

COMP4011/8011 Advanced Topics in Formal Methods and Programming Languages

- Software Verification with Isabelle/HOL -

Peter Höfner

September 22, 2024

Section 15

Isar (Part 2)

Datatypes in Isar

General Case Distinctions

```
show formula
proof -
    have P_1 \lor P_2 \lor P_3 <proof>
    moreover { assume P_1 ... have ?thesis <proof> }
    moreover { assume P_2 ... have ?thesis <proof> }
    moreover { assume P_3 ... have ?thesis <proof> }
    ultimately show ?thesis by blast
    qed
{ ... } is a proof block similar to proof ... qed
    { assume P_1 ... have P <proof> }
```

```
stands for P_1 \Longrightarrow P
```


Datatype case distinction

```
proof (cases term)

case Constructor<sub>1</sub>

:

next

:

next

case (Constructor_k \vec{x})

...\vec{x} ...

qed
```

case (Constructor_i \vec{x}) \equiv **fix** \vec{x} **assume** Constructor_i : "*term* = Constructor_i \vec{x} "

Structural induction for nat

```
show P n

proof (induct n)

case 0 \equiv let ?case = P 0

...

show ?case

next

case (Suc n) \equiv fix n assume Suc: P n

...

i...

show ?case

perform the state of the state o
```


Structural induction: \Longrightarrow and \land

```
show "\bigwedge x. A n \Longrightarrow P n"

proof (induct n)

case 0

...

show ?case

next

case (Suc n)

...

show ?case

qed
```

```
\equiv fix \times assume 0: "A 0" 
let ?case = "P 0"
```

```
\equiv \operatorname{fix} n \operatorname{and} x

\operatorname{assume} \operatorname{Suc:} ``(\land x. A n \Longrightarrow P n")

``A (\operatorname{Suc} n)"

\operatorname{let} ? case = ``P (\operatorname{Suc} n)"
```


Demo: Datatypes in Isar

Calculational Reasoning

The Goal

Prove: $x \cdot x^{-1} = 1$

using: assoc: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ left_inv: $x^{-1} \cdot x = 1$ left_one: $1 \cdot x = x$

The Goal

Prove:

$$x \cdot x^{-1} = 1 \cdot (x \cdot x^{-1})$$

$$\dots = 1 \cdot x \cdot x^{-1}$$

$$\dots = (x^{-1})^{-1} \cdot x^{-1} \cdot x \cdot x^{-1}$$

$$\dots = (x^{-1})^{-1} \cdot (x^{-1} \cdot x) \cdot x^{-1}$$

$$\dots = (x^{-1})^{-1} \cdot 1 \cdot x^{-1}$$

$$\dots = (x^{-1})^{-1} \cdot (1 \cdot x^{-1})$$

$$\dots = 1$$

assoc: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ left_inv: $x^{-1} \cdot x = 1$ left_one: $1 \cdot x = x$

Can we do this in Isabelle?

- Simplifier: too eager
- Manual: difficult in apply style
- · Isar: with the methods we know, too verbose

Chains of equations

The Problem

a = b $\dots = c$ $\dots = d$ shows a = d by transitivity of =

Each step usually nontrivial (requires own subproof) Solution in Isar:

- · Keywords also and finally to delimit steps
- ...: predefined schematic term variable, refers to right hand side of last expression
- Automatic use of transitivity rules to connect steps

also/finally

have " $t_0 = t_1$ " [proof]calculaalso" $t_0 = t_1$ "have "... = t_2 " [proof]" $t_0 = t_2$ "also" $t_0 = t_2$ "::also" $t_0 = t_1$ "::::::also" $t_0 = t_1$ "::</t

calculation register " $t_0 = t_1$ " " $t_0 = t_2$ " : " $t_0 = t_{n-1}$ " $t_0 = t_n$

More about also

- Works for all combinations of $=, \leq$ and <.
- Uses all rules declared as [trans].
- To view all combinations: print_trans_rules

Designing [trans] Rules have = " $r_1 \odot r_1$ " [proof] also have "... $\odot r_2$ " [proof] also

Anatomy of a [trans] rule:

- Usual form: plain transitivity $\llbracket l_1 \odot r_1; r_1 \odot r_2 \rrbracket \Longrightarrow l_1 \odot r_2$
- More general form: $\llbracket P \ I_1 \ r_1; Q \ r_1 \ r_2; A \rrbracket \Longrightarrow C \ I_1 \ r_2$

Examples:

- pure transitivity: $\llbracket a = b; b = c \rrbracket \implies a = c$
- mixed: $\llbracket a \leq b; b < c \rrbracket \Longrightarrow a < c$
- substitution: $\llbracket P \ a; a = b \rrbracket \Longrightarrow P \ b$
- antisymmetry: $\llbracket a < b; b < a \rrbracket \implies False$
- monotonicity:

 $\llbracket a = f \ b; b < c; \bigwedge x \ y. \ x < y \Longrightarrow f \ x < f \ y \rrbracket \Longrightarrow a < f \ c$

Demo

Finding Theorems

Command find_theorems (C-c C-f) finds combinations of:

- pattern: "_ + _ + _"
- Ihs of simp rules: simp: "_ * (_ + _)"
- intro/elim/dest on current goal
- lemma name: name: assoc
- exclusions thereof: -name: "HOL."

find_theorems dest -"hd" name: "List."

finds all theorems in the current context that

- match the goal as dest rule,
- · do not contain the constant "hd"
- are in the List theory (name starts with "List.")

Isar: define and defines

Can define vnameal constant in Isar proof context: **proof**

 $\begin{array}{l} \begin{array}{l} \begin{array}{l} \textbf{define "} f \equiv big term" \\ \textbf{have "} g = f x" \dots \end{array} \\ \\ \begin{array}{l} \text{like definition, not automatically unfolded (f_def)} \\ \\ \begin{array}{l} \text{different to let ?} f = "big term" \end{array} \end{array}$

Also available in lemma statement:

lemma ...: fixes ... assumes ... defines ... shows ...