COMP4011/8011
Advanced Topics in
Formal Methods and Programming Languages

— Software Verification with Isabelle/HOL —

Peter Hofner

August 26, 2024

| Australian
National

University

Section 11

Datatypes

Australian
National

University

Datatypes
Example:
datatype ’a list = Nil | Cons 'a “a list”
Properties:
» Constructors:
Nil = alist
Cons : ‘’a=’alist="alist

« Distinctness: Nil £ Cons x xs
* Injectivity: (Consxxs=Consyys) = (X=Yy AXS=Ys)

Australian

National
University

More Examples

Enumeration:
datatype answer = Yes | No | Maybe

Polymorphic:
datatype ‘a option = None | Some 'a
datatype ('a,b,’c) triple = Triple 'a’b’c

Recursion:
datatype ’a list = Nil | Cons ’a “a list”
datatype ‘a tree = Tip | Node 'a “a tree” “a tree”

Mutual Recursion:
datatype even = EvenZero | EvenSucc odd
and odd = OddSucc even

Australian
National

University

Nested

Nested recursion:
datatype ‘a tree = Tip | Node 'a “a tree list”

datatype 'a tree = Tip | Node ’a “a tree option” “’a tree option”

» Recursive call is under a type constructor.

Australian
National

University

The General Case

datatype (a1,an) 7 = Ci71 .. Tim

Ck Tk,l Tk,nk

e Constructors: C; 71 = ... = Tin = (a1,....,00) T
« Distinctness: Ci...#GC ... ifi#j
e Injectivity: (C; x1...Xp, = Ciy1 oo yn) = (1 = Y1 A oo AXny = Vi)

Distinctness and Injectivity applied automatically

Australian
National

University

How is this Type Defined?

datatype ’a list = Nil | Cons ’a “a list”

« internally reduced to a single constructor, using product and sum
« constructor defined as an inductive set (like typedef)
e recursion: least fixpoint

More detail: Tutorial on (Co-)datatypes Definitions at isabelle.in.tum.de

Australian

National
University

Datatype Limitations

Must be definable as a (hon-empty) set.

e Infinitely branching ok.
e Mutually recursive ok.
« Strictly positive (right of function arrow) occurrence ok.

Not ok:

datatypet = C (t = bool)
| D ((bool = t) = bool)
| E

((t = bool) = bool)

Because: Cantor’s theorem (« set is larger than «)

Australian

ational
Y

Datatype Limitations
Not ok (nested recursion):

datatype ('a, ’b) fun_copy = Fun “a = 'b”
datatype 'at=F “(’at, 'a) fun_copy”

e recursionin ('at, ...;an) tis only allowed on a subset of ‘al ... ‘an

« these arguments are called live arguments

e Mainly: in “a = ’b”, ’ais dead and b is live

e Thus: in ('a, ’b) fun_copy, ’a is dead and ’b is live

« type constructors must be registered as BNFs* to have live
arguments

» BNF defines well-behaved type constructors, ie where recursion is
allowed

« datatypes automatically are BNFs (that's how they are constructed)

« can register other type constructors as BNFs — not covered here**

* BNF = Bounded Natural Functors.
** Defining (Co)datatypes and Primitively (Co)recursive Functions in Isabelle/HOL

Australian
National

University

Case

Every datatype introduces a case construct, e.g.

(case xsof [| = ... |y #ys= ...y ...y5..)

In general: one case per constructor

» Nested patterns allowed: x#y#:zs
e Dummy and default patterns with _
 Binds weakly, needs () in context

Australian
National

= University

Cases

apply (case_tac t)

creates k subgoals

[t=Cixi..xp..] = ...

one for each constructor C;

Australian
= National
G2y University

Australian
National

University

Recursion

| Australian
National

University

Why nontermination can be harmful

How about f x = f x +1?

Subtract f x on both sides.

0=1

! All functions in HOL must be total |

Australian
National

University

Primitive Recursion

primrec guarantees termination structurally

Example primrec:

primrec app :: “alist = ’alist = ’a list”
where

“app Nil ys = ys” |

“app (Cons x xs) ys = Cons x (app xs ys)”

Australian
National

University

The General Case

If 7 is a datatype (with constructors Ci, ..., C¢) then f :: 7 = 7/ can be
defined by primitive recursion:

f(Giyir - yam) = n
fF(Ck Y1 - Yim) = I«

The recursive calls in r; must be structurally smaller
(oftheform f ay ... yij ... ap)

Australian

National
University

How does this Work?

primrec just fancy syntax for a recursion operator

Example: rec.ist:: “a= (b= "blist="a="a) = blist="a"
rec_list f; , Nil = fi
rec_list 1 &, (Cons x xs) = £ x xs (rec_list f; f xs)

app = rec_list (Ays. ys) (Ax xs xs’. Ays. Cons x (xs’ ys))

primrec app :: “alist = ’alist = ’a list”
where

“app Nil ys = ys” |

“app (Cons x xs) ys = Cons x (app xs ys)”

Australian
National

University

rec_list

Defined: automatically, first inductively (set), then by epsilon

(xs, xs") € list_rel f;
(Nil,) € list_rel f; £ (Cons x xs, f x xs xs') € list_rel f1 f,

reclist i f, xs = THE y. (xs, y) € list_rel f; f
Automatic proof that set def indeed is total function
(the equations for rec_list are lemmas!)

Australian
National

University

Predefined Datatypes

Australian
National

University

nat is a datatype

datatype nat = 0 | Suc nat
Functions on nat definable by primrec!
primrec

fo
f(Sucn) = ..fn..

20

Australian
National

University

Option

datatype 'a option = None | Some 'a

Important application:

‘o = ’'aoption ~ partial function:

None ~ noresult
Somea ~ resulta

Example:

primrec lookup :: '’k = ('k x 'v) list = v option
where

lookup k [] = None |

lookup k (x #xs) = (if fst x = k then Some (snd x) else lookup k xs)

21

Australian
= National
G2y University

22

	Datatypes
	Demo
	Recursion
	Predefined Datatypes
	Demo

