2 University

COMP4011/8011
Advanced Topics in
Formal Methods and Programming Languages
— Software Verification with Isabelle/HOL —

Peter Hofner

September 22, 2024

| Australian
National

University

Section 16

Floyd-Hoare Logic

Australian
National

University

Semantics (A Crash Course)

Australian
National

University

Further Details

» see Concrete Semantics

« COMP3610/6361 Principles of Programming Languages
https://comp.anu.edu.au/courses/comp3610/

https://comp.anu.edu.au/courses/comp3610/

Australian
National

University

IMP - a small Imperative Language

Commands:

datatype com = SKIP
Assign vname aexp
Semi com com
Cond bexp com com
While bexp com

string

type_synonym vname
vhame = nat

type_synonym state

state = nat

type_synonym aexp
state = bool

type_synonym bexp

=)

IF :)FHEN _ELSE)
WHILE _ DO _ OD)

Australian
National
University

Example Program

Usual syntax:

Expressions are functions from state to bool or nat:

B :=()\o.1);

WHILE (M\o. 0 A # 0) DO
B:=(Ao.0 Bxo A);
A=(N.c A-1)

oD

Australian
National

University

What does it do?

So far we have defined:
» Syntax of commands and expressions
« State of programs (function from variables to values)

Now we need: the meaning (semantics) of programs

How to define execution of a program?
» A wide field of its own
* Some choices:

» Operational (inductive relations, big step, small step)
» Denotational (programs as functions on states, state transformers)
» Axiomatic (pre-/post conditions, Hoare logic)

Australian
National

University

Structural Operational Semantics

(SKIP, o) — o

eoc=v
(x:=e,0) = o[x— V]

(c1,0) =0 (e,d)—d”

(c1;¢,0) = o

bo=True (c,0)— 0
(IF b THEN ¢; ELSE ¢;,0) — o'

bo =False (c,0) =0’
(IF b THEN ¢; ELSE ¢,0) — o’

Australian
National

University

Structural Operational Semantics

b o = False
(WHILE DO ¢ OD,0) — ¢

bo=True (c,0)— o (WHILEbDO cOD,o’) = o”
(WHILE b DO ¢ OD, o) — o”

Australian
National

University

Demo: The Definitions in Isabelle

Australian

National
University

Proofs about Programs

Now we know:
» What programs are: Syntax
e On what they work: State
» How they work: Semantics

So we can prove properties about programs

Example:
Show that example program from earlier implements the factorial.

lemma (factorial, o) — 0/ = 0’/B = fac (0 A)
(where fac0=1, fac(Suc n)= (Suc n) xfac n)

Australian
National

University

Demo: Example Proof

Australian
National

University

Too tedious

Induction needed for each loop

Is there something easier?

Australian
National

University

Floyd-Hoare Logic

Australian
National

University

Floyd-Hoare Logic

Idea: describe meaning of program by pre/post conditions
Examples:

{True} x:=2 {x=2}

{y=2} x:=21xy {x=142}

{x=n} IFy<OTHENx:=x+yELSEx:=x—y {x=n—|y|}
{A=n} factorial {B = facn}

Proofs: have rules that directly work on such triples

Australian
i National

University

Meaning of a Hoare-Triple
{P} ¢ {Q}
What are the assertions P and Q?

» Here: again functions from state to bool
(shallow embedding of assertions)

« Other choice: syntax and semantics for assertions
(deep embedding)

What does {P} ¢ {Q} mean?

Partial Correctness:

E{P}c{Q} = Voo .PoA{co)—d — Qo
Total Correctness:
E{P}c{Q} = (Moo .PoA{co)—cd —Qd)A

(Vo. Po — 3o’. {c,0) = &)

This lecture: partial correctness only (easier)

- Australian
i National

e 2y University

Hoare Rules

{P} SKIP {P} {P[x+— €]} x:=e {P}

{P}a {R} {R} o {Q}
{P} aic {Q}

{PAbla{Q} {PA-b}c{Q}
{P} IFhTHEN ¢, ELSEc, {Q}

{PAb}c{P} PA-b=Q
{P} WHILEbLDO cOD {Q}

P—=P {P}c{Q} @=@Q
{P} ¢ {Q}

-| Australian
s National

e 2y University

Hoare Rules

F{P} SKIP {P} F{Xo.P(o(x:=e0))} x:=e {P}

H{P}a {R} FH{R}{Q}
}—{P} 1, & {Q}
F{do.PoAbo}lc{Q} F{\o.PoA-bo}c{Q}
(P} IFbTHEN G ELSEcx {Q}

F{Xo.PoAbo}tc{P} No.PoA-bo= Qo
- (P} WHILEbLDO cOD {Q}

No.Po= P o F{P}c{Q} No. Qo= Qo
F{P} < {@}

Australian
National

University

Are the Rules Correct?

Soundness: F {P} c {Q} =F {P} c {Q}

Proof: by rule induction on + {P} ¢ {Q}

Demo: Hoare Logic in Isabelle

Australian
National

University

We have seen ...

Syntax of a simple imperative language
Operational semantics

Program proof on operational semantics
e Hoare logic rules

e Soundness of Hoare logic

20

Australian
National

University

Automation?

Hoare rule application is nicer than using operational semantics.

BUT:
« it’s still kind of tedious
« it seems boring & mechanical

Automation?

21

Australian

National
University

Invariant

Problem: While — need creativity to find right (invariant) P

Solution:
 annotate program with invariants
 then, Hoare rules can be applied automatically

Example:

(M=0AN =0}
WHILE M # aINV{N =M=« b} DON := N+ b;M:=M+10D
{N =axb}

22

Australian

National
University

Weakest Preconditions

pre c Q = weakest P such that {P} c {Q}

With annotated invariants, easy to get:

pre SKIP @

pre (x :=a) Q

pre (ci1;) Q

pre (IF b THEN ¢ ELSE) Q

Q

Ao. Q(o(x := ao))

pre c; (pre 2 Q)

Ao. (bo — prec; Qo) A
(—mbo — pre & Q o)

pre (WHILEbLINV /DO cOD)Q = |/

23

Australian
National

University

Verification Conditions

{pre ¢ Q} ¢ {Q} only true under certain conditions

These are called verification conditions vec ¢ Q:

ve SKIP @ = True
ve (x :==a) Q = True
ve (a;) Q = VvCca QA(vcc (pre o Q))
ve (IF b THEN ¢; ELSE) Q = Vvecag QAVCa Q
ve (WHILE bINV /DO cOD) Q = (Vo.lo Abo —s pre c | o)A
Vo. ;0’ A —=bo — Q o)A
VC ¢

vec QA (P=prec Q) = {P} c {Q}

24

Australian

National
University

Syntax Tricks

e x:=Xo.1 instead of x:=1 sucks
e {Ao.ox=n} insteadof {x = n} sucks as well

Problem: program variables are functions, not values
Solution: distinguish program variables syntactically

Choices:
 declare program variables with each Hoare triple
> nice, usual syntax
» works well if you state full program and only use veg
« separate program variables from Hoare triple (ext. records),
indicate usage as function syntactically

» more syntactic overhead
> program pieces compose nicely

25

Australian
= National
G2y University

26

Australian
National

University

Arrays

Depending on language, model arrays as functions:
 Array access = function application:

alil = ai
 Array update = function update:
afiji==v = a:i==a(ii=vVv)

Use lists to express length:
e Array access = nth:

alil = ali
 Array update = list update:
alil===v = a:==a[i=V]

« Array length = list length:
a.length = lengtha

27

Australian
National

University

Pointers
Choice 1
datatype ref = Ref int | Null
types heap =int= val
datatype val = Intint | Bool bool | Structx int int bool | ...

e hp :: heap, p :: ref

e Pointer access: *p = the._Int (hp (the_addr p))
e Pointer update: *p:==v = hp == hp ((the_addr p) :=v)
« a bit clunky

 gets even worse with structs
lots of value extraction (the_Int) in spec and program

28

Australian
National

University

Pointers
Choice 2 (Burstall '72, Bornat '00)

Example: struct with next pointer and element

datatype ref = Ref int | Null
types nexthp =int = ref
types elem_hp =int=int

e next :: next_hp, elem :: elem_hp, p :: ref

e Pointer access: p—next = next (the_addr p)
e Pointer update: p—next:==v = next :== next ((the_addr p) := v)
In general:

e a separate heap for each struct field
« buys you p—next # p—elem automatically (aliasing)
« still assumes type safe language

29

Australian
= National
G2y University

30

Australian
National

University

We have seen ...

Weakest precondition
Verification conditions

e Example program proofs
« Arrays, pointers

31

	Floyd-Hoare Logic
	Semantics (A Crash Course)
	Demo: The Definitions in Isabelle
	Demo: Example Proof
	Floyd-Hoare Logic
	Demo
	Demo

