

COMP4011/8011 Advanced Topics in Formal Methods and Programming Languages

Software Verification with Isabelle/HOL –

Peter Höfner

August 18, 2024

Section 12

Induction

Structural induction

P xs holds for all lists xs if

- P Nil
- and for arbitrary x and xs, P xs ⇒ P (x#xs) Induction theorem list.induct:
 [P []; ∧ a list. P list ⇒ P (a#list)] ⇒ P list
- General proof method for induction: (induct x)
 - x must be a free variable in the first subgoal.
 - type of x must be a datatype.

Basic heuristics

Theorems about recursive functions are proved by induction

Induction on argument number i of f if f is defined by recursion on argument number i

4

Example

A tail recursive list reverse:

```
primrec itrev :: 'a list \Rightarrow 'a list \Rightarrow 'a list where itrev [] ys = ys | itrev (x\#xs) ys = itrev xs (x\#ys)
```

lemma itrev xs [] = rev xs

Ę

Demo

Proof Attempt

Generalisation

Replace constants by variables

lemma itrev $xs \ ys = \text{rev } xs @ys$

Quantify free variables by ∀ (except the induction variable)

lemma $\forall ys$. itrev $xs \ ys = \text{rev } xs@ys$

Or: apply (induct xs arbitrary: ys)

7

Exercises

- define a primitive recursive function Isum :: nat list ⇒ nat that returns the sum of the elements in a list.
- show "2 * Isum [0.. < Suc n] = n * (n + 1)"
- show "lsum (replicate $n \ a$) = n * a"
- define a function IsumT using a tail recursive version of listsum.
- show that the two functions are equivalent: Isum xs = IsumT xs