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Section 18

AutoCorres and C Verification
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wp
apply (wp extra wp rules)

Tactic for automatic application of weakest precondition rules

• originally developed by Thomas Sewell, NICTA
• knows about a huge collection of existing wp rules for monads
• works best when precondition is a schematic variable
• related tool: wpc for Hoare reasoning over case statements

When used with AutoCorres, allows automated reasoning about C programs.

This Chapter: AutoCorres and C verification.
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Demo – Introduction to AutoCorres and wp
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A Brief Overview of C and Simpl
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C

Main new problems in verifying C programs:

• expressions with side effects
• more control flow (do/while, for, break, continue, return)
• local variables and blocks
• functions & procedures
• concrete C data types
• C memory model and C pointers

C is not a nice language for reasoning.

Things are going to get ugly.

AutoCorres will help.
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C Parser: translates C into Simpl
Simpl: deeply embedded imperative language in Isabelle.

• generic imperative language by Norbert Schirmer, TU Munich
• state space and basic expressions/statements can be instantiated
• has operational semantics
• has its own Hoare logic with soundness and completeness proof,

plus automated vcg

C Parser: parses C, produces Simpl definitions in Isabelle
• written by Michael Norrish, NICTA and ANU
• Handles a non-trivial subset of C
• Originally written to verify seL4’s C implementation
• AutoCorres is built on top of the C Parser
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Commands in Simpl

datatype (’s, ’p, ’f) com =

Skip

| Basic "’s ⇒ ’s"

| Spec "(’s * ’s) set"

| Seq "(’s, ’p, ’f) com" "(’s, ’p, ’f) com"

| Cond "’s set" "(’s, ’p, ’f) com" "(’s, ’p, ’f) com"

| While "’s set" "(’s, ’p, ’f) com"

| Call ’p

| DynCom "’s ⇒ (’s, ’p, ’f) com"

| Guard ’f "’s set" "(’s, ’p, ’f) com"

| Throw

| Catch "(’s, ’p, ’f) com" "(’s, ’p, ’f) com"

’s = state, ’p = procedure names, ’f = faults
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Expressions with side effects

a = a * b; x = f(h); i = ++i - i++; x = f(h) + g(x);

• a = a * b — Fine: easy to translate into Isabelle
• x = f(h) — Fine: may have side effects, but can be translated sanely.
• i = ++i - i++ — Seriously? What does that even mean? Make this

an error, force programmer to write instead:
i0 = i; i++; i = i - i0; (or just i = 1)

• x = f(h) + g(x) — Ok if g and h do not have any side effects
=⇒ Prove all functions in expressions are side-effect free

Alternative:
Explicitly model nondeterministic order of execution in expressions.
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Control flow

do { c } while (condition );

automatically translates into:

c; while (condition) { c }

Similarly:

fo r (init; condition; increment) { c }

becomes

init; while (condition) { c; increment; }
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More control flow: break/continue

while (condition) {

foo;

i f (Q) continue;
bar;

i f (P) break;
}

Non-local control flow: continue goes to condition, break goes to end.
Can be modelled with exceptions:

• throw exception ’continue’, catch at end of body.
• throw exception ’break’, catch after loop.
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Break/continue

Break/continue example becomes:

t r y {

while (condition) {

t r y {

foo;

i f (Q) { exception = ’continue ’; throw; }

bar;

i f (P) { exception = ’break’; throw; }

} catch { i f (exception == ’continue ’) SKIP else throw; }

}

} catch { i f (exception == ’break ’) SKIP else throw; }

This is not C any more. But it models C behaviour!
Need to be careful that only the translation has access to exception state.
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Return

i f (P) re turn x;

foo;

re turn y;

Similar non-local control flow. Similar solution: use throw/try/catch

t r y {

i f (P) { return_val = x; exception = ’return ’; throw; }

foo;

return_val = y; exception = ’return ’; throw;

} catch {

SKIP
}
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AutoCorres
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AutoCorres
AutoCorres: reduces the pain in reasoning about C code

• Written by David Greenaway, NICTA and UNSW
• Converts C/Simpl into (monadic) shallow embedding in Isabelle
• Shallow embedding easier to reason about than Simpl

Is self-certifying: produces Isabelle theorems proving its own
correctness

For each Simpl definition C and its generated shallow embedding A:
• AutoCorres proves an Isabelle theorem stating that C refines A

• Every behaviour of C has a corresponding behaviour of A
• Refinement guarantees that properties proved about A will also hold

for C .
• (Provided that A never fails. c.f. Total Correctness)
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AutoCorres Process

C99

Monadic
Conversion 

Local Var
Lifting

Type
Specialisation

L1Simpl

Parsing

L2 HL WA Output

Word
Abstraction

Heap
Abstraction

L1: initial monadic shallow embedding

L2: local variables introduced by λ-bindings

HL: heap state abstracted into a set of typed heaps

WA: machine words abstracted to idealised integers or nats

Output: human-readable output with type strengthening, polish

On-the-fly proof:
Simpl refines L1 refines L2 refines HL refines WA refines Output
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Example: C99

We will use the following example program to illustrate each of the
phases.

unsigned some_func(unsigned *a, unsigned *b, unsigned c) {

unsigned *p = NULL;

i f (c > 10u){

p = a;

} else {

p = b;

}

re turn *p;

}
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Example: Simpl

some_func_body ≡
TRY

´p :== ptr_coerce (Ptr (scast 0));;

I F 0xA < ´c THEN

´p :== ´a

ELSE

´p :== ´b

F I ;;

G u a r d C_Guard {|c_guard ´p|}
(creturn global_exn_var_ ’_update ret__unsigned_ ’_update

(λs. h_val (hrs_mem (t_hrs_ ’ (globals s))) (p_ ’ s)));;

G u a r d DontReach {} S K I P

CATCH S K I P END
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Example: L1 (monadic shallow embedding)

l1_some_func ≡ L1 seq ( L 1 i n i t ret__unsigned_ ’_update)
(L1 seq (L1 modify (p_ ’_update (λ_. ptr_coerce (Ptr (scast 0)))))

(L1 seq (L1 condi t ion (λs. 0xA < c_’ s)
(L1 modify (λs. s(|p_’ := a_ ’ s|)))
(L1 modify (λs. s(|p_’ := b_ ’ s|))))

(L1 seq (L1 guard (λs. c_guard (p_ ’ s)))
(L1 seq (L1 modify (λs. s(|ret__unsigned_ ’ :=

h_val (hrs_mem (t_hrs_ ’ (globals s))) (p_’ s)|)))
(L1 modify (global_exn_var_ ’_update (λ_. Return )))))))

State type is the same as Simpl, namely a record with fields:
• globals: heap and type information
• a ’, b ’, c ’, p ’ (parameters and local variables)
• ret unsigned ’, global exn var ’ (return value, exception type)
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Example: L2 (local variables lifted)

l2_some_func a b c ≡
L2 seq (L2 condi t ion (λs. 0xA < c)

(L2 gets (λs. a) [’’p’’])

(L2 gets (λs. b) [’’p’’]))

(λp. L2 seq (L2 guard (λs. c_guard p))

(λ_. L2 gets (λs. h_val (hrs_mem (t_hrs_ ’ s)) p) [’’ret ’’]))

State is a record with just the globals field
• function now takes its parameters as arguments
• local variable p now passed via λ-binding
• L2 gets annotated with local variable names
• This ensures preservation by later AutoCorres phases
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Example: HL (heap abstracted into typed heaps)

hl_some_func a b c ≡
L2 seq (L2 condi t ion (λs. 0xA < c)

(L2 gets (λs. a) [’’p’’])

(L2 gets (λs. b) [’’p’’]))

(λr. L2 seq (L2 guard (λs. is_valid_w32 s r))

(λ_. L2 gets (λs. heap_w32 s r) [’’ret ’’]))

State is a record with a set of is valid and heap fields:
• These store pointer validity and heap contents respectively, per

type
• above example has only 32-bit word pointers
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Heap Abstraction

f300

f301

f302

f303

f304

f305

f306

heap values

type tags

word8 heap

word16 heap

f2ff 44

47

e2

9d

a4

48

59

21

w8

w16

▴

w8

w16

▴

44

a4

e247

misaligned

   C Memory Model      AutoCorres Typed Heaps

C Memory Model: by Harvey Tuch
• Heap is a mapping from 32-bit addresses to bytes: 32 word⇒ 8 word
• Heap Type Description stores type information for each heap location
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Example: WA (words abstracted to ints and nats)
wa_some_func a b c ≡
L2 seq (L2 condi t ion (λs. 10 < c)

(L2 gets (λs. a) [’’p’’])

(L2 gets (λs. b) [’’p’’]))

(λr. L2 seq (L2 guard (λs. is_valid_w32 s r))

(λ_. L2 gets (λs. unat (heap_w32 s r)) [’’ret ’’]))

Word abstraction: C int → Isabelle int, C unsigned → Isabelle nat
• Guards inserted to ensure absence of unsigned underflow and

overflow
• Signed under/overflow already has guards (it has undefined

behaviour)

In the example, the unsigned argument c is now of type nat
• The function also returns a nat result
• The heap is not abstracted, hence the call to unat
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Example: Output (type strengthening and polish)
some_func ’ a b c ≡
DO p ← oreturn ( i f 10 < c then a else b);

oguard (λs. is_valid_w32 s p);

ogets (λs. unat (heap_w32 s p))

OD

Type Strengthening:
• Tries to convert output to a more restricted monad
• The above is in the option monad because it doesn’t modify the

state, but might fail
• The type of the option monad implies it cannot modify state

Polish:
• Simplify output as much as possible
• The condition has been rewritten to a return because the condition

10 < c doesn’t depend on the state
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Type Strengthening
Example:

unsigned zero(void ){ re turn 0u; }

Monad Type Kind Type Example
pure Pure function ’a 0
gets Read-only, non-failing ’s ⇒ ’a λs. 0
option Read-only function ’s ⇒ ’a option oreturn 0

Effect information now encoded in function types

Later proofs get this information for free!

Can be controlled by the ts force option of AutoCorres
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(Reader) Option Monad

Another standard monad, familiar from e.g. Haskell

Return:
oreturn x ≡ λs. Some x

Bind:
obind a b ≡ λs. case a s of None ⇒ None | Some r ⇒ b r s

• Infix notation: |>>
• Do notation: DO ... OD

Hoare Logic:
ovalid P f Q ≡ ∀ s r. P s ∧ f s = Some r −→ Q r s

ovalid (P x) (oreturn x) P

∧
r. ovalid (R r) (g r) Q ovalid P f R

ovalid P (f |>> g) Q
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Exception Monad
Exceptions used to model early return, break and continue.

Exception Monad: ’s ⇒ ((’e + ’a) × ’s) set × bool
• Instance of the nondeterministic state monad: return-value type is

sum type ’e + ’a
• Sum Type Constructors: Inl :: ’e ⇒ ’e + ’a Inr :: ’a ⇒ ’e + ’a
• Convention: Inl used for exceptions, Inr used for ordinary

return-values

Basic Monadic Operations

returnOk x ≡ return (Inr x) throwError e ≡ return (Inl e)
lift b ≡ (λx. case x of Inl e ⇒ throwError e | Inr r ⇒ b r)

bindE: a >>=E b ≡ a >>= (lift b) Do notation: doE ... odE
27



Hoare Rules for Exceptions
New kind of Hoare triples to model normal and exceptional cases:

{|P |} f {|Q |}, {|E |}
≡

{|P |} f {|λx s. case x of Inl e ⇒ E e s | Inr r ⇒ Q r s |}

Weakest Precondition Rules:

{|P x|} returnOk x {|P|},{|E|} {|E e|} throwError e {|P|},{|E|}∧
x. {|R x|} b x {|Q|},{|E|} {|P|} a {|R|},{|E|}

{|P|} a >>=E b {|Q|},{|E|}

(other rules analogous)
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We have seen

• The automated proof method wp
• The C Parser and translating C into Simpl
• AutoCorres and translating Simpl into monadic form
• The option and exception monads
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