

COMP4011/8011 Advanced Topics in Formal Methods and Programming Languages

- Software Verification with Isabelle/HOL -

Peter Höfner

August 26, 2024

Specification Techniques

Section 10

Sets, Types & Rule Induction

Sets in Isabelle

Type 'a set: sets over type 'a

- {}, { e_1, \ldots, e_n }, {x. P x}
- $e \in A$, $A \subseteq B$
- $A \cup B$, $A \cap B$, A B, -A
- $\bigcup x \in A. B x, \quad \bigcap x \in A. B x, \quad \bigcap A, \quad \bigcup A$
- {*i*..*j*}
- insert :: $\alpha \Rightarrow \alpha \text{ set} \Rightarrow \alpha$ set
- $f'A \equiv \{y. \exists x \in A. y = f x\}$
- ...

Proofs about Sets

Natural deduction proofs:

- equalityI: $\llbracket A \subseteq B; B \subseteq A \rrbracket \Longrightarrow A = B$
- subsetI: $(\bigwedge x. x \in A \Longrightarrow x \in B) \Longrightarrow A \subseteq B$
- ... find_theorems

Bounded Quantifiers

- $\forall x \in A. \ P \ x \equiv \forall x. \ x \in A \longrightarrow P \ x$
- $\exists x \in A. P x \equiv \exists x. x \in A \land P x$
- ball: $(\bigwedge x. x \in A \Longrightarrow P x) \Longrightarrow \forall x \in A. P x$
- bspec: $[\![\forall x \in A. P x; x \in A]\!] \Longrightarrow P x$
- bexl: $\llbracket P x; x \in A \rrbracket \Longrightarrow \exists x \in A. P x$
- bexE: $[\exists x \in A. P x; \bigwedge x. [x \in A; P x]] \Longrightarrow Q] \Longrightarrow Q$

Demo: Sets

The Three Basic Ways of Introducing Theorems

• Axioms:

Example: **axiomatization where** refl: "t = t"

Do not use. Evil. Can make your logic inconsistent.

• Definitions:

Example: **definition** inj where "inj $f \equiv \forall x \ y. \ f \ x = f \ y \longrightarrow x = y$ " Introduces a new lemma called inj_def.

• Proofs:

Example: **lemma** "inj $(\lambda x. x + 1)$ "

The harder, but safe choice.

The Three Basic Ways of Introducing Types

• typedecl: by name only

Example: **typedecl** names Introduces new type *names* without any further assumptions

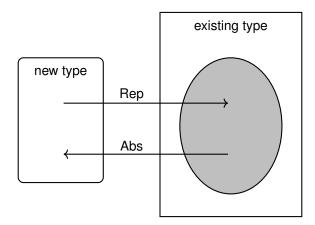
• type_synonym: by abbreviation

Example: **type_synonym** α rel = " $\alpha \Rightarrow \alpha \Rightarrow bool$ " Introduces abbreviation *rel* for existing type $\alpha \Rightarrow \alpha \Rightarrow bool$ Type abbreviations are immediately expanded internally

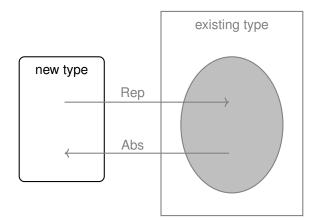
• typedef: by definiton as a set

Example: **typedef** new_type = "{some set}" <proof> Introduces a new type as a subset of an existing type. The proof shows that the set on the rhs in non-empty.

How typedef works



How typedef works



Example: Pairs

 (α, β) Prod

- 1. Pick existing type: $\alpha \Rightarrow \beta \Rightarrow bool$
- 2. Identify subset:

 (α, β) Prod = {f. $\exists a \ b. \ f = \lambda(x :: \alpha) \ (y :: \beta). \ x = a \land y = b$ }

- 3. We get from Isabelle:
 - functions Abs_Prod, Rep_Prod
 - both injective
 - Abs_Prod (Rep_Prod x) = x
- 4. We now can:
 - define constants Pair, fst, snd in terms of Abs_Prod and Rep_Prod
 - derive all characteristic theorems
 - forget about Rep/Abs, use characteristic theorems instead

Demo: Introducing new Types

Inductive Definitions

Example

$$\begin{split} \overline{\langle \mathsf{skip}, \sigma \rangle \longrightarrow \sigma} & \frac{\llbracket e \rrbracket \sigma = v}{\langle \mathsf{x} := \mathsf{e}, \sigma \rangle \longrightarrow \sigma [\mathsf{x} \mapsto v]} \\ & \frac{\langle c_1, \sigma \rangle \longrightarrow \sigma' \quad \langle c_2, \sigma' \rangle \longrightarrow \sigma''}{\langle c_1; c_2, \sigma \rangle \longrightarrow \sigma''} \\ & \frac{\llbracket b \rrbracket \sigma = \mathsf{False}}{\langle \mathsf{while} \ b \ \mathsf{do} \ c, \sigma \rangle \longrightarrow \sigma} \\ & \frac{\llbracket b \rrbracket \sigma = \mathsf{True} \quad \langle c, \sigma \rangle \longrightarrow \sigma' \quad \langle \mathsf{while} \ b \ \mathsf{do} \ c, \sigma' \rangle \longrightarrow \sigma''}{\langle \mathsf{while} \ b \ \mathsf{do} \ c, \sigma \rangle \longrightarrow \sigma''} \end{split}$$

What does this mean?

- $\langle c, \sigma \rangle \longrightarrow \sigma'$ fancy syntax for a relation $(c, \sigma, \sigma') \in E$
- relations are sets: *E* :: (com × state × state) set
- the rules define a set inductively

But which set?

Simpler Example

$$\frac{n \in N}{n+1 \in N}$$

- N is the set of natural numbers N
- But why not the set of real numbers? $0 \in \mathbb{R}$, $n \in \mathbb{R} \implies n+1 \in \mathbb{R}$
- N is the smallest set that is consistent with the rules.

Why the smallest set?

- Objective: no junk. Only what must be in X shall be in X.
- · Gives rise to a nice proof principle (rule induction)
- Alternative (greatest set) occasionally also useful: coinduction

Rule Induction

$$\frac{n \in N}{n+1 \in N}$$

induces induction principle

$$\llbracket P 0; \land n. P n \Longrightarrow P (n+1) \rrbracket \Longrightarrow \forall x \in N. P x$$

Demo: Inductive Definitions

Formally

Rules
$$rac{a_1 \in X \quad ... \quad a_n \in X}{a \in X}$$
 with $a_1, ..., a_n, a \in A$
define set $X \subseteq A$

Formally: set of rules $R \subseteq A$ set $\times A$ (R, X possibly infinite) **Applying rules** R to a set B: $\hat{R} B \equiv \{x. \exists H. (H, x) \in R \land H \subseteq B\}$

Example:

$$R \equiv \{(\{\}, 0)\} \cup \{(\{n\}, n+1). n \in \mathbb{R}\}$$

$$\hat{R} \{3, 6, 10\} = \{0, 4, 7, 11\}$$

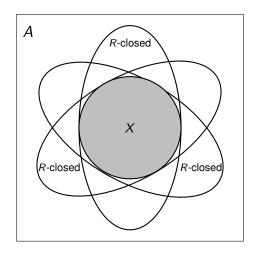
The Set

Definition: *B* is *R*-closed iff $\hat{R} B \subseteq B$ **Definition:** *X* is the least *R*-closed subset of *A*

This does always exist:

Fact: $X = \bigcap \{ B \subseteq A. \ B \ R - closed \}$

Generation from Above



Rule Induction

$$\frac{n \in N}{n+1 \in N}$$

induces induction principle

$$\llbracket P \ 0; \ \bigwedge n. \ P \ n \Longrightarrow P \ (n+1) \rrbracket \Longrightarrow \forall x \in N. \ P \ x$$

In general:

$$\frac{\forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \land \dots \land P \ a_n \Longrightarrow P \ a}{\forall x \in X. \ P \ x}$$

Why does this work?

$$\frac{\forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \land \dots \land P \ a_n \Longrightarrow P \ a}{\forall x \in X. \ P \ x}$$

$$orall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \wedge \dots \wedge P \ a_n \Longrightarrow P \ a$$

says
 $\{x. \ P \ x\}$ is *R*-closed

but:X is the least R-closed sethence: $X \subseteq \{x. P x\}$ which means: $\forall x \in X. P x$

qed

Rules with side conditions

$$\frac{a_1 \in X \quad \dots \quad a_n \in X \quad C_1 \quad \dots \quad C_m}{a \in X}$$

induction scheme:

$$(\forall (\{a_1, \dots a_n\}, a) \in R. P a_1 \land \dots \land P a_n \land \\ C_1 \land \dots \land C_m \land \\ \{a_1, \dots, a_n\} \subseteq X \Longrightarrow P a)$$
$$\Longrightarrow \\ \forall x \in X. P x$$

X as Fixpoint

How to compute X?

 $X = \bigcap \{B \subseteq A. B R - closed\}$ hard to work with.

Instead: view X as least fixpoint, X least set with $\hat{R} X = X$.

Fixpoints can be approximated by iteration:

$$X_0 = \hat{R}^0 \{\} = \{\}$$

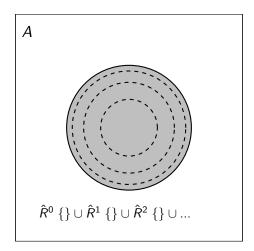
$$X_1 = \hat{R}^1 \{\} = \text{rules without hypotheses}$$

$$\vdots$$

$$X_n = \hat{R}^n \{\}$$

$$X_{\omega} = \bigcup_{n \in \mathbb{N}} (\hat{R}^n \{\}) = X$$

Generation from Below



Does this always work?

Knaster-Tarski Fixpoint Theorem:

Let (A, \leq) be a complete lattice, and $f :: A \Rightarrow A$ a monotone function. Then the fixpoints of *f* again form a complete lattice.

Lattice:

Finite subsets have a greatest lower bound (meet) and least upper bound (join).

Complete Lattice:

All subsets have a greatest lower bound and least upper bound.

Implications:

- least and greatest fixpoints exist (complete lattice always non-empty).
- can be reached by (possibly infinite) iteration. (Why?)

Exercise

Formalise this lecture in Isabelle:

- Define closed $f A :: (\alpha \text{ set} \Rightarrow \alpha \text{ set}) \Rightarrow \alpha \text{ set} \Rightarrow \text{bool}$
- Show closed *f* A ∧ closed *f* B ⇒ closed *f* (A ∩ B) if *f* is monotone (mono is predefined)
- Define **Ifpt** *f* as the intersection of all *f*-closed sets
- Show that lfpt f is a fixpoint of f if f is monotone
- Show that Ifpt f is the least fixpoint of f
- Declare a constant $R :: (\alpha \text{ set } \times \alpha)$ set
- Define $\hat{R} :: \alpha$ set $\Rightarrow \alpha$ set in terms of R
- Show soundness of rule induction using R and lfpt R̂

We have learned ...

- · Formal background of inductive definitions
- Definition by intersection
- Computation by iteration
- Formalisation in Isabelle