
COMP4011/8011
Advanced Topics in

Formal Methods and Programming Languages

– Software Verification with Isabelle/HOL –

Peter Höfner

October 5, 2024

1

Section 18

AutoCorres and C Verification

2

wp
apply (wp extra wp rules)

Tactic for automatic application of weakest precondition rules

• originally developed by Thomas Sewell, NICTA
• knows about a huge collection of existing wp rules for monads
• works best when precondition is a schematic variable
• related tool: wpc for Hoare reasoning over case statements

When used with AutoCorres, allows automated reasoning about C programs.

This Chapter: AutoCorres and C verification.

3

Demo – Introduction to AutoCorres and wp

4

A Brief Overview of C and Simpl

5

C

Main new problems in verifying C programs:

• expressions with side effects
• more control flow (do/while, for, break, continue, return)
• local variables and blocks
• functions & procedures
• concrete C data types
• C memory model and C pointers

C is not a nice language for reasoning.

Things are going to get ugly.

AutoCorres will help.

6

C Parser: translates C into Simpl
Simpl: deeply embedded imperative language in Isabelle.

• generic imperative language by Norbert Schirmer, TU Munich
• state space and basic expressions/statements can be instantiated
• has operational semantics
• has its own Hoare logic with soundness and completeness proof,

plus automated vcg

C Parser: parses C, produces Simpl definitions in Isabelle
• written by Michael Norrish, NICTA and ANU
• Handles a non-trivial subset of C
• Originally written to verify seL4’s C implementation
• AutoCorres is built on top of the C Parser

7

Commands in Simpl

datatype (’s, ’p, ’f) com =

Skip

| Basic "’s ⇒ ’s"

| Spec "(’s * ’s) set"

| Seq "(’s, ’p, ’f) com" "(’s, ’p, ’f) com"

| Cond "’s set" "(’s, ’p, ’f) com" "(’s, ’p, ’f) com"

| While "’s set" "(’s, ’p, ’f) com"

| Call ’p

| DynCom "’s ⇒ (’s, ’p, ’f) com"

| Guard ’f "’s set" "(’s, ’p, ’f) com"

| Throw

| Catch "(’s, ’p, ’f) com" "(’s, ’p, ’f) com"

’s = state, ’p = procedure names, ’f = faults

8

Expressions with side effects

a = a * b; x = f(h); i = ++i - i++; x = f(h) + g(x);

• a = a * b — Fine: easy to translate into Isabelle
• x = f(h) — Fine: may have side effects, but can be translated sanely.
• i = ++i - i++ — Seriously? What does that even mean? Make this

an error, force programmer to write instead:
i0 = i; i++; i = i - i0; (or just i = 1)

• x = f(h) + g(x) — Ok if g and h do not have any side effects
=⇒ Prove all functions in expressions are side-effect free

Alternative:
Explicitly model nondeterministic order of execution in expressions.

9

Control flow

do { c } while (condition);

automatically translates into:

c; while (condition) { c }

Similarly:

fo r (init; condition; increment) { c }

becomes

init; while (condition) { c; increment; }

10

More control flow: break/continue

while (condition) {

foo;

i f (Q) continue;
bar;

i f (P) break;
}

Non-local control flow: continue goes to condition, break goes to end.
Can be modelled with exceptions:

• throw exception ’continue’, catch at end of body.
• throw exception ’break’, catch after loop.

11

Break/continue

Break/continue example becomes:

t r y {

while (condition) {

t r y {

foo;

i f (Q) { exception = ’continue ’; throw; }

bar;

i f (P) { exception = ’break’; throw; }

} catch { i f (exception == ’continue ’) SKIP else throw; }

}

} catch { i f (exception == ’break ’) SKIP else throw; }

This is not C any more. But it models C behaviour!
Need to be careful that only the translation has access to exception state.

12

Return

i f (P) re turn x;

foo;

re turn y;

Similar non-local control flow. Similar solution: use throw/try/catch

t r y {

i f (P) { return_val = x; exception = ’return ’; throw; }

foo;

return_val = y; exception = ’return ’; throw;

} catch {

SKIP
}

13

AutoCorres

14

AutoCorres
AutoCorres: reduces the pain in reasoning about C code

• Written by David Greenaway, NICTA and UNSW
• Converts C/Simpl into (monadic) shallow embedding in Isabelle
• Shallow embedding easier to reason about than Simpl

Is self-certifying: produces Isabelle theorems proving its own
correctness

For each Simpl definition C and its generated shallow embedding A:
• AutoCorres proves an Isabelle theorem stating that C refines A

• Every behaviour of C has a corresponding behaviour of A
• Refinement guarantees that properties proved about A will also hold

for C .
• (Provided that A never fails. c.f. Total Correctness)

15

AutoCorres Process

C99

Monadic
Conversion

Local Var
Lifting

Type
Specialisation

L1Simpl

Parsing

L2 HL WA Output

Word
Abstraction

Heap
Abstraction

L1: initial monadic shallow embedding

L2: local variables introduced by λ-bindings

HL: heap state abstracted into a set of typed heaps

WA: machine words abstracted to idealised integers or nats

Output: human-readable output with type strengthening, polish

On-the-fly proof:
Simpl refines L1 refines L2 refines HL refines WA refines Output

16

Example: C99

We will use the following example program to illustrate each of the
phases.

unsigned some_func(unsigned *a, unsigned *b, unsigned c) {

unsigned *p = NULL;

i f (c > 10u){

p = a;

} else {

p = b;

}

re turn *p;

}

17

Example: Simpl

some_func_body ≡
TRY

´p :== ptr_coerce (Ptr (scast 0));;

I F 0xA < ´c THEN

´p :== ´a

ELSE

´p :== ´b

F I ;;

G u a r d C_Guard {|c_guard ´p|}
(creturn global_exn_var_ ’_update ret__unsigned_ ’_update

(λs. h_val (hrs_mem (t_hrs_ ’ (globals s))) (p_ ’ s)));;

G u a r d DontReach {} S K I P

CATCH S K I P END

18

Example: L1 (monadic shallow embedding)

l1_some_func ≡ L1 seq (L 1 i n i t ret__unsigned_ ’_update)
(L1 seq (L1 modify (p_ ’_update (λ_. ptr_coerce (Ptr (scast 0)))))

(L1 seq (L1 condi t ion (λs. 0xA < c_’ s)
(L1 modify (λs. s(|p_’ := a_ ’ s|)))
(L1 modify (λs. s(|p_’ := b_ ’ s|))))

(L1 seq (L1 guard (λs. c_guard (p_ ’ s)))
(L1 seq (L1 modify (λs. s(|ret__unsigned_ ’ :=

h_val (hrs_mem (t_hrs_ ’ (globals s))) (p_’ s)|)))
(L1 modify (global_exn_var_ ’_update (λ_. Return)))))))

State type is the same as Simpl, namely a record with fields:
• globals: heap and type information
• a ’, b ’, c ’, p ’ (parameters and local variables)
• ret unsigned ’, global exn var ’ (return value, exception type)

19

Example: L2 (local variables lifted)

l2_some_func a b c ≡
L2 seq (L2 condi t ion (λs. 0xA < c)

(L2 gets (λs. a) [’’p’’])

(L2 gets (λs. b) [’’p’’]))

(λp. L2 seq (L2 guard (λs. c_guard p))

(λ_. L2 gets (λs. h_val (hrs_mem (t_hrs_ ’ s)) p) [’’ret ’’]))

State is a record with just the globals field
• function now takes its parameters as arguments
• local variable p now passed via λ-binding
• L2 gets annotated with local variable names
• This ensures preservation by later AutoCorres phases

20

Example: HL (heap abstracted into typed heaps)

hl_some_func a b c ≡
L2 seq (L2 condi t ion (λs. 0xA < c)

(L2 gets (λs. a) [’’p’’])

(L2 gets (λs. b) [’’p’’]))

(λr. L2 seq (L2 guard (λs. is_valid_w32 s r))

(λ_. L2 gets (λs. heap_w32 s r) [’’ret ’’]))

State is a record with a set of is valid and heap fields:
• These store pointer validity and heap contents respectively, per

type
• above example has only 32-bit word pointers

21

Heap Abstraction

f300

f301

f302

f303

f304

f305

f306

heap values

type tags

word8 heap

word16 heap

f2ff 44

47

e2

9d

a4

48

59

21

w8

w16

▴

w8

w16

▴

44

a4

e247

misaligned

 C Memory Model AutoCorres Typed Heaps

C Memory Model: by Harvey Tuch
• Heap is a mapping from 32-bit addresses to bytes: 32 word⇒ 8 word
• Heap Type Description stores type information for each heap location

22

Example: WA (words abstracted to ints and nats)
wa_some_func a b c ≡
L2 seq (L2 condi t ion (λs. 10 < c)

(L2 gets (λs. a) [’’p’’])

(L2 gets (λs. b) [’’p’’]))

(λr. L2 seq (L2 guard (λs. is_valid_w32 s r))

(λ_. L2 gets (λs. unat (heap_w32 s r)) [’’ret ’’]))

Word abstraction: C int → Isabelle int, C unsigned → Isabelle nat
• Guards inserted to ensure absence of unsigned underflow and

overflow
• Signed under/overflow already has guards (it has undefined

behaviour)

In the example, the unsigned argument c is now of type nat
• The function also returns a nat result
• The heap is not abstracted, hence the call to unat

23

Example: Output (type strengthening and polish)
some_func ’ a b c ≡
DO p ← oreturn (i f 10 < c then a else b);

oguard (λs. is_valid_w32 s p);

ogets (λs. unat (heap_w32 s p))

OD

Type Strengthening:
• Tries to convert output to a more restricted monad
• The above is in the option monad because it doesn’t modify the

state, but might fail
• The type of the option monad implies it cannot modify state

Polish:
• Simplify output as much as possible
• The condition has been rewritten to a return because the condition

10 < c doesn’t depend on the state

24

Type Strengthening
Example:

unsigned zero(void){ re turn 0u; }

Monad Type Kind Type Example
pure Pure function ’a 0
gets Read-only, non-failing ’s ⇒ ’a λs. 0
option Read-only function ’s ⇒ ’a option oreturn 0

Effect information now encoded in function types

Later proofs get this information for free!

Can be controlled by the ts force option of AutoCorres

25

(Reader) Option Monad

Another standard monad, familiar from e.g. Haskell

Return:
oreturn x ≡ λs. Some x

Bind:
obind a b ≡ λs. case a s of None ⇒ None | Some r ⇒ b r s

• Infix notation: |>>
• Do notation: DO ... OD

Hoare Logic:
ovalid P f Q ≡ ∀ s r. P s ∧ f s = Some r −→ Q r s

ovalid (P x) (oreturn x) P

∧
r. ovalid (R r) (g r) Q ovalid P f R

ovalid P (f |>> g) Q

26

Exception Monad
Exceptions used to model early return, break and continue.

Exception Monad: ’s ⇒ ((’e + ’a) × ’s) set × bool
• Instance of the nondeterministic state monad: return-value type is

sum type ’e + ’a
• Sum Type Constructors: Inl :: ’e ⇒ ’e + ’a Inr :: ’a ⇒ ’e + ’a
• Convention: Inl used for exceptions, Inr used for ordinary

return-values

Basic Monadic Operations

returnOk x ≡ return (Inr x) throwError e ≡ return (Inl e)
lift b ≡ (λx. case x of Inl e ⇒ throwError e | Inr r ⇒ b r)

bindE: a >>=E b ≡ a >>= (lift b) Do notation: doE ... odE
27

Hoare Rules for Exceptions
New kind of Hoare triples to model normal and exceptional cases:

{|P |} f {|Q |}, {|E |}
≡

{|P |} f {|λx s. case x of Inl e ⇒ E e s | Inr r ⇒ Q r s |}

Weakest Precondition Rules:

{|P x|} returnOk x {|P|},{|E|} {|E e|} throwError e {|P|},{|E|}∧
x. {|R x|} b x {|Q|},{|E|} {|P|} a {|R|},{|E|}

{|P|} a >>=E b {|Q|},{|E|}

(other rules analogous)

28

We have seen

• The automated proof method wp
• The C Parser and translating C into Simpl
• AutoCorres and translating Simpl into monadic form
• The option and exception monads

29

	AutoCorres and C Verification
	Demo – Introduction to AutoCorres and wp
	A Brief Overview of C and Simpl
	AutoCorres

