

COMP4011/8011 Advanced Topics in Formal Methods and Programming Languages

Software Verification with Isabelle/HOL –

Peter Höfner

October 6, 2024

1

Section 20

Summary

The Big Picture

- · Foundations & Principles
 - Intro, Lambda calculus, natural deduction
 - ► Higher Order Logic, Isar (part 1)
 - Term rewriting
- Proof & Specification Techniques
 - Inductively defined sets, rule induction
 - Datatype induction, primitive recursion
 - General recursive functions, termination proofs
 - Proof automation, Isar (part 2)
 - Hoare logic, proofs about programs, invariants

Lambda Calculus

- λ calculus syntax
- · free variables, substitution
- β reduction
- α and η conversion
- β reduction is confluent
- λ calculus is very expressive (Turing complete)
- λ calculus results in an inconsistent logic

Simple Typed Lambda Calculus

- Simply typed lambda calculus: λ[→]
- Typing rules for λ^{\rightarrow} , type variables, type contexts
- β -reduction in λ^{\rightarrow} satisfies subject reduction
- β -reduction in λ^{\rightarrow} always terminates
- Types and terms in Isabelle

Proofs in Isabelle

- natural deduction rules for \land , \lor , \longrightarrow , \neg , iff...
- · proof by assumption, by intro rule, elim rule
- · safe and unsafe rules
- indent your proofs! (one space per subgoal)
- prefer implicit backtracking (chaining) or rule_tac, instead of back
- prefer and defer
- oops and sorry

Isar

- · Isar style proofs
- · proof, qed
- · assumes, shows
- · fix, obtain
- moreover, ultimately
- forward, backward
- · mixing proof styles

Higher Order Logic (HOL)

- Defining HOL
- Higher Order Abstract Syntax
- Deriving proof rules
- More automation
- Equations and Term Rewriting

Termrewriting

- Equations and Term Rewriting
- Confluence and Termination of reduction systems
- Term Rewriting in Isabelle
- Conditional term rewriting
- Congruence rules
- AC rules
- More on confluence

Sets and Datatypes

- Sets
- · Type Definitions
- · Inductive Definitions

Induction

- · Formal background of inductive definitions
- Definition by intersection
- · Computation by iteration
- Formalisation in Isabelle
- Datatypes
- · Primitive recursion
- Structural Induction

General Recursion

- General recursion with fun/function
- Induction over recursive functions
- How fun works
- Termination, partial functions, congruence rules

Sledgehammer and Co.

- sledgehammer
- nitpick
- quickcheck

IMP and Hoare Logic

- Syntax of a simple imperative language
- Operational semantics
- Program proof on operational semantics
- Hoare logic rules
- Soundness of Hoare logic
- · Weakest precondition
- Verification conditions

State Monads

- Deep and shallow embeddings
- Isabelle records
- Nondeterministic State Monad with Failure
- Monadic Weakest Precondition Rules

AutoCorres and C Verification

- · The automated proof method wp
- The C Parser and translating C into Simpl
- AutoCorres and translating Simpl into monadic form
- · The option and exception monads

Exam

- 24h take-home exam
- Open book: can use any passive resource (books, slides, google, etc)
- Not allowed to ask for help from anyone
- Not allowed Al assistance for technical support (e.g. ChatGPT).
- starts 9am AEDT, Friday 1st Nov 2024, ends 9:00am AEDT, Saturday 2nd Nov 2024
- Should be doable in about 4-6 hours.
 The 24h are for flexibility not for you to stay awake actual 24 hours.
- Recommend to start early, finish the easy questions first.
- Take breaks. Don't forget to eat :-)
- If there are clarification questions, make **private** threads on Ed.