

COMP4011/8011 Advanced Topics in Formal Methods and Programming Languages

- Software Verification with Isabelle/HOL -

Peter Höfner

September 22, 2024

Section 16

Floyd-Hoare Logic

Semantics (A Crash Course)

Further Details

- see Concrete Semantics
- COMP3610/6361 Principles of Programming Languages https://comp.anu.edu.au/courses/comp3610/

IMP - a small Imperative Language

Commands:

datatype com		SKIP Assign vname aexp Semi com com Cond bexp com com While bexp com
type_synonym vname type_synonym state	=	string vname \Rightarrow nat

type_synonym aexp type_synonym bexp

- = state \Rightarrow nat
- = state \Rightarrow bool

(_; _) (IF _ THEN _ ELSE _) (WHILE _ DO _ OD)

Example Program

Usual syntax:

$$B := 1;$$

WHILE $A \neq 0$ DO
 $B := B * A;$
 $A := A - 1$
OD

Expressions are functions from state to bool or nat:

$$B := (\lambda \sigma. 1);$$

WHILE $(\lambda \sigma. \sigma A \neq 0)$ DO
 $B := (\lambda \sigma. \sigma B * \sigma A);$
 $A := (\lambda \sigma. \sigma A - 1)$
OD

What does it do?

So far we have defined:

- · Syntax of commands and expressions
- State of programs (function from variables to values)

Now we need: the meaning (semantics) of programs

How to define execution of a program?

- A wide field of its own
- Some choices:
 - Operational (inductive relations, big step, small step)
 - Denotational (programs as functions on states, state transformers)
 - Axiomatic (pre-/post conditions, Hoare logic)

Structural Operational Semantics

$$\langle \mathsf{SKIP}, \sigma \rangle \to \sigma$$

$$\frac{\mathsf{e}\,\sigma=\mathsf{v}}{\langle\mathsf{x}:=\mathsf{e},\sigma\rangle\to\sigma[\mathsf{x}\mapsto\mathsf{v}]}$$

$$\frac{\langle c_1, \sigma \rangle \to \sigma' \quad \langle c_2, \sigma' \rangle \to \sigma''}{\langle c_1; c_2, \sigma \rangle \to \sigma''}$$

$$\frac{b \ \sigma = \mathsf{True} \quad \langle c_1, \sigma \rangle \to \sigma'}{\langle \mathsf{IF} \ b \ \mathsf{THEN} \ c_1 \ \mathsf{ELSE} \ c_2, \sigma \rangle \to \sigma'}$$

$$\frac{b \ \sigma = \mathsf{False} \quad \langle c_2, \sigma \rangle \to \sigma'}{\langle \mathsf{IF} \ b \ \mathsf{THEN} \ c_1 \ \mathsf{ELSE} \ c_2, \sigma \rangle \to \sigma'}$$

Structural Operational Semantics

$$\frac{b \ \sigma = \mathsf{False}}{\langle \mathsf{WHILE} \ b \ \mathsf{DO} \ c \ \mathsf{OD}, \sigma \rangle \to \sigma}$$

 $\frac{b \ \sigma = \mathsf{True} \quad \langle c, \sigma \rangle \to \sigma' \quad \langle \mathsf{WHILE} \ b \ \mathsf{DO} \ c \ \mathsf{OD}, \sigma' \rangle \to \sigma''}{\langle \mathsf{WHILE} \ b \ \mathsf{DO} \ c \ \mathsf{OD}, \sigma \rangle \to \sigma''}$

Demo: The Definitions in Isabelle

Proofs about Programs

Now we know:

- What programs are: Syntax
- On what they work: State
- · How they work: Semantics

So we can prove properties about programs

Example:

Show that example program from earlier implements the factorial.

lemma
$$\langle \text{factorial}, \sigma \rangle \rightarrow \sigma' \Longrightarrow \sigma' B = \text{fac} (\sigma A)$$

(where fac $0 = 1$, fac (Suc n) = (Suc n) * fac n)

Demo: Example Proof

Too tedious

Induction needed for each loop

Is there something easier?

Floyd-Hoare Logic

Floyd-Hoare Logic

Idea: describe meaning of program by pre/post conditions

Examples:
{True}
$$x := 2$$
 { $x = 2$ }
{ $y = 2$ } $x := 21 * y$ { $x = 42$ }
{ $x = n$ } IF $y < 0$ THEN $x := x + y$ ELSE $x := x - y$ { $x = n - |y|$ }
{ $A = n$ } factorial { $B = \text{fac } n$ }

Proofs: have rules that directly work on such triples

Meaning of a Hoare-Triple $\{P\} c \{Q\}$

What are the assertions *P* and *Q*?

- Here: again functions from state to bool (shallow embedding of assertions)
- Other choice: syntax and semantics for assertions (deep embedding)

What does $\{P\} \ c \ \{Q\}$ mean?

Partial Correctness:

$$\models \{P\} \ c \ \{Q\} \quad \equiv \quad \forall \sigma \ \sigma'. \ P \ \sigma \land \langle c, \sigma \rangle \to \sigma' \longrightarrow Q \ \sigma'$$

Total Correctness:

$$\models \{P\} \ c \ \{Q\} \equiv (\forall \sigma \ \sigma'. \ P \ \sigma \land \langle c, \sigma \rangle \to \sigma' \longrightarrow Q \ \sigma') \land (\forall \sigma. \ P \ \sigma \longrightarrow \exists \sigma'. \ \langle c, \sigma \rangle \to \sigma')$$

This lecture: partial correctness only (easier)

Hoare Rules

$$\overline{\{P\}} \quad SKIP \quad \{P\} \qquad \overline{\{P[x \mapsto e]\}} \quad x := e \quad \{P\}$$

$$\frac{\{P\} \ c_1 \ \{R\} \quad \{R\} \ c_2 \ \{Q\}}{\{P\} \quad c_1; \ c_2 \quad \{Q\}}$$

$$\frac{\{P \land b\} \ c_1 \ \{Q\} \quad \{P \land \neg b\} \ c_2 \ \{Q\}}{\{P\} \quad IF \ b \ THEN \ c_1 \ ELSE \ c_2 \quad \{Q\}}$$

$$\frac{\{P \land b\} \ c \ \{P\} \quad P \land \neg b \Longrightarrow Q}{\{P\} \quad WHILE \ b \ DO \ c \ OD \quad \{Q\}}$$

$$\frac{P \Longrightarrow P' \quad \{P'\} \ c \ \{Q\}}{\{P\} \quad c \quad \{Q\}}$$

Hoare Rules

$$\overline{\vdash \{P\}} \quad SKIP \quad \{P\} \qquad \overline{\vdash \{\lambda\sigma. P(\sigma(x := e \sigma))\}} \quad x := e \quad \{P\}$$

$$\frac{\vdash \{P\} c_1 \{R\} \vdash \{R\} c_2 \{Q\}}{\vdash \{P\} c_1; c_2 \quad \{Q\}}$$

$$\frac{\vdash \{\lambda\sigma. P \sigma \land b \sigma\} c_1 \{Q\} \vdash \{\lambda\sigma. P \sigma \land \neg b \sigma\} c_2 \{Q\}}{\vdash \{P\} \quad IF \ b \ THEN \ c_1 \ ELSE \ c_2 \quad \{Q\}}$$

$$\frac{\vdash \{\lambda\sigma. P \sigma \land b \sigma\} c \{P\} \quad \land \sigma. P \sigma \land \neg b \sigma \Longrightarrow Q \sigma}{\vdash \{P\} \quad WHILE \ b \ DO \ c \ OD \quad \{Q\}}$$

$$\frac{\land \sigma. P \sigma \Longrightarrow P' \sigma \quad \vdash \{P'\} \ c \ \{Q\}}{\vdash \{P\} \quad c \quad \{Q\}}$$

Are the Rules Correct?

Soundness: \vdash {*P*} *c* {*Q*} \Longrightarrow \models {*P*} *c* {*Q*}

Proof: by rule induction on $\vdash \{P\} \ c \ \{Q\}$

Demo: Hoare Logic in Isabelle

We have seen ...

- Syntax of a simple imperative language
- Operational semantics
- Program proof on operational semantics
- · Hoare logic rules
- Soundness of Hoare logic

Automation?

Hoare rule application is nicer than using operational semantics.

BUT:

- it's still kind of tedious
- it seems boring & mechanical

Automation?

Invariant

Problem: While - need creativity to find right (invariant) P

Solution:

- annotate program with invariants
- then, Hoare rules can be applied automatically

Example:

$$\{M = 0 \land N = 0\}$$
WHILE $M \neq a$ INV $\{N = M * b\}$ DO $N := N + b$; $M := M + 1$ OD $\{N = a * b\}$

Weakest Preconditions

pre c Q = weakest P such that $\{P\} c \{Q\}$

With annotated invariants, easy to get:

pre SKIP Q = Q
pre (x := a) Q =
$$\lambda \sigma. Q(\sigma(x := a\sigma))$$

pre (c₁; c₂) Q = pre c₁ (pre c₂ Q)
pre (IF *b* THEN c₁ ELSE c₂) Q = $\lambda \sigma. (b\sigma \longrightarrow pre c_1 Q \sigma) \land$
($\neg b\sigma \longrightarrow pre c_2 Q \sigma$)
pre (WHILE *b* INV / DO *c* OD) Q = I

Verification Conditions

{pre $c \ Q$ } $c \ \{Q\}$ only true under certain conditions

These are called verification conditions vc c Q:

vc SKIP Q	=	True
$VC\ (x:=a)\ Q$	=	True
$vc\left(c_{1};c_{2}\right)Q$	=	$vc \ c_2 \ Q \land (vc \ c_1 \ (pre \ c_2 \ Q))$
vc (IF <i>b</i> THEN c_1 ELSE c_2) Q	=	vc $c_1 \; Q \wedge$ vc $c_2 \; Q$
vc (WHILE <i>b</i> INV <i>I</i> DO <i>c</i> OD) <i>Q</i>	=	$ \begin{array}{l} (\forall \sigma. \ I\sigma \land b\sigma \longrightarrow pre \ c \ I \ \sigma) \land \\ (\forall \sigma. \ I\sigma \land \neg b\sigma \longrightarrow Q \ \sigma) \land \\ vc \ c \ I \end{array} $

$$\mathsf{vc} \ c \ Q \land (P \Longrightarrow \mathsf{pre} \ c \ Q) \Longrightarrow \{P\} \ c \ \{Q\}$$

Syntax Tricks

- $x := \lambda \sigma$. 1 instead of x := 1 sucks
- $\{\lambda\sigma. \sigma x = n\}$ instead of $\{x = n\}$ sucks as well

Problem: program variables are functions, not values

Solution: distinguish program variables syntactically

Choices:

- declare program variables with each Hoare triple
 - nice, usual syntax
 - works well if you state full program and only use vcg
- separate program variables from Hoare triple (ext. records), indicate usage as function syntactically
 - more syntactic overhead
 - program pieces compose nicely

Demo

Arrays

Depending on language, model arrays as functions:

Array access = function application:

a[i] = a i

• Array update = function update:

a[i] :== v = a :== a(i:= v)

Use lists to express length:

- Array access = nth:
 - a[i] = a ! i
- Array update = list update:
 a[i] :== v = a :== a[i:= v]
- Array length = list length: a.length = length a

Pointers

Choice 1

datatype	ref	= Ref int Null
types	heap	= int \Rightarrow val
datatype	val	= Int int Bool bool Struct_x int int bool

- hp :: heap, p :: ref
- Pointer access: *p = the_Int (hp (the_addr p))
- Pointer update: *p :== v = hp :== hp ((the_addr p) := v)
- a bit clunky
- gets even worse with structs
- lots of value extraction (the_Int) in spec and program

Pointers Choice 2 (Burstall '72, Bornat '00)

Example: struct with next pointer and element

datatype	ref	= Ref int Null
types	next_hp	= int \Rightarrow ref
types	elem₋hp	= int \Rightarrow int

- next :: next_hp, elem :: elem_hp, p :: ref
- Pointer access: p→next = next (the_addr p)
- Pointer update: p→next :== v = next :== next ((the_addr p) := v)

In general:

- a separate heap for each struct field
- buys you $p \rightarrow next \neq p \rightarrow elem$ automatically (aliasing)
- still assumes type safe language

Demo

We have seen ...

- · Weakest precondition
- Verification conditions
- Example program proofs
- Arrays, pointers