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Induction
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Structural induction

P xs holds for all lists xs if
« P Nil
« and for arbitrary x and xs, P xs => P (x#xs)
Induction theorem list.induct:
[P \alist. P list = P (a#tlist)] = P list
« General proof method for induction: (induct x)

» x must be a free variable in the first subgoal.
» type of x must be a datatype.
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Basic heuristics

Theorems about recursive functions are proved by induction

Induction on argument number i of f
if f is defined by recursion on argument number /



Example

A tail recursive list reverse:

primrec itrev :: ’a list = ’a list = ’a list
where

itrev [] ys =ys|

itrev (x#xs) ys = itrev xs (x#ys)

lemma itrev xs [| = rev xs
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Proof Attempt
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Generalisation

Replace constants by variables

lemma itrev xs ys = rev xsQys

Quantify free variables by V
(except the induction variable)

lemma Vys. itrev xs ys = rev xsQys

Or: apply (induct xs arbitrary: ys)
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Exercises

define a primitive recursive function Isum :: nat list = nat
that returns the sum of the elements in a list.

show “2 x Isum [0.. < Suc n] = n*(n+1)”

show “Isum (replicate n a) = nx a”
define a function IsumT using a tail recursive version of listsum.
show that the two functions are equivalent: Isum xs = IsumT xs
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