Q

6



Demo: Sets

7



The Three Basic Ways of Introducing Theorems
• Axioms:

Example: axiomatization where refl: ”t = t”

Do not use. Evil. Can make your logic inconsistent.

• Definitions:

Example: definition inj where
“inj f ≡ ∀x y . f x = f y −→ x = y ”
Introduces a new lemma called inj def.

• Proofs:

Example: lemma ”inj (λx . x + 1)”

The harder, but safe choice.

8



The Three Basic Ways of Introducing Types
• typedecl: by name only

Example: typedecl names
Introduces new type names without any further assumptions

• type synonym: by abbreviation

Example: type synonym α rel = ”α ⇒ α ⇒ bool”
Introduces abbreviation rel for existing type α ⇒ α ⇒ bool
Type abbreviations are immediately expanded internally

• typedef: by definiton as a set

Example: typedef new type = ”{some set}” <proof>
Introduces a new type as a subset of an existing type.
The proof shows that the set on the rhs in non-empty.

9



How typedef works

new type

existing type

Abs

Rep

10



How typedef works

new type

existing type

Abs

Rep

11



Example: Pairs

(α,β) Prod

1. Pick existing type: α ⇒ β ⇒ bool

2. Identify subset:
(α,β) Prod = {f . ∃a b. f = λ(x :: α) (y :: β). x = a ∧ y = b}

3. We get from Isabelle:
▶ functions Abs Prod, Rep Prod
▶ both injective
▶ Abs Prod (Rep Prod x) = x

4. We now can:
▶ define constants Pair, fst, snd in terms of Abs Prod and Rep Prod
▶ derive all characteristic theorems
▶ forget about Rep/Abs, use characteristic theorems instead

12



Demo: Introducing new Types

13



Inductive Definitions

14



Example

⟨skip,σ⟩ −→ σ

JeKσ = v

⟨x := e,σ⟩ −→ σ[x 7→ v ]

⟨c1,σ⟩ −→ σ′ ⟨c2,σ′⟩ −→ σ′′

⟨c1; c2,σ⟩ −→ σ′′

JbKσ = False

⟨while b do c ,σ⟩ −→ σ

JbKσ = True ⟨c ,σ⟩ −→ σ′ ⟨while b do c ,σ′⟩ −→ σ′′

⟨while b do c ,σ⟩ −→ σ′′

15



What does this mean?

• ⟨c ,σ⟩ −→ σ′ fancy syntax for a relation (c ,σ,σ′) ∈ E

• relations are sets: E :: (com× state× state) set

• the rules define a set inductively

But which set?

16



Simpler Example

0 ∈ N
n ∈ N

n + 1 ∈ N

• N is the set of natural numbers IN

• But why not the set of real numbers? 0 ∈ IR, n ∈ IR =⇒ n + 1 ∈ IR

• IN is the smallest set that is consistent with the rules.

Why the smallest set?
• Objective: no junk. Only what must be in X shall be in X .
• Gives rise to a nice proof principle (rule induction)
• Alternative (greatest set) occasionally also useful: coinduction

17



Rule Induction

0 ∈ N
n ∈ N

n + 1 ∈ N

induces induction principle

JP 0;
∧
n. P n =⇒ P (n + 1)K =⇒ ∀x ∈ N. P x

18



Demo: Inductive Definitions

19



Formally

Rules a1 ∈ X ... an ∈ X

a ∈ X
with a1, ... , an, a ∈ A

define set X ⊆ A

Formally: set of rules R ⊆ A set× A (R, X possibly infinite)

Applying rules R to a set B: R̂ B ≡ {x . ∃H. (H, x) ∈ R ∧ H ⊆ B}

Example:

R ≡ {({}, 0)} ∪ {({n}, n + 1). n ∈ IR}
R̂ {3, 6, 10} = {0, 4, 7, 11}

20



The Set

Definition: B is R-closed iff R̂ B ⊆ B

Definition: X is the least R-closed subset of A

This does always exist:

Fact: X =
⋂
{B ⊆ A. B R−closed}

21



Generation from Above

A

R-closed

R-closed

R-closed

X

22



Rule Induction

0 ∈ N
n ∈ N

n + 1 ∈ N

induces induction principle

JP 0;
∧
n. P n =⇒ P (n + 1)K =⇒ ∀x ∈ N. P x

In general:

∀({a1, ... an}, a) ∈ R. P a1 ∧ ... ∧ P an =⇒ P a

∀x ∈ X . P x

23



Why does this work?

∀({a1, ... an}, a) ∈ R. P a1 ∧ ... ∧ P an =⇒ P a

∀x ∈ X . P x

∀({a1, ... an}, a) ∈ R. P a1 ∧ ... ∧ P an =⇒ P a
says

{x . P x} is R-closed

but: X is the least R-closed set
hence: X ⊆ {x . P x}
which means: ∀x ∈ X . P x

qed

24



Rules with side conditions

a1 ∈ X ... an ∈ X C1 ... Cm

a ∈ X

induction scheme:

(∀({a1, ... an}, a) ∈ R. P a1 ∧ ... ∧ P an ∧
C1 ∧ ... ∧ Cm ∧
{a1, ... , an} ⊆ X =⇒ P a)

=⇒
∀x ∈ X . P x

25



X as Fixpoint

How to compute X?
X =

⋂
{B ⊆ A. B R − closed} hard to work with.

Instead: view X as least fixpoint, X least set with R̂ X = X .

Fixpoints can be approximated by iteration:

X0 = R̂0 {} = {}
X1 = R̂1 {} = rules without hypotheses
...
Xn = R̂n {}

Xω =
⋃

n∈IN(R̂
n {}) = X

26



Generation from Below

A

R̂0 {}

A

R̂0 {} ∪ R̂1 {}

A

R̂0 {} ∪ R̂1 {} ∪ R̂2 {}

A

R̂0 {} ∪ R̂1 {} ∪ R̂2 {} ∪ ...

27



Does this always work?

Knaster-Tarski Fixpoint Theorem:
Let (A,≤) be a complete lattice, and f :: A ⇒ A a monotone function.
Then the fixpoints of f again form a complete lattice.

Lattice:
Finite subsets have a greatest lower bound (meet) and least upper
bound (join).

Complete Lattice:
All subsets have a greatest lower bound and least upper bound.

Implications:
• least and greatest fixpoints exist (complete lattice always

non-empty).
• can be reached by (possibly infinite) iteration. (Why?)

28



Exercise

Formalise this lecture in Isabelle:
• Define closed f A :: (α set ⇒ α set) ⇒ α set ⇒ bool
• Show closed f A ∧ closed f B =⇒ closed f (A ∩ B) if f is monotone

(mono is predefined)
• Define lfpt f as the intersection of all f -closed sets
• Show that lfpt f is a fixpoint of f if f is monotone
• Show that lfpt f is the least fixpoint of f
• Declare a constant R :: (α set× α) set

• Define R̂ :: α set ⇒ α set in terms of R
• Show soundness of rule induction using R and lfpt R̂

29



We have learned ...

• Formal background of inductive definitions
• Definition by intersection
• Computation by iteration
• Formalisation in Isabelle

30


	Sets, Types & Rule Induction
	Demo: Sets
	Demo: Introducing new Types
	Inductive Definitions
	Demo: Inductive Definitions


