
COMP4011/8011
Advanced Topics in

Formal Methods and Programming Languages

– Software Verification with Isabelle/HOL –

Peter Höfner

September 22, 2024

1

Section 15

Isar (Part 2)

2

Datatypes in Isar

3

General Case Distinctions

show formula
proof -

have P1 ∨ P2 ∨ P3 <proof>
moreover { assume P1 ... have ?thesis <proof> }
moreover { assume P2 ... have ?thesis <proof> }
moreover { assume P3 ... have ?thesis <proof> }
ultimately show ?thesis by blast

qed
{ . . . } is a proof block similar to proof ... qed

{ assume P1 . . . have P <proof> }
stands for P1 =⇒ P

4

Datatype case distinction

proof (cases term)
case Constructor1
...

next
...
next

case (Constructork x⃗)
· · · x⃗ · · ·

qed

case (Constructori x⃗) ≡
fix x⃗ assume Constructori : “term = Constructori x⃗”

5

Structural induction for nat

show P n
proof (induct n)

case 0 ≡ let ?case = P 0
. . .
show ?case

next
case (Suc n) ≡ fix n assume Suc: P n
. . . let ?case = P (Suc n)
· · · n · · ·
show ?case

qed

6

Structural induction: =⇒ and
∧

show “
∧
x . A n =⇒ P n”

proof (induct n)
case 0 ≡ fix x assume 0: “A 0”
. . . let ?case = “P 0”
show ?case

next
case (Suc n) ≡ fix n and x
. . . assume Suc: “

∧
x . A n =⇒ P n”

· · · n · · · “A (Suc n)”
. . . let ?case = “P (Suc n)”
show ?case

qed

7

Demo: Datatypes in Isar

8

Calculational Reasoning

9

The Goal

Prove:
x · x−1 = 1 using: assoc: (x · y) · z = x · (y · z)

left inv: x−1 · x = 1
left one: 1 · x = x

10

The Goal

Prove:
x · x−1 = 1 · (x · x−1)

... = 1 · x · x−1

... = (x−1)−1 · x−1 · x · x−1

... = (x−1)−1 · (x−1 · x) · x−1

... = (x−1)−1 · 1 · x−1

... = (x−1)−1 · (1 · x−1)

... = (x−1)−1 · x−1

... = 1

assoc: (x · y) · z = x · (y · z)
left inv: x−1 · x = 1

left one: 1 · x = x

Can we do this in Isabelle?
• Simplifier: too eager
• Manual: difficult in apply style
• Isar: with the methods we know, too verbose

11

Chains of equations

The Problem

a = b
... = c
... = d

shows a = d by transitivity of =

Each step usually nontrivial (requires own subproof)
Solution in Isar:

• Keywords also and finally to delimit steps
• . . . : predefined schematic term variable,

refers to right hand side of last expression
• Automatic use of transitivity rules to connect steps

12

also/finally

have “t0 = t1” [proof] calculation register
also “t0 = t1”
have “... = t2” [proof]
also “t0 = t2”
...

...
also “t0 = tn−1”
have “· · · = tn” [proof]
finally t0 = tn
show P
— ’finally’ pipes fact “t0 = tn” into the proof

13

More about also

• Works for all combinations of =, ≤ and <.
• Uses all rules declared as [trans].
• To view all combinations: print trans rules

14

Designing [trans] Rules
have = “l1 ⊙ r1” [proof]
also
have “...⊙ r2” [proof]
also

Anatomy of a [trans] rule:
• Usual form: plain transitivity Jl1 ⊙ r1; r1 ⊙ r2K =⇒ l1 ⊙ r2
• More general form: JP l1 r1;Q r1 r2;AK =⇒ C l1 r2

Examples:
• pure transitivity: Ja = b; b = cK =⇒ a = c

• mixed: Ja ≤ b; b < cK =⇒ a < c

• substitution: JP a; a = bK =⇒ P b

• antisymmetry: Ja < b; b < aK =⇒ False

• monotonicity:
Ja = f b; b < c ;

∧
x y . x < y =⇒ f x < f yK =⇒ a < f c

15

Demo

16

Finding Theorems
Command find theorems (C-c C-f) finds combinations of:

• pattern: ” + + ”
• lhs of simp rules: simp: ” * (+)”
• intro/elim/dest on current goal
• lemma name: name: assoc
• exclusions thereof: -name: ”HOL.”

find theorems dest -”hd” name: ”List.”

finds all theorems in the current context that
• match the goal as dest rule,
• do not contain the constant ”hd”
• are in the List theory (name starts with ”List.”)

17

Isar: define and defines

Can define vnameal constant in Isar proof context:
proof

...
define ”f ≡ big term”
have ”g = f x” ...

like definition, not automatically unfolded (f def)
different to let ?f = ”big term”

Also available in lemma statement:
lemma ...:

fixes ...
assumes ...
defines ...
shows ...

18

	Isar (Part 2)
	Datatypes in Isar
	Demo: Datatypes in Isar
	Calculational Reasoning
	Demo

