
COMP4300 – Course Update

Assignment 1 is due 14 April, 11:55PM

Ø A well-written, solid explanation of the methodology and
rationale pursued to solve the different tasks and the
results obtained in your report is essential to pass the
assignment

Ø Start early…

1

Shared Memory
Parallel Computing &

GPU Computing

3

Contents Covered

A likely table of contents for the second part of the course.
Ø Motivation for Parallel Computers!
Ø Shared Memory Parallel Programming, Pthreads
Ø Thread Synchronization, Implementation of Locks
Ø Shared Memory Parallel Programming with OpenMP, OpenMP Tasks
Ø Shared Memory Computer Architecture: Snooping-Based Cache-Coherence
Ø Shared Memory Computer Architecture: Directory-Based Cache Coherence,

Memory Consistency
Ø Hardware Threading, SIMD (intrinsics and OpenMP)
Ø GPU Architecture, CUDA (GPU) Programming and Execution Models
Ø CUDA Memory Hierarchy and Memory Management, Streams and Concurrency
Ø Performance Assessment with Roofline CPU and GPU
Ø GPU Program Tuning, Multi-GPU Programming

Review & exam preparation

4

References

Ø R. Dennard et al., “Design of Ion- Implanted MOSFETs with Very Small Physical
Dimensions,” IEEE J. Solid State Circuits, vol. 9, no. 5, 1974, pp. 256–268.

Ø M. T. Bohr and I. A. Young, "CMOS Scaling Trends and Beyond," in IEEE Micro, vol.
37, no. 6, pp. 20-29, November/December 2017, doi: 10.1109/MM.2017.4241347.

Ø M. B. Taylor, "A Landscape of the New Dark Silicon Design Regime," in IEEE
Micro, vol. 33, no. 5, pp. 8-19, Sept.-Oct. 2013, doi: 10.1109/MM.2013.90.

Ø The Free Lunch Is Over. A Fundamental Turn Toward Concurrency in Software. Herb
Sutter. http://www.gotw.ca/publications/concurrency-ddj.htm

5

Why are you taking this course?

Performance Boost Solve problems significantly faster by harnessing
the power of multiple processors or cores.

Scalability Prowess
Tackle large datasets and complex problems with
ease by efficiently utilizing multiple computing
resources.

Real-World Expertise Gain the skills to model and analyze real-world
systems using the world’s fastest supercomputers

Career Advantage Stay ahead of the curve in an increasingly parallel
computing-driven world.

Problem-Solving Prowess Develop advanced problem-solving skills
applicable to various domains.

Advantages Disadvantages

Increased Performance Increased Complexity

Improved Scalability Overhead Costs

Better Resource
Utilization Limited Applicability

Potential for Simulating
Real-World Systems

Hardware and Software
Requirements

What is parallelism and why do we
want to exploit it?

6

Overcome Performance Limits
Traditional single-core processors have
reached physical performance limitations.
Parallel computers offer a way to continue
increasing computational power.

Tackle Large-Scale Problems
They can manage massive datasets and
complex calculations that single-processor
systems cannot handle.

Simulate Complex Systems
Parallel computers can accurately model real-
world phenomena that involve multiple
simultaneous interactions (e.g., weather
patterns, biological systems).

Improve Efficiency
Parallel computers often complete
computationally heavy tasks much faster than
single-processor machines, saving time and
resources.

Drive Innovation
The need for parallel computing pushes
advancements in hardware, software, and
algorithms, expanding computational
possibilities.

7

Why parallel computers?

Early Beginnings: the 1940s-1950s

Vacuum Tubes and Transistors: The
first computers relied on bulky and
power-hungry vacuum tubes, later
replaced by more efficient transistors.

Mainframes: Large, expensive machines
dominated, used primarily by
governments, universities, and large
corporations.

CSIR Mk 1 with Hollerith equipment, Sydney 1952
Source: Museums Victoria
Public Domain (Licensed as Public Domain Mark)

Uniprocessor Computing Era

8

The Rise of Microprocessors: 1970s-1980s

The Integrated Circuit Revolution:
Microprocessors placed entire CPUs on single
chips, dramatically reducing size and cost.

Personal Computers Emerge:
The PC revolution began, making computing
accessible to businesses and individuals.

Uniprocessor Computing Era

DEC PDP-10
https://livingcomputers.org

9

The Quest for Speed: 1980s-2000s

Focus on Clock Speed: Performance gains centered on
increasing the rate at which a processor could execute
instructions (measured in megahertz and later
gigahertz).

Architectural Improvements: Innovations like pipelining
and superscalar designs enhanced efficiency, allowing
processors to do more per clock cycle.

Software Evolution: Operating systems and applications
became more sophisticated, demanding faster
hardware.

Uniprocessor Computing Era

10

Hitting the Wall: Early 2000s

Limits of Clock Speed: Increasing clock speeds
ran into physical limitations due to heat
dissipation, power consumption, and
manufacturing hurdles.

The Need for a New Approach: The relentless
focus on clock speed ultimately reached its
limits, necessitating a shift towards parallel
computing architectures to continue the
performance growth trajectory.

Uniprocessor Computing Era

11 12

The end of Dennard scaling (2002-2004)

With feature size below K < 65nm (currently 4nm)

P = QfCV 2 + VIleakage1 (4)

The leakage current grows exponentially with the voltage, as we decrease
feature size K,

f = Kf0, Q = K2Q0, Pk = K2P0 (5)

To keep the same power envelope, large number of transistors are switched
off (dark silicon effect), operated at lower frequencies (dim silicon effect) or
organized in different ways.

1 This is formally the correct equation, however for feature size > 65 nm Ileakage ~ 0

13

The end of the uniprocessor era

Clock rate capped (< 4 GHz) by
power constraints
Instruction Level Parallelism (ILP),
superscalarity and pipelining,
saturated

Power saturated (limitations in heat
removal)

14

The role of power consumption

Why do we care so much about power?
Ø shifted from desktop to our smart phone
Ø democratization of HPC: e.g. ultrascale cloud computing (costs > 50%

power)
Ø IoT
Ø physical limitations! Micro-processors are at their thermal limit.

Energy efficiency is the limitation

15

The multicore era

The only way to increase performance is to use parallel
Computers (e.g. multi-core) efficiently.

This is very different from the
golden years of ILP where
hardware architects did all the
work for us.

Programmers are now forced to
bear the burden of finding and
exploiting parallelism.

This is also an exciting era of
opportunities for computational
scientists: new algorithms and
efficient implementations make
a difference on what is
achievable in computing.

16

References

Ø The end of the road for general purpose processors & the future of computing. John
Hennessy. https://www.hanahaus.com/blog-1/2019/1/3/newport-beach-a-fascinating-location-
mpsfz-rwrbk

Ø The Free Lunch Is Over. A Fundamental Turn Toward Concurrency in Software. Herb
Sutter. http://www.gotw.ca/publications/concurrency-ddj.htm

Ø Chapter 12 from Computer Systems A Programmer’s Perspective, Third Edition,
Randal E. Bryant and David R. O’Hallaron, Pearson Education Heg USA, ISBN
9781292101767.

Ø Programming with POSIX Threads, David R. Butenhof, Addison-Wesley
Professional, ISBN-13 : 978-0201633924.

17

Parallel Computers,
Programming Models,
& Pthreads

Limitations of ILP

What is Instruction Level Parallelism
(ILP)?

• ILP refers to a microarchitectural design
principle that focuses on executing
multiple instructions simultaneously
within a single processor.

• The goal is to increase throughput (the
number of instructions completed in a
given time) without solely relying on
increasing the clock speed of the
processor.

18

Limitations of ILP

Significance of ILP

•Performance Benefits: ILP was essential
in driving performance gains at a time
when increasing CPU clock speeds was
hitting physical limitations.

•Foundation for Innovation: Techniques
developed for exploiting ILP form the
basis of modern processor designs using
multi-core and vector processing
architectures.

19

Limitations of ILP

Techniques to Implement ILP:

Pipelining: Breaking down an instruction's execution
into smaller stages (e.g., fetch, decode, execute, write
back). This assembly-line-like approach allows multiple
instructions to be in different stages of processing
simultaneously. Pipelines can have 15+ stages.
Superscalar Execution: Having multiple execution units
of the same type within a processor. This allows the
processor to execute multiple similar instructions (e.g.,
multiple additions or multiplications) in parallel.
Out-of-Order Execution: Modern processors
dynamically analyze instruction sequences, identify
independent instructions, and re-order their execution
if needed to increase parallelism and avoid stalls.
Branch Prediction: Speculatively executing instructions
following a branch before the branch outcome is
determined. This helps keep the pipeline filled even
with conditional jumps.

20

21

Limitations of ILP

Branches

Definition: Branches are instructions in
code that cause the program flow to
deviate from a linear sequence. This
means that instead of executing the next
instruction in order, the processor jumps
to a different location in the code.

Types:

Conditional Branches: The decision to
branch depends on a condition (e.g., if-
else statements).

Unconditional Branches: The program
always jumps to a different location
(e.g., function calls, goto statements).

int x = 10;
if (x > 5) {
 // Code to execute if x is greater than 5
 printf("x is greater than 5\n");
} else {
 // Code to execute if x is less than or equal to 5
 printf("x is less than or equal to 5\n");
}

Code Example (Conditional Branch):

Code Example (Unconditional Branch):

void my_function() {
 // Some code here
}

int main() {
 // ... some other code
 my_function(); // Unconditional branch - jumps to my_function
 // ... code continues here after my_function returns
}

22

Limitations of ILP

Memory Aliasing

Definition: Memory aliasing occurs when the same memory location can be
accessed through multiple different names (pointers, variables, etc.).

Why it matters: This can lead to unexpected behavior if you modify the
memory location through one name and then read its value through
another name because the compiler might make assumptions about values
not changing.

int *p = malloc(sizeof(int)); // Allocate memory
*p = 5; // Set the value at the memory location

int &q = *p; // q is now an alias for the same memory location

*p = 10; // Changes the value through the pointer p

printf("%d\n", q); // Will print 10, since q refers to the same location

Code Example:

23

Limitations of ILP

How Branches and Memory Aliasing Interact

Optimization Challenges: Memory aliasing can make it difficult for compilers to apply certain
performance optimizations. This is because the compiler cannot always be sure whether two
pointers refer to the same memory location, leading to potentially conservative optimizations.

Branch Prediction Impact: Branches, especially conditional ones, introduce complexity in
predicting which code path will be taken. Incorrect predictions can lead to performance
penalties. Memory aliasing can further complicate this prediction process for a compiler.

int should_optimize = 0; // Some condition that may change

void some_function(int *ptr1, int *ptr2) {
 if (should_optimize) {
 *ptr1 = *ptr2 + 5;
 }
}

Code Example:
The Challenge: If ptr1 and ptr2 happen to point to the same memory location (i.e., they are aliases), the
compiler might assume that their values are independent. This could prevent optimizations like keeping
the value of *ptr2 in a register, assuming it won't change unexpectedly.

24

Limitations of ILP

How to manage Aliasing

Minimize Aliasing: When feasible, try to limit situations where multiple pointers reference the
same memory. When a compiler sees multiple pointers in your code, it has to assume that they
might point to the same memory location (aliasing). This conservative approach is needed for
correctness but can prevent these optimizations.

Compiler Directives: Some languages provide keywords or compiler flags (e.g., restrict in C) to give
compilers hints about aliasing, allowing for better optimization opportunities. Using restrict
incorrectly can lead to undefined behavior if you break your promise about aliasing. Use wisely!

Careful with Optimization: Be aware that aggressive optimizations based on assumptions about
memory aliasing might lead to unexpected behavior if those assumptions are violated in your
program.

void my_function(int * restrict p, int * restrict q, int n) {
 for (int i = 0; i < n; i++) {
 p[i] = p[i] + q[i];
 }
}

Code Example:

25

Limitations of ILP

Large numbers of transistors are used for logic that help a
single instruction stream run faster.

This had diminishing returns!

26

Limitations of ILP

Actual clock cycles per instruction (CPI)
on Intel i7. Theoretical (in red) is 0.25.

Actual clock cycles per instruction (CPI)

In reality, the actual CPI is almost always higher than the
theoretical best case due to various factors:

Instruction Complexity: Not all instructions take a single
cycle. Complex operations (e.g., multiplication, floating-
point operations) generally take more cycles.

Memory Access: If an instruction needs to load data
from memory (especially slower levels of cache or
RAM), it will introduce stalls, increasing CPI.

Branch Misprediction: If the processor incorrectly
predicts which way a branch will go, it might need to
flush the pipeline and start over, leading to wasted
cycles and a higher CPI.

Resource Contention: If multiple instructions need to
access the same execution units simultaneously, stalls
can occur, increasing the CPI.

27

The end of the uniprocessor era

Ø Clock rates are now
capped (< 4 GHz) by power
constraints

Ø ILP (superscalarity
and pipelining) is
saturated

Ø Power usage saturated

The performance free lunch is over! 28

The multicore era

Rather than use transistors to
increase the sophistication of
single instruction stream, use
additional transistors to add
more cores on one die.

2 cores, each one slightly
slower (e.g. 0.75) than the
original processor. Potential
speedup 1.5x.
Problem: what happens if
we run our program on this
new processor?

IBM Power4 – first multiprocessor (2001)
http://ixbtlabs.com/articles/ibmpower4/

29

The multicore era

Parallelism as the Norm

Multi-core computers have fundamentally
changed the computing landscape.

Beyond Single Threads: Before multi-core
processors, most software was written
sequentially. Multi-cores shifted the focus to
writing code that can take advantage of
multiple cores simultaneously.

New Programming Challenges

Programmers now need to think about
concurrency, synchronization, and how to effectively
divide work among multiple cores.

Software Complexity: Programming for parallelism
often requires specialized design, algorithms, and
tools, adding complexity to development.
Amdahl's Law: Not all problems are easily
parallelizable. Amdahl's Law recognizes limitations on
speedup based on the inherently sequential portions
of code.

30

The multi-core era
Performance Breakthroughs

Beyond Clock Speed Limits: Increasing clock
speeds hit diminishing returns. Multi-core
processors enabled continued performance
growth by adding more cores instead of solely
relying on faster single cores.

Scalability: Problems can be scaled across
cores, often leading to significant speedups.

Improved User Experience: Even when a
single program isn't fully parallelizable, users
noticed better responsiveness because
multiple programs can run in parallel on
different cores.

Background Tasks: Operating systems can
more smoothly manage background
tasks, updates, and system services without
heavily impacting foreground applications.

Computationally Intensive Workloads: Multi-
core processors enabled demanding
applications in scientific computing, machine
learning, video editing, 3D rendering, and
simulations that were previously not practical
on consumer computers (HPC).

Real-Time Performance: Tasks requiring real-
time execution and handling multiple inputs at
once benefited greatly.

Targeted Power Usage: Not every task needs all
cores at full power. This allows for dynamic
power management and energy savings.

31

The multi-core era

Symmetric multiprocessing (SMP) systems face several limitations when it
comes to scaling the number of cores:

Ø As the number of cores increases, the competition for shared resources
like memory bandwidth and cache space intensifies which can hinder
performance gains.

Ø In SMP systems, all cores share the same memory. As more cores are
added, the latency for memory access can increase.

Ø The bandwidth and power consumption of interconnects (buses or
crossbar switches) that connect the processors to the memory and I/O
devices can become a bottleneck.

Ø Managing synchronization between multiple cores becomes more complex
as the number of cores increases.

Ø Not all applications can be easily parallelized.

32

Using Multiple Cores:
 From the beginning…

33

MPI vs OpenMP

Different Focus:
Ø MPI, first released in 1994, was developed to address the need for

parallel computing on distributed memory systems, which were
more common in high-performance computing environments at
the time

Ø OpenMP, first released in 1997 was developed to simplify parallel
programming on shared memory systems, which became more
prevalent with the rise of multi-core processors

Technological Evolution:
Ø The development of multi-core processors and the increasing

availability of shared memory systems created a demand for a
simpler parallel programming model, leading to the development
of OpenMP

34

MPI vs OpenMP

Complementary Models

Ø OpenMP and MPI are often used together in hybrid programming
models, where OpenMP handles parallelism within a node (shared
memory) and MPI handles parallelism between nodes (distributed
memory)

35

Operating-System-Supported Multiprocessing

Concurrency

A UNIX process is the Operating System’s abstraction
for a running program.

Multiprocessing is the ability of the OS to run more
than one process concurrently.

Concurrency is about the structure of a program
and how it handles multiple tasks. A concurrent
program has parts that can make progress
seemingly at the same time or in an interleaved
fashion.

Focus: Concurrency is about logical
multitasking – managing multiple things in
progress at the same time.

Single Core Example: Think of a web server
handling multiple requests at the same time ie
concurrently. It might not be processing them
simultaneously, but it switches between
requests quickly, giving the illusion of parallel
activity.

36

Operating-System-Supported Multiprocessing

Parallelism

Definition: Parallelism is about the physical
execution of a program. A parallel program has parts
that literally run at the same time by using multiple
processing units (e.g., cores, processors).

Parallelism is about using multiple processing
resources to speed up computational tasks by
dividing the work.

Multi-Core Example: A complex image processing
task that splits an image into sections and processes
each section simultaneously on different cores of a
multi-core processor.

Key Points

All parallel programs are concurrent: If
a program is running on multiple cores
at once, it's also concurrent.

Not all concurrent programs are
parallel: A single-core system can
achieve concurrency through time-
slicing and context switching between
tasks.

37

Operating-System-Supported Multiprocessing

Example: The UNIX Operating system

The OS is ultimately responsible to map processes efficiently to the hardware, e.g. map different processes
to different cores, if available.

Each process is assigned a process identifier (PID) that is unique across the entire system (try using the
“ps” or ” top”programs).

Processes usually correspond to completely different programs with their own set of instructions, global
data, stack and heap (a different virtual address space).

UNIX processes can, however, communicate using pipe(), socket() and various OS-supported shared-memory
areas.

#include <unistd.h>
#include <stdio.h>

int main() {
 pid_t pid = getpid(); // Get current process ID
 pid_t ppid = getppid(); // Get parent process ID

 printf("Process ID: %d\n", pid);
 printf("Parent Process ID: %d\n", ppid);
 return 0;
}

Code example: Getting Process Information

38

Operating-System-Supported Multiprocessing

Create a new UNIX process

Any UNIX process can spawn new processes
(called “children”) using the UNIX fork()
utility.

fork() creates a clone of the parent program
replicating the code, global variables and
stack.

In order to use fork() you have to #include
<unistd.h>

Parent and child: The only difference between
the parent and the child is that the latter
returns from fork() with 0, while the parent
returns with the PID of the child

The execution of the parent/child resumes
from the fork() call

#include <unistd.h>
#include <stdio.h>
#include <sys/wait.h>

int main() {
 pid_t pid = fork();

 if (pid == 0) {
 // Child process code
 } else if (pid > 0) {
 // Parent process code
 wait(NULL); // Wait for child to finish
 } else {
 // Fork failed
 perror("fork");
 }

 return 0;
}

Code Example

39

Operating-System-Supported Multiprocessing

fork() is, however, used in a number of message
passing protocols whereby multiple copies of a
program are created once at the beginning of
execution and then communicate via a series of
messages.

Message passing makes it complicated and
potentially inefficient for flows to communicate,
especially if they share large amounts of data.

When to use fork()

It is possible to use basic UNIX utilities like
fork(), socket() and pipe() and shared
memory segments to generate a parallel
program using multiple cores, however…

Context switching: fork() is a “heavy weight”
operation. fork() incurs overhead due to the
operating system's scheduler

Memory Overhead: taking substantial time
to make an identical copy of the parent
process, e.g. it may have to replicate a
process that has many GB of memory.

Modern programming often offers better
multithreading solutions for fine-grained
parallelism.

DEMO
 Operating-System-Supported Concurrency

2025COMP4300/8300 - Pipelining II 40

Ø Problem Definition
Ø Computing π
Ø The exact result is 3.1415…, which makes it easy to verify our numerical

approximation
Ø We use Mont Carlo integration

Ø Sequential Algorithm
Ø Computes the integration over N samples
Ø Evaluates the function at each point
Ø Check if the point is inside the unit circle

Ø Parallelization Strategy
Ø Each process handles its own portion of the N samples
Ø Local results are combined using pipes
Ø The parent process collects the final result from the child processes

Ø Performance Measurement
Ø Uses gettimeofday() to measure execution time for both sequential and parallel

algorithms
Ø Calculates and reports speedup
Ø Computes the error compared to the exact analytical solution

DEMO
 Operating-System-Supported Concurrency

2025COMP4300/8300 - Pipelining II 41

Using pipes in a C program for inter-process communication (IPC)
introduces several overheads:

Ø When data is written to or read from a pipe, the operating
system may need to perform context switches between the
processes involved.

Ø Pipes use buffers to temporarily store data being transferred
between processes. Buffer size is measured in pages.

Ø Each read and write operation on a pipe involves a system call,
which can be relatively expensive in terms of CPU cycles.

Ø Data written to a pipe is copied from the user space of the
writing process to the kernel space, and then from the kernel
space to the user space of the reading process.

