

COMP4011/8011 Advanced Topics in Formal Methods and Programming Languages

– Software Verification with Isabelle/HOL –

Peter Höfner

September 17, 2024

Section 13

[General Recursion](#page-1-0)

General Recursion

The Choice

- Limited expressiveness, automatic termination
	- ▶ **primrec**
- High expressiveness, termination proof may fail
	- ▶ **fun**
- High expressiveness, tweakable, termination proof manual
	- ▶ **function**

fun —Examples

```
fun sep :: "a \Rightarrow 'a list \Rightarrow 'a list"
where
     "sep a (x # y # zs) = x # a # sep a (y # zs)" |
     "sep a xs = xs"
fun ack :: "nat \Rightarrow nat \Rightarrow nat"
where
     "ack 0 n = Suc n" |
     "ack (Suc m) 0 = \text{ack m 1" }"ack (Suc m) (Suc n) = ack m (ack (Suc m) n)"
```


fun

• More permissive than **primrec**:

- \triangleright pattern matching in all parameters
- ▶ nested, linear constructor patterns
- \triangleright reads equations sequentially like in Haskell (top to bottom)
- \triangleright proves termination automatically in many cases (tries lexicographic order)
- Generates more theorems than **primrec**
- May fail to prove termination:
	- ▶ use **function (sequential)** instead
	- \blacktriangleright allows you to prove termination manually

[Demo](#page-5-0)

fun — Induction Principle

- Each **fun** definition induces an induction principle
- For each equation:

show P holds for lhs, provided P holds for each recursive call on rhs

• Example **sep.induct**:

$$
\llbracket \bigwedge a. P a \rrbracket; \land a w. P a [w];
$$

$$
\land a x y zs. P a (y \# zs) \Longrightarrow P a (x \# y \# zs);
$$

$$
\rrbracket \Longrightarrow P a xs
$$

Termination

Isabelle tries to prove termination automatically

- For most functions this works with a lexicographic termination relation.
- Sometimes not ⇒ error message with unsolved subgoal
- You can prove termination separately.

function (sequential) quicksort **where**

"quicksort $[] = []$ " "quicksort $(x \# xs) = (quicksort [y \leftarrow xs, y \leq x]) \mathbb{Q}[x] \mathbb{Q}(quicksort [y \leftarrow xs, x < y])$ " **by** pat completeness auto

termination

by (relation "measure length") (auto simp: less_Suc_eq_le)

[Demo](#page-8-0)

How does fun/function work?

Recall **primrec**:

- defined one recursion operator per datatype D
- inductive definition of its graph $(x, f, x) \in D_{\mathcal{I}}$ rel
- prove totality: $\forall x. \exists y. (x, y) \in D_{\mathcal{I}}$ rel
- prove uniqueness: $(x, y) \in D$ rel \Rightarrow $(x, z) \in D$ rel \Rightarrow $y = z$
- recursion operator for datatype D_{rec} , defined via THE.
- primrec: apply datatype recursion operator

How does fun/function work?

Similar strategy for **fun**:

- a new inductive definition for each **fun** f
- extract *recursion scheme* for equations in f
- define graph f_{rel} inductively, encoding recursion scheme
- prove totality $($ = termination)
- prove uniqueness (automatic)
- derive original equations from f_{rel}
- export induction scheme from f_{rel}

How does fun/function work?

function can separate and defer termination proof:

- skip proof of totality
- instead derive equations of the form: $x \in f$ dom \Rightarrow f $x = ...$
- similarly, conditional induction principle
- f dom $=$ acc f rel
- $acc =$ accessible part of f_{rel}
- the part that can be reached in finitely many steps
- termination = $\forall x. x \in f$ dom
- still have conditional equations for partial functions

[Demo](#page-12-0)

Proving Termination

termination fun_name sets up termination goal $\forall x \in \text{fun_name_dom}$

Three main proof methods:

- **lexicographic order** (default tried by **fun**)
- size_change (automated translation to simpler size-change graph¹)
- **relation R** (manual proof via well-founded relation)

¹C.S. Lee, N.D. Jones, A.M. Ben-Amram,

Well-Founded Orders

Definition

 \lt_r is well founded if well-founded induction holds $wf(_r) \equiv \forall P. (\forall x. (\forall y <_{r} x.P y) \rightarrow P x) \rightarrow (\forall x. P x)$

Well founded induction rule:

$$
\frac{\mathsf{wf}(<_r)\quad \bigwedge x.\ (\forall y <_r x.\ P\ y\big) \Longrightarrow P\ x}{P\ a}
$$

Alternative definition (equivalent):

there are no infinite descending chains, or (equivalent): every nonempty set has a minimal element wrt \lt_r min $(_r) Q x \equiv \forall y \in Q. y \nless r x$ wf $(_r)$ = $(\forall Q \neq \{\}$. $\exists m \in Q$. min r Q m)

Well-Founded Orders: Examples

- \bullet < on N is well founded well founded induction = complete induction
- > and ≤ on IN are **not** well founded
- $x \leq r$ y = x dvd y $\wedge x \neq 1$ on N is well founded the minimal elements are the prime numbers
- (a, b) \lt_r (x, y) = a $\lt_1 x \vee a = x \wedge b \lt_2 y$ is well founded if \lt_1 and \lt_2 are well founded
- $A \leq r$ $B = A \subset B \wedge$ finite B is well founded
- ⊆ and ⊂ in general are **not** well founded

More about well founded relations: *Term Rewriting and All That*

Extracting the Recursion Scheme

So far for termination. What about the recursion scheme? Not fixed anymore as in **primrec**.

Examples:

• **fun** fib **where**

fib $0 = 1$ fib $(Suc 0) = 1$ fib (Suc (Suc n)) = fib $n +$ fib (Suc n)

Recursion: Suc (Suc n) \rightsquigarrow n, Suc (Suc n) \rightsquigarrow Suc n

• **fun** f where $f x = (if x = 0 then 0 else f (x - 1) * 2)$

Recursion: $x \neq 0 \implies x \rightsquigarrow x - 1$

Extracting the Recursion Scheme

Higher Order:

• **datatype** 'a tree = Leaf 'a | Branch 'a tree list

fun treemap :: ('a \Rightarrow 'a) \Rightarrow 'a tree \Rightarrow 'a tree where treemap fn $(Leaf n) = Leaf (fn n)$ treemap fn (Branch I) = Branch (map (treemap fn) I)

Recursion: $x \in set I \implies (fn, Branch I) \rightsquigarrow (fn, x)$

How does Isabelle extract context information for the call?

Extracting the Recursion Scheme

Extracting context for equations ⇒ Congruence Rules!

Recall rule **if cong**:

$$
\llbracket \mathbf{b} = \mathbf{c}; \mathbf{c} \Longrightarrow \mathbf{x} = \mathbf{u}; \neg \mathbf{c} \Longrightarrow \mathbf{y} = \mathbf{v} \rrbracket \Longrightarrow
$$
\n(if **b** then **x** else **y**) = (if **c** then **u** else **v**)

Read: for transforming x, use b as context information, for y use $\neg b$. **In fun def:** for recursion in x, use b as context, for y use $\neg b$.

Congruence Rules for fun defs

The same works for function definitions.

declare my_rule[fundef_cong] (if cong already added by default)

Another example (higher-order): \llbracket xs = ys; \bigwedge x. x \in set ys \Longrightarrow f x = g x $\rrbracket \Longrightarrow$ map f xs = map g ys

Read: for recursive calls in f, f is called with elements of xs

[Demo](#page-20-0)

Further Reading

Alexander Krauss, *Automating Recursive Definitions and Termination Proofs in Higher-Order Logic.* PhD thesis, TU Munich, 2009.

<https://www21.in.tum.de/~krauss/papers/krauss-thesis.pdf>

- General recursion with **fun**/**function**
- Induction over recursive functions
- How **fun** works
- Termination, partial functions, congruence rules