COMP4011/8011
Advanced Topics in
Formal Methods and Programming Languages

— Software Verification with Isabelle/HOL —

Peter Hofner

August 18, 2024



Australian
“ajtionaj

Section 12

Induction



Australian

National
University

Structural induction

P xs holds for all lists xs if
« P Nil
« and for arbitrary x and xs, P xs => P (x#xs)
Induction theorem list.induct:
[P \alist. P list = P (a#tlist)] = P list
« General proof method for induction: (induct x)

» x must be a free variable in the first subgoal.
» type of x must be a datatype.



Australian
National

University

Basic heuristics

Theorems about recursive functions are proved by induction

Induction on argument number i of f
if f is defined by recursion on argument number /



Example

A tail recursive list reverse:

primrec itrev :: ’a list = ’a list = ’a list
where

itrev [] ys =ys|

itrev (x#xs) ys = itrev xs (x#ys)

lemma itrev xs [| = rev xs



Australian
= National
G2y University




Australian
&ly National

University

Proof Attempt



Australian
National

University

Generalisation

Replace constants by variables

lemma itrev xs ys = rev xsQys

Quantify free variables by V
(except the induction variable)

lemma Vys. itrev xs ys = rev xsQys

Or: apply (induct xs arbitrary: ys)



Australian
National

University

Exercises

define a primitive recursive function Isum :: nat list = nat
that returns the sum of the elements in a list.

show “2 x Isum [0.. < Suc n] = n*(n+1)”

show “Isum (replicate n a) = nx a”
define a function IsumT using a tail recursive version of listsum.
show that the two functions are equivalent: Isum xs = IsumT xs



	Induction
	Demo


