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Sets in Isabelle

Type ’a set: sets over type 'a

0 fenoeh {xPx)
ceecA ACB

« AUB, AnB, A-B, -A

e UxeA Bx, NxeA Bx, NA UA
e {ij}

e insert:: a = aset = «a set

e ffA={y.Ixec A y="Fx}
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Proofs about Sets

Natural deduction proofs:
e equalityl: [ACB; BCAl=— A=B
e subsetl: (Ax.xe A= xeB)=— ACB
e ... find_theorems
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Bounded Quantifiers

e Vxe A Px=Vx.xeA— Px

e dxec A Px=3x.xe ANPx

balll: (Ax. x€e A= Px) = Vxec A Px

e bspec: [Vx e A Px;xc Al = P x

bexl: [P x;x € Al = Ix € A. P x

bexE:[3x e A. Px;Ax. [x € AP x] = Q] = @
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Demo: Sets
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The Three Basic Ways of Introducing Theorems

e Axioms:
Example: axiomatization where refl: "t = t”

Do not use. Evil. Can make your logic inconsistent.

¢ Definitions:

Example: definition inj where
“iNff=Vxy. fx=fy—x=y”
Introduces a new lemma called inj_def.

¢ Proofs:
Example: lemma "inj (Ax. x +1)”
The harder, but safe choice.
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The Three Basic Ways of Introducing Types

 typedecl: by name only

Example: typedecl names
Introduces new type names without any further assumptions

« type_synonym: by abbreviation

Example: type_synonym « rel = "o = a = bool”
Introduces abbreviation rel for existing type o« = a = bool
Type abbreviations are immediately expanded internally

« typedef: by definiton as a set

Example: typedef new_type = "{some set}” <proof>
Introduces a new type as a subset of an existing type.
The proof shows that the set on the rhs in non-empty.
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How typedef works

)
new type

Rep

existing type

Abs

~

A
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How typedef works

)
new type

Rep

existing type

Abs

~

AN
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Example: Pairs

(a, 8) Prod

1. Pick existing type: a = 5 = bool
2. ldentify subset:

(. B)Prod={f.Jab. f =Ax=a)(y::8).x=aAy=b}
3. We get from Isabelle:

» functions Abs_Prod, Rep_Prod
> both injective
» Abs_Prod (Rep_Prod x) = x

4. We now can:

» define constants Pair, fst, snd in terms of Abs_Prod and Rep_Prod
» derive all characteristic theorems
» forget about Rep/Abs, use characteristic theorems instead
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Demo: Introducing new Types
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Inductive Definitions
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Example

[e]lo =v
(skip, o) — o (x:=e,0) — g[x— V]

(c1,0) — 0’ (e, 0) — "
(c1;0,0) — o

[b]o = False
(while bdo ¢c,0) — o

[b]o = True (c,0) — ¢’ (while bdo ¢,o’) — o”

(while bdo ¢,0) — o”




Australian
National

University

What does this mean?

e (c,0) — ¢’ fancy syntax for a relation (c,0,0’) € E
« relations are sets: E :: (com x state X state) set
« the rules define a set inductively

But which set?
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Simpler Example

ne N
0eN n+leN

* N is the set of natural numbers N
e But why not the set of real numbers? 0 e R,ne R=—=n+1€R
* N is the smallest set that is consistent with the rules.

Why the smallest set?
» Objective: no junk. Only what must be in X shall be in X.
» Gives rise to a nice proof principle (rule induction)
« Alternative (greatest set) occasionally also useful: coinduction



Australian
National

University

Rule Induction

ne N
0eN n+leN

induces induction principle

[PO; An.Pn= P (n+1)] = VYxeN.Px
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Demo: Inductive Definitions
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Formally

aaeX ... aeX
aeX

defineset X C A

Rules with a;,...,ap,a € A

Formally: setof rules R C Aset x A (R, X possibly infinite)
Applying rules Rtoaset B: R B={x.3H.(H,x) e RAHC B}

Example:

R = {{}0ru{{{n}t.n+1).neR}
R{3,6,10} = {04,711}

20
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The Set

Definition: B is R-closed iff R B C B

Definition: X is the least R-closed subset of A

This does always exist:

Fact: X =(){B C A. B R—closed}

21
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Generation from Above

A
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Rule Induction

ne N
0eN n+1leN

induces induction principle

[PO; An.Pn=P(n+1)] = VxeN.Px

In general:

V({a1,...an},a) ER. PayA.. NPa,— Pa
Vx € X. Px

23
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Why does this work?

V({a1,...an},a) e R.PayAN..NPa,=— P a
Vx € X. P x

V({a1,...an},a) ER. Py AN..NPa,=— P a
says
{x. P x} is R-closed

but: X is the least R-closed set
hence: X C{x. P x}
which means: Vx e X. P x

qed

24
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Rules with side conditions

aeX ... a,eX G ... C,
aeX

induction scheme:

(V({a1,...an}, @) €R. Pay A... AP ap A

CiA...ACyA
{a1,...,a,} T X = P a)
fr—

Vx e X. Px

25
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X as Fixpoint

How to compute X?
X =B C A. B R— closed} hard to work with.

Instead: view X as least fixpoint, X least set with RX=X.
Fixpoints can be approximated by iteration:

Xo = ":?0 {3={

Xi; = R {} = rules without hypotheses

X, =R {)

Xo=Upen(R" 1) = X

26
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ROQUR' JUR {}U ...
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Does this always work?

Knaster-Tarski Fixpoint Theorem:
Let (A, <) be a complete lattice, and f :: A = A a monotone function.
Then the fixpoints of f again form a complete lattice.

Lattice:
Finite subsets have a greatest lower bound (meet) and least upper
bound (join).

Complete Lattice:
All subsets have a greatest lower bound and least upper bound.

Implications:
« least and greatest fixpoints exist (complete lattice always
non-empty).
 can be reached by (possibly infinite) iteration. (Why?)

28
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Exercise

Formalise this lecture in Isabelle:

Define closed 7 A :: (o set = « set) = « set = bool

Show closed f A A closed f B = closed f (AN B) if f is monotone
(mono is predefined)

Define Ifpt f as the intersection of all f-closed sets
Show that Ifpt f is a fixpoint of f if f is monotone
Show that Ifpt f is the least fixpoint of f

Declare a constant R :: (« set x ) set

Define R :: a set = « set in terms of R

Show soundness of rule induction using R and lfpt R

29
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We have learned ...

Formal background of inductive definitions
Definition by intersection
Computation by iteration
Formalisation in Isabelle

30
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