COMP4300 — Course Update

Assignment 1 is due 14 April, 11:55PM

» A well-written, solid explanation of the methodology and

rationale pursued to solve the different tasks and the
results obtained in your report is essential to pass the
assignment

» Start early...
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A likely table of contents for the second part of the course.
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Motivation for Parallel Computers!

Shared Memory Parallel Programming, Pthreads

Thread Synchronization, Implementation of Locks

Shared Memory Parallel Programming with OpenMP, OpenMP Tasks
Shared Memory Computer Architecture: Snooping-Based Cache-Coherence

Shared Memory Computer Architecture: Directory-Based Cache Coherence,
Memory Consistency

Hardware Threading, SIMD (intrinsics and OpenMP)
GPU Architecture, CUDA (GPU) Programming and Execution Models
CUDA Memory Hierarchy and Memory Management, Streams and Concurrency

Performance Assessment with Roofline CPU and GPU
GPU Program Tuning, Multi-GPU Programming

Review & exam preparation
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Shared Memory
Parallel Computing &
GPU Computing
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M. T. Bohr and I. A. Young, "CMOS Scaling Trends and Beyond," in IEEE Micro, vol.
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M. B. Taylor, "A Landscape of the New Dark Silicon Design Regime," in IEEE
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The Free Lunch Is Over. A Fundamental Turn Toward Concurrency in Software. Herb
Sutter. http://www.gotw.ca/publications/concurrency-ddj.htm
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Performance Boost

Scalability Prowess

Real-World Expertise

Career Advantage

Problem-Solving Prowess

Why parallel computers?

Overcome Performance Limits

Tackle Large-Scale Problems

Simulate Complex Systems

Improve Efficiency

Drive Innovation

=223 University

Solve problems significantly faster by harnessing
the power of multiple processors or cores.

Tackle large datasets and complex problems with
ease by efficiently utilizing multiple computing
resources.

Gain the skills to model and analyze real-world
systems using the world’s fastest supercomputers

Stay ahead of the curve in an increasingly parallel
computing-driven world.

Develop advanced problem-solving skills
applicable to various domains.
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Traditional single-core processors have
reached physical performance limitations.
Parallel computers offer a way to continue
increasing computational power.

They can manage massive datasets and
complex calculations that single-processor
systems cannot handle.

Parallel computers can accurately model real-
world phenomena that involve multiple
simultaneous interactions (e.g., weather
patterns, biological systems).

Parallel computers often complete
computationally heavy tasks much faster than
single-processor machines, saving time and
resources.

The need for parallel computing pushes
advancements in hardware, software, and
algorithms, expanding computational
possibilities.

What is parallelism and why do we

want to exploit it?

Advantages
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Disadvantages

Increased Performance
Improved Scalability

Better Resource
Utilization

Potential for Simulating
Real-World Systems

CSIR Mk 1 with Hollerith equipment, Sydney 1952
Source: Museums Victoria
Public Domain (Licensed as Public Domain Mark)

Increased Complexity

Overhead Costs
Limited Applicability

Hardware and Software
Requirements
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With feature size below K < 65nm (currently 4nm)
P = QfcV2+ V/Ieakage1 4)

The leakage current grows exponentially with the voltage, as we decrease
feature size K,

f= Kb, Q = K2Qq, Pi = K?Py (5)

To keep the same power envelope, large number of transistors are switched
off (dark silicon effect), operated at lower frequencies (dim silicon effect) or
organized in different ways.

12
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The only way to increase performance is to use parallel
Computers (e.g. multi-core) efficiently.

@ This is very different from the
golden years of ILP where

42 Years of Microprocessor Trend Data

Wl ‘ ; i I hardware architects did all the
10° i (hovsands) work for us.
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Why do we care so much about power?

»  shifted from desktop to our smart phone

»  democratization of HPC: e.g. ultrascale cloud computing (costs > 50%
power)
loT

physical limitations! Micro-processors are at their thermal limit.

Energy efficiency is the limitation
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» The end of the road for general purpose processors & the future of computing. John
Hennessy. https://www.hanahaus.com/blog-1/2019/1/3/ newport-beach-a-fascinating-location-
mpsfzrwrbk

» The Free Lunch Is Over. A Fundamental Turn Toward Concurrency in Software. Herb
Sutter. http;//www.gotw.ca/publications/concurrency-ddj.htm

» Chapter 12 from Computer Systems A Programmer’s Perspective, Third Edition,
Randal E. Bryant and David R. O’Hallaron, Pearson Education Heg USA, ISBN
9781292101767.

» Programming with POSIX Threads, David R. Butenhof, Addison-Wesley
Professional, ISBN-13 : 978-0201633924.
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Pal'a||e| Computers, III\II-II;?: is Instruction Level Parallelism
Programming Models, et
& Pth readS mov (#r2), %rd principle that foculses on elxeculfcing ©

mul %rd, %rd, %rl . . . .
multiple instructions simultaneously

mul %r@, %rl, %rl

Limitations of ILP

Execution
Context

mov (%r2), %rd
mul %rd, %rd, %rl
mul %r@, %rl, %rl

mov %0, (%r2)

result[i]
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Significance of ILP

*Performance Benefits: ILP was essential
in driving performance gains at a time
when increasing CPU clock speeds was
hitting physical limitations.

*Foundation for Innovation: Techniques
developed for exploiting ILP form the
basis of modern processor designs using
multi-core and vector processing
architectures.

Execution
Context

mov %0, (%r2)

within a single processor.

number of instructions completed in a

result[i]

given time) without solely relying on
increasing the clock speed of the

Limitations of ILP

mov (%r2), %rd
mul %rQ, %r0, %rl
mul %r@d, %rl, %rl

ov %r0, (%5r2)

result[i]

processor.

* The goal is to increase throughput (the

18
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Techniques to Implement ILP:

Pipelining: Breaking down an instruction's execution
into smaller stages (e.g., fetch, decode, execute, write
back). This assembly-line-like approach allows multiple
instructions to be in different stages of processing
simultaneously. Pipelines can have 15+ stages.
Superscalar Execution: Having multiple execution units
of the same type within a processor. This allows the
processor to execute multiple similar instructions (e.g.,
multiple additions or multiplications) in parallel.
Out-of-Order Execution: Modern processors
dynamically analyze instruction sequences, identify
independent instructions, and re-order their execution
if needed to increase parallelism and avoid stalls.
Branch Prediction: Speculatively executing instructions
following a branch before the branch outcome is
determined. This helps keep the pipeline filled even
with conditional jumps.

20
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Branches Code Example (Conditional Branch):
Definition: Branches are instructions in int x = 10;

if (x> 5) {
// Code to execute if x is greater than 5
printf("x is greater than 5\n");

code that cause the program flow to
deviate from a linear sequence. This

means that instead of executing the next }else {

instruction in order, the processor jumps // Code to execute if x is less than or equal to 5
X U printf("x is less than or equal to 5\n");

to a different location in the code. }

Types:

Code Example (Unconditional Branch):

Conditional Branches: The decision to
void my_function() {

branch depends on a condition (e.g., if- e e
else statements). }
int main() {
Unconditional Branches: The program /1 .. some other code
| . diff I . my_function(); // Unconditional branch - jumps to my_function
always jumps to a different location // ... code continues here after my_function returns
(e.g., function calls, goto statements). }

21

e e . Australian
Limitations of ILP S National

= University

How Branches and Memory Aliasing Interact

Optimization Challenges: Memory aliasing can make it difficult for compilers to apply certain
performance optimizations. This is because the compiler cannot always be sure whether two
pointers refer to the same memory location, leading to potentially conservative optimizations.

Branch Prediction Impact: Branches, especially conditional ones, introduce complexity in
predicting which code path will be taken. Incorrect predictions can lead to performance
penalties. Memory aliasing can further complicate this prediction process for a compiler.

Code Example:
The Challenge: If ptrl and ptr2 happen to point to the same memory location (i.e., they are aliases), the
compiler might assume that their values are independent. This could prevent optimizations like keeping
the value of *ptr2 in a register, assuming it won't change unexpectedly.

int should_optimize = 0; // Some condition that may change

void some_function(int *ptrl, int *ptr2) {
if (should_optimize) {
*ptrl = *ptr2 + 5;
}
} 23
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Memory Aliasing

Definition: Memory aliasing occurs when the same memory location can be
accessed through multiple different names (pointers, variables, etc.).

Why it matters: This can lead to unexpected behavior if you modify the
memory location through one name and then read its value through
another name because the compiler might make assumptions about values
not changing.

Code Example:

int *p = malloc(sizeof(int)); // Allocate memory
*p=5; // Set the value at the memory location

int &q = *p; // qis now an alias for the same memory location
*p=10; //Changes the value through the pointer p
printf("%d\n", q); // Will print 10, since q refers to the same location

22

e e . Australian
Limitations of ILP S National

= University

How to manage Aliasing

Minimize Aliasing: When feasible, try to limit situations where multiple pointers reference the
same memory. When a compiler sees multiple pointers in your code, it has to assume that they
might point to the same memory location (aliasing). This conservative approach is needed for
correctness but can prevent these optimizations.

Compiler Directives: Some languages provide keywords or compiler flags (e.g., restrict in C) to give
compilers hints about aliasing, allowing for better optimization opportunities. Using restrict
incorrectly can lead to undefined behavior if you break your promise about aliasing. Use wisely!

Careful with Optimization: Be aware that aggressive optimizations based on assumptions about
memory aliasing might lead to unexpected behavior if those assumptions are violated in your
program.

Code Example:
void my_function(int * restrict p, int * restrict g, int n) {

for (inti=0;i<n;i++) {
plil = p[i] + qfil;

24
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Large numbers of transistors are used for logic that help a
single instruction stream run faster.

Fetch/De | Fetch/De
code 1 e Cache (a big one ...)
AUl ALU 2
Out-Of-Order Logic
Execution Branch Prediction
Context
Prefetch

mov (%r2), %ro
mul %ro, %re, %rl
mul %r@, %rl, %rl

mov %r0, (%r2)

The end of the u

This had diminishing returns!

niprocessor era
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Clock rates are now
capped (< 4 GHz) by power
constraints

ILP (superscalarity
and pipelining) is
saturated

Power usage saturated

The performance free lunch is over!
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Limitations of ILP

Actual clock cycles per instruction (CPI)

3 In reality, the actual CPI is almost always higher than the
theoretical best case due to various factors:

Instruction Complexity: Not all instructions take a single
cycle. Complex operations (e.g., multiplication, floating-
point operations) generally take more cycles.

1 Memory Access: If an instruction needs to load data
from memory (especially slower levels of cache or
05 RAM), it will introduce stalls, increasing CPI.

Branch Misprediction: If the processor incorrectly
predicts which way a branch will go, it might need to
flush the pipeline and start over, leading to wasted
cycles and a higher CPI.

o ¢ G o

S @f@@‘f&&s‘:«‘w‘”ww*@

R & Y, ¢ & &

& g
t

Actual clock (_ycles per instruction (CPI)
on Intel i7. Theoretical (in red) is 0.25.

Resource Contention: If multiple instructions need to
access the same execution units simultaneously, stalls

can occur, increasing the CPI.
26
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mov (%r2), %ro
mul %rd, %rd, %rl
mul %r@, %rl, %rl

X[3]

mov (%r2), %ro
mul %rd, %rd, %rl

Rather than use transistors to
il 19, At Srd increase the sophistication of
: single instruction stream, use
- additional transistors to add
more cores on one die.

;r;ov %rd, (%r2) mov %rd, (%r2)

result[i] result[j]

Processor Core 1 Processor Core 1
g gy

2 cores, each one slightly
slower (e.g. 0.75) than the
original processor. Potential
speedup 1.5x.

Problem: what happens if
we run our program on this
il e new processor?

GX Bus
(n:1)

% GXController

IBM Power4 — first multiprocessor (2001)

http://ixbtlabs.com/articles/ibmpowers/ 28
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Parallelism as the Norm New Programming Challenges

Multi-core computers have fundamentally
changed the computing landscape.

Programmers now need to think about

concurrency, synchronization, and how to effectively
divide work among multiple cores.

Beyond Single Threads: Before multi-core

processors, most software was written Software Complexity: Programming for parallelism
sequentially. Multi-cores shifted the focusto  often requires specialized design, algorithms, and
writing code that can take advantage of tools, adding complexity to development.

multiple cores simultaneously. Amdabhl's Law: Not all problems are easily
parallelizable. Amdahl's Law recognizes limitations on
speedup based on the inherently sequential portions
of code.

X[il X[lj]
mov (%r2), %ro
mul %r@, %rod, %rl
mul %r@, %rl, %rl

mov (¥r2), %ro
mul %r@d, %rd, %rl
mul %r@d, %rl, %rl

Execution

Tov %r0, (%r2) Context Tov %r0, (%r2)
result[i] ‘ ‘ result[j] 29
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Symmetric multiprocessing (SMP) systems face several limitations when it
comes to scaling the number of cores:

» As the number of cores increases, the competition for shared resources
like memory bandwidth and cache space intensifies which can hinder
performance gains.

» In SMP systemes, all cores share the same memory. As more cores are
added, the latency for memory access can increase.

» The bandwidth and power consumption of interconnects (buses or
crossbar switches) that connect the processors to the memory and 1/0
devices can become a bottleneck.

» Managing synchronization between multiple cores becomes more complex
as the number of cores increases.

» Not all applications can be easily parallelized.

31
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Performance Breakthroughs

Beyond Clock Speed Limits: Increasing clock
speeds hit diminishing returns. Multi-core
processors enabled continued performance
growth by adding more cores instead of solely
relying on faster single cores.

Scalability: Problems can be scaled across
cores, often leading to significant speedups.

Improved User Experience: Even when a
single program isn't fully parallelizable, users
noticed better responsiveness because
multiple programs can run in parallel on
different cores.

Background Tasks: Operating systems can
more smoothly manage background

tasks, updates, and system services without
heavily impacting foreground applications.
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Computationally Intensive Workloads: Multi-
core processors enabled demanding
applications in scientific computing, machine
learning, video editing, 3D rendering, and
simulations that were previously not practical
on consumer computers (HPC).

Real-Time Performance: Tasks requiring real-
time execution and handling multiple inputs at
once benefited greatly.

Targeted Power Usage: Not every task needs all
cores at full power. This allows for dynamic
power management and energy savings.

[ ] [ |

mov (%r2), %r0
mil %0, %0, %rl
mil %0, %rl, %l

mov (%r2), %r0
mul %r0, %r0, %rl
mul %r@, %rl, %rl

mov %0, (%r2) nov %0, (¥r2)

30

|
result[i] [ result(j]

Using Multiple Cores:
From the beginning...

32



MPI vs OpenMP

Different Focus:
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» MPI, first released in 1994, was developed to address the need for
parallel computing on distributed memory systems, which were
more common in high-performance computing environments at

the time

» OpenMP, first released in 1997 was developed to simplify parallel
programming on shared memory systems, which became more
prevalent with the rise of multi-core processors

Technological Evolution:

» The development of multi-core processors and the increasing
availability of shared memory systems created a demand for a
simpler parallel programming model, leading to the development

of OpenMP
33
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Concurrency

A UNIX process is the Operating System’s abstraction
for a running program.

Multiprocessing is the ability of the OSto run more
than one process concurrently.

Concurrency is about the structure of a program
and how it handles multiple tasks. A concurrent
program has parts that can make progress
seemingly at the same time or in an interleaved
fashion.

Time

{

|
ProcessA 1 Process B

read---> \

Disk interrupt ---~

f

Return /

from read

¥
-

Focus: Concurrency is about logical
multitasking — managing multiple things in
progress at the same time.

Single Core Example: Think of a web server
handling multiple requests at the same time ie
concurrently. It might not be processing them
simultaneously, but it switches between
requests quickly, giving the illusion of parallel
activity.

User code

Kemel code } Co_mexi
switch

User code
Kernel code }

User code

Context
switch
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MPI vs OpenMP

Complementary Models
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» OpenMP and MPI are often used together in hybrid programming
models, where OpenMP handles parallelism within a node (shared
memory) and MPI handles parallelism between nodes (distributed

memory)

Operating-System-Supported Multiprocessing

Parallelism

Definition: Parallelism is about the physical
execution of a program. A parallel program has parts
that literally run at the same time by using multiple
processing units (e.g., cores, processors).

Parallelism is about using multiple processing
resources to speed up computational tasks by
dividing the work.

Multi-Core Example: A complex image processing
task that splits an image into sections and processes
each section simultaneously on different cores of a
multi-core processor.

34
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Key Points

All parallel programs are concurrent: If
a program is running on multiple cores
at once, it's also concurrent.

Not all concurrent programs are
parallel: A single-core system can
achieve concurrency through time-
slicing and context switching between
tasks.

All programs

Concurrent programs

Sequential programs

Parallel
programs

36
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Example: The UNIX Operating system
The OS is ultimately responsible to map processes efficiently to the hardware, e.g. map different processes
to different cores, if available.

Each process is assigned a process identifier (PID) that is unique across the entire system (try using the
“ps” or "top” programs).

Processes usually correspond to completely different programs with their own set of instructions, global
data, stack and heap (a different virtual address space).

UNIX processes can, however, communicate using pipe(), socket{)and various OS-supported shared-memory
areas.

Code example: Getting Process Information

#include <unistd.h>
#include <stdio.h>

Create a new UNIX process

Any UNIX process can spawn new processes
(called “children”) using the UNIX fork()
utility.

fork() creates a clone of the parent program
replicating the code, global variables and
stack.

In order to use fork() you have to #include
<unistd.h>

Parent and child: The only difference between
the parent and the child is that the latter
returns from fork() with 0, while the parent

Code Example

#include <unistd.h>
#include <stdio.h>
#include <sys/wait.h>

int main() {
pid_t pid = fork();

if (pid == 0) {

// Child process code
} else if (pid > 0) {

// Parent process code

wait(NULL); // Wait for child to finish
}else {

// Fork failed

perror("fork");

int main() { - |
pid_t pid = getpid(); // Get current process ID returns with the PID of the child }
pid_t ppid = getppid(); // Get parent process ID
The execution of the parent/child resumes return 0;

printf("Process ID: %d\n", pid);
printf("Parent Process ID: %d\n", ppid);
return 0;
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When to use fork()

. . . e fork() is, h , dina ber of a
It is possible to use basic UNIX utilities like e e i ot

from the fork() call

DEMO
Operating-System-Supported Concurrency

Problem Definition
» Computing t

Y

fork(), socket() and pipe() and shared
memory segments to generate a parallel

passing protocols whereby multiple copies of a
program are created once at the beginning of
execution and then communicate via a series of

» The exact result is 3.1415..., which makes
approximation
» We use Mont Carlo integration

it easy to verify our numerical

program using multiple cores, however... messages. > Sequential Algorithm
: ; : » Computes the integration over N samples
Context switching: fork() is a “heavy weight” Message passing makes it complicated and > Evaluates the function at each point
operation. fork() incurs overhead due to the potent_lally _|neff|C|ent for flows to communicate, » Check if the point is inside the unit circle
. \ especially if they share large amounts of data. e
operating system's scheduler » Parallelization Strategy
» Each process handles its own portion of the N samples
Memory Overhead: taking substantial time S » Local results are combined using pipes
to make an identical copy of the parent srck | soutines vaszo T @ > The parent process collects the final result from the child processes
process, e.g. it may have to replicate a » Performance Measurement . . .
process that has many GB of memory text Qo | » Uses gettimeofday() to measure execution time for both sequential and parallel
’ o algorithms
. p . G > Calculates and reports speedup
Modern programming often offers better > Computes the error compared to the exact analytical solution
multithreading solutions for fine-grained - E
parallelism.

UNIX PROCESS
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DEMO
Operating-System-Supported Concurrency

Using pipes in a C program for inter-process communication (IPC)
introduces several overheads:

» When data is written to or read from a pipe, the operating
system may need to perform context switches between the
processes involved.

» Pipes use buffers to temporarily store data being transferred
between processes. Buffer size is measured in pages.

» Each read and write operation on a pipe involves a system call,
which can be relatively expensive in terms of CPU cycles.

» Data written to a pipe is copied from the user space of the
writing process to the kernel space, and then from the kernel
space to the user space of the reading process.

COMP4300/8300 - Pipelining Il 2025 41



