
COMP4011/8011
Advanced Topics in

Formal Methods and Programming Languages

– Software Verification with Isabelle/HOL –

Peter Höfner

September 22, 2024

1

Section 16

Floyd-Hoare Logic

2

Semantics (A Crash Course)

3

Further Details

• see Concrete Semantics
• COMP3610/6361 Principles of Programming Languages
https://comp.anu.edu.au/courses/comp3610/

4

https://comp.anu.edu.au/courses/comp3610/

IMP - a small Imperative Language

Commands:

datatype com = SKIP
| Assign vname aexp (:=)
| Semi com com (;)
| Cond bexp com com (IF THEN ELSE)
| While bexp com (WHILE DO OD)

type synonym vname = string
type synonym state = vname ⇒ nat

type synonym aexp = state ⇒ nat
type synonym bexp = state ⇒ bool

5

Example Program

Usual syntax:
B := 1;
WHILE A ̸= 0 DO

B := B ∗ A;
A := A− 1

OD

Expressions are functions from state to bool or nat:
B := (λσ. 1);
WHILE (λσ. σ A ̸= 0) DO

B := (λσ. σ B ∗ σ A);
A := (λσ. σ A− 1)

OD

6

What does it do?

So far we have defined:
• Syntax of commands and expressions
• State of programs (function from variables to values)

Now we need: the meaning (semantics) of programs

How to define execution of a program?
• A wide field of its own
• Some choices:

▶ Operational (inductive relations, big step, small step)
▶ Denotational (programs as functions on states, state transformers)
▶ Axiomatic (pre-/post conditions, Hoare logic)

7

Structural Operational Semantics

⟨SKIP,σ⟩ → σ

e σ = v
⟨x := e,σ⟩ → σ[x 7→ v]

⟨c1,σ⟩ → σ′ ⟨c2,σ′⟩ → σ′′

⟨c1; c2,σ⟩ → σ′′

b σ = True ⟨c1,σ⟩ → σ′

⟨IF b THEN c1 ELSE c2,σ⟩ → σ′

b σ = False ⟨c2,σ⟩ → σ′

⟨IF b THEN c1 ELSE c2,σ⟩ → σ′

8

Structural Operational Semantics

b σ = False
⟨WHILE b DO c OD,σ⟩ → σ

b σ = True ⟨c ,σ⟩ → σ′ ⟨WHILE b DO c OD,σ′⟩ → σ′′

⟨WHILE b DO c OD,σ⟩ → σ′′

9

Demo: The Definitions in Isabelle

10

Proofs about Programs

Now we know:
• What programs are: Syntax
• On what they work: State
• How they work: Semantics

So we can prove properties about programs

Example:
Show that example program from earlier implements the factorial.

lemma ⟨factorial,σ⟩ → σ′ =⇒ σ′B = fac (σA)
(where fac 0 = 1, fac (Suc n) = (Suc n) ∗ fac n)

11

Demo: Example Proof

12

Too tedious

Induction needed for each loop

Is there something easier?

13

Floyd-Hoare Logic

14

Floyd-Hoare Logic

Idea: describe meaning of program by pre/post conditions

Examples:
{True} x := 2 {x = 2}
{y = 2} x := 21 ∗ y {x = 42}

{x = n} IF y < 0 THEN x := x + y ELSE x := x − y {x = n − |y |}

{A = n} factorial {B = fac n}

Proofs: have rules that directly work on such triples

15

Meaning of a Hoare-Triple
{P} c {Q}

What are the assertions P and Q?
• Here: again functions from state to bool

(shallow embedding of assertions)
• Other choice: syntax and semantics for assertions

(deep embedding)

What does {P} c {Q} mean?

Partial Correctness:
|= {P} c {Q} ≡ ∀σ σ′. P σ ∧ ⟨c ,σ⟩ → σ′ −→ Q σ′

Total Correctness:
|= {P} c {Q} ≡ (∀σ σ′. P σ ∧ ⟨c ,σ⟩ → σ′ −→ Q σ′) ∧

(∀σ. P σ −→ ∃σ′. ⟨c ,σ⟩ → σ′)

This lecture: partial correctness only (easier)
16

Hoare Rules

{P} SKIP {P} {P[x 7→ e]} x := e {P}

{P} c1 {R} {R} c2 {Q}
{P} c1; c2 {Q}

{P ∧ b} c1 {Q} {P ∧ ¬b} c2 {Q}
{P} IF b THEN c1 ELSE c2 {Q}

{P ∧ b} c {P} P ∧ ¬b =⇒ Q

{P} WHILE b DO c OD {Q}

P =⇒ P ′ {P ′} c {Q ′} Q ′ =⇒ Q

{P} c {Q}

17

Hoare Rules

⊢ {P} SKIP {P} ⊢ {λσ. P (σ(x := e σ))} x := e {P}

⊢ {P} c1 {R} ⊢ {R} c2 {Q}
⊢ {P} c1; c2 {Q}

⊢ {λσ. P σ ∧ b σ} c1 {Q} ⊢ {λσ. P σ ∧ ¬b σ} c2 {Q}
⊢ {P} IF b THEN c1 ELSE c2 {Q}

⊢ {λσ. P σ ∧ b σ} c {P}
∧
σ. P σ ∧ ¬b σ =⇒ Q σ

⊢ {P} WHILE b DO c OD {Q}∧
σ. P σ =⇒ P ′ σ ⊢ {P ′} c {Q ′}

∧
σ. Q ′ σ =⇒ Q σ

⊢ {P} c {Q}

18

Are the Rules Correct?

Soundness: ⊢ {P} c {Q} =⇒|= {P} c {Q}

Proof: by rule induction on ⊢ {P} c {Q}

Demo: Hoare Logic in Isabelle

19

We have seen ...

• Syntax of a simple imperative language
• Operational semantics
• Program proof on operational semantics
• Hoare logic rules
• Soundness of Hoare logic

20

Automation?

Hoare rule application is nicer than using operational semantics.

BUT:
• it’s still kind of tedious
• it seems boring & mechanical

Automation?

21

Invariant

Problem: While – need creativity to find right (invariant) P

Solution:
• annotate program with invariants
• then, Hoare rules can be applied automatically

Example:

{M = 0 ∧ N = 0}
WHILE M ̸= a INV {N = M ∗ b} DO N := N + b;M := M + 1 OD
{N = a ∗ b}

22

Weakest Preconditions

pre c Q = weakest P such that {P} c {Q}

With annotated invariants, easy to get:

pre SKIP Q = Q
pre (x := a) Q = λσ. Q(σ(x := aσ))
pre (c1; c2) Q = pre c1 (pre c2 Q)
pre (IF b THEN c1 ELSE c2) Q = λσ. (bσ −→ pre c1 Q σ) ∧

(¬bσ −→ pre c2 Q σ)
pre (WHILE b INV I DO c OD) Q = I

23

Verification Conditions

{pre c Q} c {Q} only true under certain conditions

These are called verification conditions vc c Q:

vc SKIP Q = True
vc (x := a) Q = True
vc (c1; c2) Q = vc c2 Q ∧ (vc c1 (pre c2 Q))
vc (IF b THEN c1 ELSE c2) Q = vc c1 Q ∧ vc c2 Q
vc (WHILE b INV I DO c OD) Q = (∀σ. Iσ ∧ bσ −→ pre c I σ)∧

(∀σ. Iσ ∧ ¬bσ −→ Q σ)∧
vc c I

vc c Q ∧ (P =⇒ pre c Q) =⇒ {P} c {Q}

24

Syntax Tricks
• x := λσ. 1 instead of x := 1 sucks
• {λσ. σ x = n} instead of {x = n} sucks as well

Problem: program variables are functions, not values

Solution: distinguish program variables syntactically

Choices:
• declare program variables with each Hoare triple

▶ nice, usual syntax
▶ works well if you state full program and only use vcg

• separate program variables from Hoare triple (ext. records),
indicate usage as function syntactically

▶ more syntactic overhead
▶ program pieces compose nicely

25

Demo

26

Arrays

Depending on language, model arrays as functions:
• Array access = function application:

a[i] = a i
• Array update = function update:

a[i] :== v = a :== a(i:= v)

Use lists to express length:
• Array access = nth:

a[i] = a ! i
• Array update = list update:

a[i] :== v = a :== a[i:= v]
• Array length = list length:

a.length = length a

27

Pointers

Choice 1

datatype ref = Ref int | Null
types heap = int ⇒ val
datatype val = Int int | Bool bool | Struct x int int bool | ...

• hp :: heap, p :: ref
• Pointer access: *p = the Int (hp (the addr p))
• Pointer update: *p :== v = hp :== hp ((the addr p) := v)

• a bit clunky
• gets even worse with structs
• lots of value extraction (the Int) in spec and program

28

Pointers
Choice 2 (Burstall ’72, Bornat ’00)

Example: struct with next pointer and element

datatype ref = Ref int | Null
types next hp = int ⇒ ref
types elem hp = int ⇒ int

• next :: next hp, elem :: elem hp, p :: ref
• Pointer access: p→next = next (the addr p)
• Pointer update: p→next :== v = next :== next ((the addr p) := v)

In general:
• a separate heap for each struct field
• buys you p→next ̸= p→elem automatically (aliasing)
• still assumes type safe language

29

Demo

30

We have seen ...

• Weakest precondition
• Verification conditions
• Example program proofs
• Arrays, pointers

31

	Floyd-Hoare Logic
	Semantics (A Crash Course)
	Demo: The Definitions in Isabelle
	Demo: Example Proof
	Floyd-Hoare Logic
	Demo
	Demo

