
COMP4011/8011
Advanced Topics in

Formal Methods and Programming Languages

– Software Verification with Isabelle/HOL –

Peter Höfner

September 22, 2024

1



Section 14

Sledgehammer and Co.

2



Overview

Automatic Proof and Disproof

• Sledgehammer: automatic proofs
• Quickcheck: counter example by testing
• Nitpick: counter example by SAT

Based on slides by Jasmin Blanchette, Lukas Bulwahn, and Tobias Nipkow
(TUM).

3



Automation

Dramatic improvements in fully automated proofs in the last 2 decades.

• First-order logic (ATP): Otter, Vampire, E, SPASS
• Propositional logic (SAT): MiniSAT, Chaff, RSat
• SAT modulo theory (SMT): CVC3/4/5, Yices, Z3

The key:
Efficient reasoning engines, and restricted logics.

4



Automation in Isabelle

1980s rule applications, write ML code

1990s simplifier, automatic provers (blast, auto), arithmetic

2000s embrace external tools, but don’t trust them
(ATP/SMT/SAT)

5



Sledgehammer

Sledgehammer:
• Connects Isabelle with ATPs and SMT solvers:

E, SPASS, Vampire, CVC4, Yices, Z3

• Simple invocation:
▶ Users don’t need to select or know facts
▶ or ensure the problem is first-order
▶ or know anything about the automated prover

• Exploits local parallelism and remote servers

6



Demo: Sledgehammer

7



Sledgehammer Architecture

8



Fact Selection

Provers perform poorly if given 1000s of facts.
• Best number of facts depends on the prover
• Need to take care which facts we give them
• Idea: order facts by relevance, give top n to prover

(n = 250, 1000, ...)
• Meng & Paulson method: lightweight, symbol-based filter
• Machine learning method:

look at previous proofs to get a probability of relevance

9



From HOL to FOL

Source: higher-order, polymorphism, type classes
Target: first-order, untyped or simply-typed

• First-order:
▶ SK combinators, λ-lifting
▶ Explicit function application operator

• Encode types:
▶ Monomorphise (generate multiple instances), or
▶ Encode polymorphism on term level

10



Reconstruction

We don’t want to trust the external provers.
Need to check/reconstruct proof.

• Re-find using Metis
Usually fast and reliable (sometimes too slow)

• Rerun external prover for trusted replay
Used for SMT. Re-runs prover each time!

• Recheck stored explicit external representation of proof
Used for SMT, no need to re-run. Fragile.

• Recast into structured Isar proof
Fast, not always readable.

11



Judgement Day (up to 2013)

Evaluating Sledgehammer:
• 1240 goals out of 7 existing theories.
• How many can sledgehammer solve?

• 2010: E, SPASS, Vampire (for 5-120s). 46%
ESV × 5s ≈ V × 120s

• 2011: Add E-SInE, CVC2, Yices, Z3 (30s).
Z3 > V

• 2012: Better integration with SPASS. 64%
SPASS best (small margin)

• 2013: Machine learning for fact selection. 69%
Improves a few percent across provers.

12



Evaluation

54%54%54%54% 46%

3 ATPs x 30s

2010

13



Evaluation

54%54%54%54% 46%

3 ATPs x 30s

66%66%66%66%

34%

3 ATPs x 30 s
nontrivial goals

2010

14



Evaluation

54%54%54%54% 46%

3 ATPs x 30s

66%66%66%66%

34%

3 ATPs x 30 s
nontrivial goals

2010

36%36%36%36%36%

64%

(4 ATPs + 3 SMTs) x 30s0s0s

50%50%50%50%50% 50%

(4 ATPs + 3 SMTs) x 30s
nontrivial goals

2012

15



Judgement Day (2016)

919/1230 = 74%

16



Sledgehammer rules!

Example application:
• Large Isabelle/HOL repository of algebras for modelling

imperative programs
(Kleene Algebra, Hoare logic, ..., ≈ 1000 lemmas)

• Intricate refinement and termination theorems
• Sledgehammer and Z3 automate algebraic proofs at

textbook level.

“The integration of ATP, SMT, and Nitpick is for our purposes very
very helpful.”

17



Disproof

18



Theorem proving and testing

Testing can show only the presence of errors,
but not their absence. (Dijkstra)

Testing cannot prove theorems, but it can refute conjectures!

Sad facts of life:
• Most lemma statements are wrong the first time.
• Theorem proving is expensive as a debugging technique.

Find counter examples automatically!

19



Quickcheck

Lightweight validation by testing.

• Motivated by Haskell’s QuickCheck
• Uses Isabelle’s code generator
• Fast
• Runs in background, proves you wrong as you type.

20



Quickcheck

Covers a number of testing approaches:

• Random and exhausting testing.
• Smart test data generators.
• Narrowing-based (symbolic) testing.

Creates test data generators automatically.

21



Demo: Quickcheck

22



Test generators for datatypes

Fast iteration in continuation-passing-style

datatype α list = Nil | Cons α (α list)

Test function:

testα list P = P Nil andalso testα (λx. testα list (λxs. P (Cons x xs)))

23



Test generators for predicates

distinct xs =⇒ distinct (remove1 x xs)

Problem:
Exhaustive testing creates many useless test cases.

Solution:
Use definitions in precondition for smarter generator.
Only generate cases where distinct xs is true.

test-distinctα list P = P Nil andalso
testα (λx. test-distinctα list (if x /∈ xs then (λxs. P (Cons x xs))
else True))

Use data flow analysis to figure out which variables
must be computed and which generated.

24



Narrowing

Symbolic execution with demand-driven refinement
• Test cases can contain variables
• If execution cannot proceed: instantiate with further

symbolic terms

Pays off if large search spaces can be discarded:
distinct (Cons 1 (Cons 1 x))

False for any x, no further instantiations for x necessary.

Implementation:
Lazy execution with outer refinement loop.
Many re-computations, but fast.

25



Quickcheck Limitations

Only executable specifications!

• No equality on functions with infinite domain
• No axiomatic specifications

26



Nitpick

27



Nitpick

Finite model finder

• Based on SAT via Kodkod (backend of Alloy prover)
• Soundly approximates infinite types

28



Nitpick Successes

• Algebraic methods
• C++ memory model
• Found soundness bugs in TPS and LEO-II

Fan mail:
“Last night I got stuck on a goal I was sure was a theorem. After
5–10 minutes I gave Nitpick a try, and within a few secs it had
found a splendid counterexample—despite the mess of locales
and type classes in the context!”

29



Demo: Nitpick

30



Automation Summary

• Proof: Sledgehammer
• Counter examples: Quickcheck
• Counter examples: Nitpick

31


	Sledgehammer and Co.
	Demo: Sledgehammer
	Disproof
	Demo: Quickcheck
	Nitpick
	Demo: Nitpick


