

COMP4011/8011 Advanced Topics in Formal Methods and Programming Languages

Software Verification with Isabelle/HOL –

Peter Höfner

September 17, 2024

Section 13

General Recursion

General Recursion

The Choice

- · Limited expressiveness, automatic termination
 - primrec
- · High expressiveness, termination proof may fail
 - ▶ fun
- · High expressiveness, tweakable, termination proof manual
 - function

fun —Examples

```
fun sep :: "'a ⇒ 'a list ⇒ 'a list"
where
    "sep a (x # y # zs) = x # a # sep a (y # zs)" |
    "sep a xs = xs"

fun ack :: "nat ⇒ nat ⇒ nat"
where
    "ack 0 n = Suc n" |
    "ack (Suc m) 0 = ack m 1" |
    "ack (Suc m) (Suc n) = ack m (ack (Suc m) n)"
```

4

fun

- More permissive than primrec:
 - pattern matching in all parameters
 - nested, linear constructor patterns
 - reads equations sequentially like in Haskell (top to bottom)
 - proves termination automatically in many cases (tries lexicographic order)
- Generates more theorems than primrec
- · May fail to prove termination:
 - use function (sequential) instead
 - allows you to prove termination manually

Demo

fun — Induction Principle

- Each fun definition induces an induction principle
- For each equation:

show P holds for Ihs, provided P holds for each recursive call on rhs

• Example sep.induct:

ŝ

Termination

Isabelle tries to prove termination automatically

- For most functions this works with a lexicographic termination relation.
- Sometimes not ⇒ error message with unsolved subgoal
- · You can prove termination separately.

function (sequential) quicksort where

```
"quicksort [] = []" |
```

"quicksort $(x \# xs) = (quicksort [y \leftarrow xs. y \le x])@[x]@(quicksort [y \leftarrow xs. x < y])$ " **by** pat_completeness auto

termination

by (relation "measure length") (auto simp: less_Suc_eq_le)

a

Demo

How does fun/function work?

Recall primrec:

- defined one recursion operator per datatype D
- inductive definition of its graph $(x, f x) \in D_{-rel}$
- prove totality: $\forall x. \exists y. (x, y) \in D_{-rel}$
- prove uniqueness: $(x, y) \in D_{-rel} \Rightarrow (x, z) \in D_{-rel} \Rightarrow y = z$
- recursion operator for datatype D_rec, defined via THE.
- primrec: apply datatype recursion operator

How does fun/function work?

Similar strategy for fun:

- a new inductive definition for each fun f
- extract recursion scheme for equations in f
- define graph f_rel inductively, encoding recursion scheme
- prove totality (= termination)
- prove uniqueness (automatic)
- derive original equations from f_rel
- export induction scheme from f_rel

How does fun/function work?

function can separate and defer termination proof:

- skip proof of totality
- instead derive equations of the form: $x \in f_dom \Rightarrow f \ x = ...$
- · similarly, conditional induction principle
- $f_dom = acc f_rel$
- acc = accessible part of f_rel
- the part that can be reached in finitely many steps
- termination = $\forall x. x \in f_dom$
- still have conditional equations for partial functions

Demo

Proving Termination

termination fun_name sets up termination goal $\forall x. \ x \in fun_name_dom$

Three main proof methods:

- lexicographic_order (default tried by fun)
- size_change (automated translation to simpler size-change graph¹)
- relation R (manual proof via well-founded relation)

¹C.S. Lee, N.D. Jones, A.M. Ben-Amram, The Size-change Principle for Program Termination, POPL 2001.

Well-Founded Orders

Definition

$$<_r$$
 is well founded if well-founded induction holds $wf(<_r) \equiv \forall P. \ (\forall x. \ (\forall y <_r x.P \ y) \longrightarrow P \ x) \longrightarrow (\forall x. \ P \ x)$

Well founded induction rule:

$$\frac{\operatorname{wf}(<_r) \quad \bigwedge x. \ (\forall y <_r x. \ P \ y) \Longrightarrow P \ x}{P \ a}$$

Alternative definition (equivalent):

there are no infinite descending chains, or (equivalent): every nonempty set has a minimal element wrt $<_r$

$$\min (<_r) Q x \equiv \forall y \in Q. \ y \not<_r x$$

$$\text{wf } (<_r) = (\forall Q \neq \{\}. \ \exists m \in Q. \ \min r \ Q \ m)$$

Well-Founded Orders: Examples

- < on N is well founded well founded induction = complete induction
- > and < on N are not well founded
- $x <_r y = x \text{ dvd } y \land x \neq 1 \text{ on } \mathbb{N} \text{ is well founded}$ the minimal elements are the prime numbers
- (a, b) <_r (x, y) = a <₁ x ∨ a = x ∧ b <₂ y is well founded if <₁ and <₂ are well founded
- $A <_r B = A \subset B \land \text{finite } B \text{ is well founded}$
- \subseteq and \subset in general are **not** well founded

More about well founded relations: Term Rewriting and All That

Extracting the Recursion Scheme

So far for termination. What about the recursion scheme? Not fixed anymore as in **primrec**.

Examples:

• fun fib where

```
fib 0 = 1 |
fib (Suc 0) = 1 |
fib (Suc (Suc n)) = fib n + fib (Suc n)
```

Recursion: Suc (Suc n) \rightsquigarrow n, Suc (Suc n) \rightsquigarrow Suc n

• **fun** f **where** f x = (if x = 0 then 0 else f (x - 1) * 2)

Recursion: $x \neq 0 \Longrightarrow x \rightsquigarrow x - 1$

Extracting the Recursion Scheme

Higher Order:

datatype 'a tree = Leaf 'a | Branch 'a tree list
 fun treemap :: ('a ⇒ 'a) ⇒ 'a tree ⇒ 'a tree where treemap fn (Leaf n) = Leaf (fn n) | treemap fn (Branch I) = Branch (map (treemap fn) I)

Recursion: $x \in \text{set } I \Longrightarrow (\text{fn, Branch I}) \rightsquigarrow (\text{fn, } x)$

How does Isabelle extract context information for the call?

Extracting the Recursion Scheme

Extracting context for equations

⇒
Congruence Rules!

Recall rule if_cong:

$$[\![b = c; c \Longrightarrow x = u; \neg c \Longrightarrow y = v]\!] \Longrightarrow$$
 (if b then x else y) = (if c then u else v)

Read: for transforming x, use b as context information, for y use $\neg b$. **In fun_def:** for recursion in x, use b as context, for y use $\neg b$.

Congruence Rules for fun_defs

The same works for function definitions.

declare my_rule[fundef_cong] (if_cong already added by default)

Another example (higher-order):

 $[\![xs = ys; \bigwedge x. \ x \in set \ ys \Longrightarrow f \ x = g \ x \]\!] \Longrightarrow map \ f \ xs = map \ g \ ys$

Read: for recursive calls in f, f is called with elements of xs

Demo

Further Reading

Alexander Krauss, Automating Recursive Definitions and Termination Proofs in Higher-Order Logic. PhD thesis, TU Munich, 2009.

https://www21.in.tum.de/~krauss/papers/krauss-thesis.pdf

We have seen ...

- General recursion with fun/function
- Induction over recursive functions
- How fun works
- Termination, partial functions, congruence rules