2 University

COMP4011/8011
Advanced Topics in
Formal Methods and Programming Languages
— Software Verification with Isabelle/HOL —

Peter Hofner

September 22, 2024

| Australian
National

University

Section 15

Isar (Part 2)

Australian
National

University

Datatypes in Isar

Australian
National

University

General Case Distinctions

show formula

proof -
have P, v P, vV P; <proof>
moreover { assume P; ... have ?thesis <proof> }
moreover {assume P, ... have ?thesis <proof> }
moreover {assume P; ... have ?thesis <proof> }
ultimately show ?thesis by blast

qed

{ ...} is aproof block similar to proof ... qed

{assume P; ... have P <proof> }
stands for P, — P

Australian
National

University

Datatype case distinction

proof (cases term)
case Constructor,

next
next
case (Constructor, X)

X -

qed

case (Constructor; X) =
fix X assume Constructor; : “term = Constructor; X’

Australian
National

University

Structural induction for nat

show P n
proof (induct n)

case 0 let 7case =P 0

show ?case
next
case (Suc n) = fix nassume Suc: P n
let ?case = P (Suc n)
.n ...
show ?case
qed

Australian

National
w=— University

Structural induction: = and /\

show “Ax. An= P n’
proof (induct n)

case 0 = fix xassume 0: “A0”
. let 7case = “P 0”
show ?case
next
case (Suc n) = fix nand x
assume Suc: “Ax. An= P n’
e “A (Suc n)”

e let ?case = “P (Suc n)”
show ?case
qed

Australian
National

University

Demo: Datatypes in Isar

Australian
National

University

Calculational Reasoning

Australian
National

University

The Goal
Prove:
ool 1 using: assoc: (x-y)-z=x-(y-2)
leftinv: x71.-x=

leftone: 1-x=x

Australian

National
University

The Goal

Prove:
x-xt=1-(x-x71) assoc: (x-y)-z=x-(y-2z)
—1.x-x1 leftinv: x71.x=1
= (x) 1.xlox.x? leftone: 1-x=x
LN
- X—l —1.:([XX—I)
=X .
— X71 -1 X71
=1

Can we do this in Isabelle?
* Simplifier: too eager
* Manual: difficult in apply style
* |sar: with the methods we know, too verbose

Australian
National

University

Chains of equations

The Problem

b
c
d

shows a = d by transitivity of =

a

Each step usually nontrivial (requires own subproof)
Solution in Isar:

« Keywords also and finally to delimit steps

e ...: predefined schematic term variable,
refers to right hand side of last expression

» Automatic use of transitivity rules to connect steps

Australian

National
University

also/finally

have “to = t;” [proof] calculation register
also “to = t”

have “... = t,” [proof]

also “to = 87

also “to = ta_1"

have “-- = t,” [proof]

finally to = tp

show P

— ‘finally’ pipes fact “t; = t,” into the proof

Australian
National

= University

More about also

» Works for all combinations of =, < and <.
o Uses all rules declared as [trans].
e To view all combinations: print_trans_rules

Australian

National
University

Designing [trans] Rules
have = “h ©® r” [proof]
also
have “... ® " [proof]
also
Anatomy of a [trans] rule:
e Usual form: plain transitivity [0 n;n O n] = Lo n

e More generalform: [P r;Q@n rnAl = Chn

Examples:
e pure transitivity: [a=b;b=c] = a=c¢
emixed: [a< bhb<c]=a<c
substitution: [P a;a=b] = P b
antisymmetry: [a < b; b < a] = False

e monotonicity:
[a=fbb<cAxy. x<y=fx<fyl]=a<fc

Australian
= National
G2y University

Australian
National

University

Finding Theorems

Command find_theorems (C-c C-f) finds combinations of:
e pattern: ”_+ _+ "
e |hs of simp rules: simp: ”_* (_+)"

intro/elim/dest on current goal

¢ lemma name: name: assoc

exclusions thereof: -name: "HOL.”

find_theorems dest -’hd” name: "List.”

finds all theorems in the current context that
« match the goal as dest rule,
 do not contain the constant "hd”
« are in the List theory (name starts with "List.”)

Australian

National
University

Isar: define and defines

Can define vnameal constant in Isar proof context:
proof

define *f = big term”
have "g=fx" ...
like definition, not automatically unfolded (f_def)

different to let ?f = "big term”

Also available in lemma statement:

lemma ...:
fixes ...
assumes ...
defines ...
shows ...

	Isar (Part 2)
	Datatypes in Isar
	Demo: Datatypes in Isar
	Calculational Reasoning
	Demo

