
COMP4011/8011
Advanced Topics in

Formal Methods and Programming Languages

– Software Verification with Isabelle/HOL –

Peter Höfner

August 18, 2024

1



Section 12

Induction

2



Structural induction

P xs holds for all lists xs if
• P Nil
• and for arbitrary x and xs, P xs =⇒ P (x#xs)

Induction theorem list.induct:
JP [];

∧
a list. P list =⇒ P (a#list)K =⇒ P list

• General proof method for induction: (induct x)
▶ x must be a free variable in the first subgoal.
▶ type of x must be a datatype.

3



Basic heuristics

Theorems about recursive functions are proved by induction

Induction on argument number i of f
if f is defined by recursion on argument number i

4



Example

A tail recursive list reverse:

primrec itrev :: ’a list ⇒ ’a list ⇒ ’a list
where
itrev [] ys = ys |
itrev (x#xs) ys = itrev xs (x#ys)

lemma itrev xs [] = rev xs

5



Demo

6



Proof Attempt

7



Generalisation

Replace constants by variables

lemma itrev xs ys = rev xs@ys

Quantify free variables by ∀
(except the induction variable)

lemma ∀ys. itrev xs ys = rev xs@ys

Or: apply (induct xs arbitrary: ys)

7



Exercises

• define a primitive recursive function lsum :: nat list ⇒ nat
that returns the sum of the elements in a list.

• show “2 ∗ lsum [0.. < Suc n] = n ∗ (n + 1)”
• show “lsum (replicate n a) = n ∗ a”
• define a function lsumT using a tail recursive version of listsum.
• show that the two functions are equivalent: lsum xs = lsumT xs

8


	Induction
	Demo


