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Section 14

Sledgehammer and Co.
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Overview

Automatic Proof and Disproof

• Sledgehammer: automatic proofs
• Quickcheck: counter example by testing
• Nitpick: counter example by SAT

Based on slides by Jasmin Blanchette, Lukas Bulwahn, and Tobias Nipkow
(TUM).
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Automation

Dramatic improvements in fully automated proofs in the last 2 decades.

• First-order logic (ATP): Otter, Vampire, E, SPASS
• Propositional logic (SAT): MiniSAT, Chaff, RSat
• SAT modulo theory (SMT): CVC3/4/5, Yices, Z3

The key:
Efficient reasoning engines, and restricted logics.
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Automation in Isabelle

1980s rule applications, write ML code

1990s simplifier, automatic provers (blast, auto), arithmetic

2000s embrace external tools, but don’t trust them
(ATP/SMT/SAT)
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Sledgehammer

Sledgehammer:
• Connects Isabelle with ATPs and SMT solvers:

E, SPASS, Vampire, CVC4, Yices, Z3

• Simple invocation:
▶ Users don’t need to select or know facts
▶ or ensure the problem is first-order
▶ or know anything about the automated prover

• Exploits local parallelism and remote servers

6



Demo: Sledgehammer
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Sledgehammer Architecture
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Fact Selection

Provers perform poorly if given 1000s of facts.
• Best number of facts depends on the prover
• Need to take care which facts we give them
• Idea: order facts by relevance, give top n to prover

(n = 250, 1000, ...)
• Meng & Paulson method: lightweight, symbol-based filter
• Machine learning method:

look at previous proofs to get a probability of relevance
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From HOL to FOL

Source: higher-order, polymorphism, type classes
Target: first-order, untyped or simply-typed

• First-order:
▶ SK combinators, λ-lifting
▶ Explicit function application operator

• Encode types:
▶ Monomorphise (generate multiple instances), or
▶ Encode polymorphism on term level
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Reconstruction

We don’t want to trust the external provers.
Need to check/reconstruct proof.

• Re-find using Metis
Usually fast and reliable (sometimes too slow)

• Rerun external prover for trusted replay
Used for SMT. Re-runs prover each time!

• Recheck stored explicit external representation of proof
Used for SMT, no need to re-run. Fragile.

• Recast into structured Isar proof
Fast, not always readable.
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Judgement Day (up to 2013)

Evaluating Sledgehammer:
• 1240 goals out of 7 existing theories.
• How many can sledgehammer solve?

• 2010: E, SPASS, Vampire (for 5-120s). 46%
ESV × 5s ≈ V × 120s

• 2011: Add E-SInE, CVC2, Yices, Z3 (30s).
Z3 > V

• 2012: Better integration with SPASS. 64%
SPASS best (small margin)

• 2013: Machine learning for fact selection. 69%
Improves a few percent across provers.
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Evaluation

54%54%54%54% 46%

3 ATPs x 30s

2010
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Evaluation

54%54%54%54% 46%

3 ATPs x 30s

66%66%66%66%

34%

3 ATPs x 30 s
nontrivial goals

2010
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Evaluation

54%54%54%54% 46%

3 ATPs x 30s

66%66%66%66%

34%

3 ATPs x 30 s
nontrivial goals

2010

36%36%36%36%36%

64%

(4 ATPs + 3 SMTs) x 30s0s0s

50%50%50%50%50% 50%

(4 ATPs + 3 SMTs) x 30s
nontrivial goals

2012
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Judgement Day (2016)

919/1230 = 74%
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Sledgehammer rules!

Example application:
• Large Isabelle/HOL repository of algebras for modelling

imperative programs
(Kleene Algebra, Hoare logic, ..., ≈ 1000 lemmas)

• Intricate refinement and termination theorems
• Sledgehammer and Z3 automate algebraic proofs at

textbook level.

“The integration of ATP, SMT, and Nitpick is for our purposes very
very helpful.”
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Disproof
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Theorem proving and testing

Testing can show only the presence of errors,
but not their absence. (Dijkstra)

Testing cannot prove theorems, but it can refute conjectures!

Sad facts of life:
• Most lemma statements are wrong the first time.
• Theorem proving is expensive as a debugging technique.

Find counter examples automatically!
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Quickcheck

Lightweight validation by testing.

• Motivated by Haskell’s QuickCheck
• Uses Isabelle’s code generator
• Fast
• Runs in background, proves you wrong as you type.
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Quickcheck

Covers a number of testing approaches:

• Random and exhausting testing.
• Smart test data generators.
• Narrowing-based (symbolic) testing.

Creates test data generators automatically.
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Demo: Quickcheck
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Test generators for datatypes

Fast iteration in continuation-passing-style

datatype α list = Nil | Cons α (α list)

Test function:

testα list P = P Nil andalso testα (λx. testα list (λxs. P (Cons x xs)))
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Test generators for predicates

distinct xs =⇒ distinct (remove1 x xs)

Problem:
Exhaustive testing creates many useless test cases.

Solution:
Use definitions in precondition for smarter generator.
Only generate cases where distinct xs is true.

test-distinctα list P = P Nil andalso
testα (λx. test-distinctα list (if x /∈ xs then (λxs. P (Cons x xs))
else True))

Use data flow analysis to figure out which variables
must be computed and which generated.
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Narrowing

Symbolic execution with demand-driven refinement
• Test cases can contain variables
• If execution cannot proceed: instantiate with further

symbolic terms

Pays off if large search spaces can be discarded:
distinct (Cons 1 (Cons 1 x))

False for any x, no further instantiations for x necessary.

Implementation:
Lazy execution with outer refinement loop.
Many re-computations, but fast.
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Quickcheck Limitations

Only executable specifications!

• No equality on functions with infinite domain
• No axiomatic specifications
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Nitpick
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Nitpick

Finite model finder

• Based on SAT via Kodkod (backend of Alloy prover)
• Soundly approximates infinite types
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Nitpick Successes

• Algebraic methods
• C++ memory model
• Found soundness bugs in TPS and LEO-II

Fan mail:
“Last night I got stuck on a goal I was sure was a theorem. After
5–10 minutes I gave Nitpick a try, and within a few secs it had
found a splendid counterexample—despite the mess of locales
and type classes in the context!”
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Demo: Nitpick
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Automation Summary

• Proof: Sledgehammer
• Counter examples: Quickcheck
• Counter examples: Nitpick
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