
COMP4011/8011
Advanced Topics in

Formal Methods and Programming Languages

– Software Verification with Isabelle/HOL –

Peter Höfner

September 17, 2024

1



Section 13

General Recursion

2



General Recursion

The Choice

• Limited expressiveness, automatic termination
▶ primrec

• High expressiveness, termination proof may fail
▶ fun

• High expressiveness, tweakable, termination proof manual
▶ function

3



fun —Examples

fun sep :: “’a ⇒ ’a list ⇒ ’a list”
where

“sep a (x # y # zs) = x # a # sep a (y # zs)” |
“sep a xs = xs”

fun ack :: “nat ⇒ nat ⇒ nat”
where

“ack 0 n = Suc n” |
“ack (Suc m) 0 = ack m 1” |
“ack (Suc m) (Suc n) = ack m (ack (Suc m) n)”

4



fun

• More permissive than primrec:
▶ pattern matching in all parameters
▶ nested, linear constructor patterns
▶ reads equations sequentially like in Haskell (top to bottom)
▶ proves termination automatically in many cases

(tries lexicographic order)

• Generates more theorems than primrec

• May fail to prove termination:
▶ use function (sequential) instead
▶ allows you to prove termination manually

5



Demo

6



fun — Induction Principle

• Each fun definition induces an induction principle
• For each equation:

show P holds for lhs, provided P holds for each recursive call on rhs
• Example sep.induct:

J
∧
a. P a [];∧
a w . P a [w ];∧
a x y zs. P a (y#zs) =⇒ P a (x#y#zs);

K =⇒ P a xs

7



Termination

Isabelle tries to prove termination automatically
• For most functions this works with a lexicographic termination

relation.
• Sometimes not ⇒ error message with unsolved subgoal
• You can prove termination separately.

function (sequential) quicksort where
“quicksort [] = []” |
“quicksort (x#xs) = (quicksort [y ← xs. y ≤ x ])@[x ]@(quicksort [y ← xs. x < y ])”
by pat completeness auto

termination
by (relation “measure length”) (auto simp: less Suc eq le)

8



Demo

9



How does fun/function work?

Recall primrec:
• defined one recursion operator per datatype D

• inductive definition of its graph (x , f x) ∈ D rel

• prove totality: ∀x . ∃y . (x , y) ∈ D rel

• prove uniqueness: (x , y) ∈ D rel ⇒ (x , z) ∈ D rel ⇒ y = z

• recursion operator for datatype D rec , defined via THE .
• primrec: apply datatype recursion operator

10



How does fun/function work?

Similar strategy for fun:
• a new inductive definition for each fun f

• extract recursion scheme for equations in f

• define graph f rel inductively, encoding recursion scheme
• prove totality (= termination)
• prove uniqueness (automatic)
• derive original equations from f rel

• export induction scheme from f rel

11



How does fun/function work?

function can separate and defer termination proof:
• skip proof of totality
• instead derive equations of the form: x ∈ f dom ⇒ f x = ...

• similarly, conditional induction principle
• f dom = acc f rel

• acc = accessible part of f rel

• the part that can be reached in finitely many steps
• termination = ∀x . x ∈ f dom

• still have conditional equations for partial functions

12



Demo

13



Proving Termination

termination fun name sets up termination goal ∀x . x ∈ fun name dom

Three main proof methods:
• lexicographic order (default tried by fun)
• size change (automated translation to simpler size-change graph1)
• relation R (manual proof via well-founded relation)

1C.S. Lee, N.D. Jones, A.M. Ben-Amram,
The Size-change Principle for Program Termination, POPL 2001.

14



Well-Founded Orders

Definition
<r is well founded if well-founded induction holds
wf(<r ) ≡ ∀P. (∀x . (∀y <r x .P y) −→ P x) −→ (∀x . P x)

Well founded induction rule:
wf(<r )

∧
x . (∀y <r x . P y) =⇒ P x

P a

Alternative definition (equivalent):
there are no infinite descending chains, or (equivalent):
every nonempty set has a minimal element wrt <r

min (<r ) Q x ≡ ∀y ∈ Q. y ̸<r x
wf (<r ) = (∀Q ̸= {}. ∃m ∈ Q. min r Q m)

15



Well-Founded Orders: Examples

• < on IN is well founded
well founded induction = complete induction

• > and ≤ on IN are not well founded
• x <r y = x dvd y ∧ x ̸= 1 on IN is well founded

the minimal elements are the prime numbers
• (a, b) <r (x , y) = a <1 x ∨ a = x ∧ b <2 y is well founded

if <1 and <2 are well founded
• A <r B = A ⊂ B ∧ finite B is well founded
• ⊆ and ⊂ in general are not well founded

More about well founded relations: Term Rewriting and All That

16



Extracting the Recursion Scheme

So far for termination. What about the recursion scheme?
Not fixed anymore as in primrec.

Examples:
• fun fib where

fib 0 = 1 |
fib (Suc 0) = 1 |
fib (Suc (Suc n)) = fib n + fib (Suc n)

Recursion: Suc (Suc n) ; n, Suc (Suc n) ; Suc n
• fun f where f x = (if x = 0 then 0 else f (x - 1) * 2)

Recursion: x ̸= 0 =⇒ x ; x - 1

17



Extracting the Recursion Scheme

Higher Order:
• datatype ’a tree = Leaf ’a | Branch ’a tree list

fun treemap :: (’a ⇒ ’a) ⇒ ’a tree ⇒ ’a tree where
treemap fn (Leaf n) = Leaf (fn n) |
treemap fn (Branch l) = Branch (map (treemap fn) l)

Recursion: x ∈ set l =⇒ (fn, Branch l) ; (fn, x)

How does Isabelle extract context information for the call?

18



Extracting the Recursion Scheme

Extracting context for equations
⇒

Congruence Rules!

Recall rule if cong:

J b = c; c =⇒ x = u; ¬ c =⇒ y = v K =⇒
(if b then x else y) = (if c then u else v)

Read: for transforming x , use b as context information, for y use ¬b.
In fun def: for recursion in x, use b as context, for y use ¬b.

19



Congruence Rules for fun defs

The same works for function definitions.

declare my rule[fundef cong]
(if cong already added by default)

Another example (higher-order):
J xs = ys;

∧
x. x ∈ set ys =⇒ f x = g x K =⇒ map f xs = map g ys

Read: for recursive calls in f , f is called with elements of xs

20



Demo

21



Further Reading

Alexander Krauss,
Automating Recursive Definitions and Termination Proofs
in Higher-Order Logic.
PhD thesis, TU Munich, 2009.

https://www21.in.tum.de/~krauss/papers/krauss-thesis.pdf

22

https://www21.in.tum.de/~krauss/papers/krauss-thesis.pdf


We have seen ...

• General recursion with fun/function
• Induction over recursive functions
• How fun works
• Termination, partial functions, congruence rules

23


	General Recursion
	Demo
	Demo
	Demo
	Demo


